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Abstract: The high strength and stiffness-to-weight ratios of structural steel often result in relatively
slender members and systems, which are governed to a great extent by stability limit states. However,
predicting the stability of slender structures is difficult due to various inherent uncertainties in
material and geometry. Generally, structural and member stabilities are nonlinear problems that
cannot be directly evaluated based on the section strength using conventional analysis method.
Nonlinear behaviors are basically categorized as materially and geometrically nonlinear, which
can be observed at the cross-sectional, member, and frame levels. To provide a comprehensive
understanding of the current state-of-the-art non-linear behavior and design of steel structures and to
identify key areas for future research and development, this paper presents a review on the materially
and geometrically nonlinear effects of steel structures. A discussion of the effects of material yielding
accentuated by the presence of residual stresses, initial imperfections, and end conditions will
be conducted. The stiffness reduction due to second-order effects and material yielding will be
illustrated. Moreover, current and emerging design approaches that consider nonlinear responses
will also be reviewed and evaluated. Lastly, with the development of modern flexible and complex
steel structures, which sometimes violate fundamental assumptions of the current stability design
method, the application of advanced analysis and design methods will be explored.

Keywords: steel structures; instability; buckling; structural design; direct analysis method

1. Introduction

Steel has been widely used in structures that play essential roles in maintaining
the normal functioning of society, such as high-rise, large-space, and offshore structures.
As steel has high resistance to deformation and breakage, steel members can achieve
sufficient capacity with a small cross-section area. This feature reduces structural self-
weight, benefiting both constructions and seismic performances. However, slender steel
members are usually prone to lose stability under compressive loads, and this may result in
structural collapses. To prevent any failure, steel members may require additional bracing,
stiffeners, or reinforcement in order to resist applied forces and keep stability. Structural
engineers should carefully determine the slenderness ratio, width-to-thickness ratio, and
material properties when designing steel members, and this requires a comprehensive
understanding of their nonlinear mechanical responses.

Factors that cause nonlinear structural behaviors include material properties, geo-
metric configurations, boundary conditions, and loading scenarios. Nonlinear behavior
typically arises when steel members are subjected to time-dependent loading and large
strains. Partial or complete yielding of a cross section would change structural stiffness and
stress distribution, making the structure behave unexpectedly. Geometric configurations,
such as shape, size, and the initial imperfection of a component, can also significantly
influence its rigidity, its strength, its response, and its interactions with other parts. The
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interconnected systems have complex emergent nonlinear behaviors that are not present in
isolated systems, and the way that components are connected should therefore be carefully
designed in order to achieve an anticipated structural performance. The superposition
of these nonlinear factors aggregates the nonlinear responses, and it poses a significant
challenge to accurately predicting structural nonlinear characteristics.

Nonlinear characteristics of steel structures, especially the stability and the buckling,
under different loading conditions have been extensively studied over the years [1–6].
Early research developed the conventional design methodology based on the behavior of
individual members [7–9], and the design is performed on separate members according
to the internal forces obtained from elastic structural analysis. The nonlinear effects are
considered through different coefficients, such as effective length, moment amplification,
and equivalent moment factors [10–13]. Nevertheless, with the technical development
of fabrication and construction, steel structures are now molded or shaped with more
flexible forms, such as free-form reticulate shells, where the nonlinear responses vary
from traditional frames. These changes make the conventional design coefficients less
reliable in the design of emerging modern structures. Realistically, a complex steel structure
should be designed based on interactive system behavior rather than on a collection of
individual behaviors of beam-columns, and this requires a considerable change in the
philosophy of structural design. Therefore, the direct analysis method is proposed [14–16]
and recommended by many national design codes [17–20] for the design of increasingly
complex steel structures.

The Direct Analysis Method (DAM) is a newly developed advanced stability design
method that recognizes the limitations of the effective length method. The DAM directly
and comprehensively considers nonlinear effects, including the initial imperfection, residual
stresses, and second-order effects, in structural global second-order analyses. The DAM
could provide a more accurate analysis of the structure’s behavior, especially for complex
and highly-loaded structures [21–23], and it can help to ensure that structures will perform
as intended under all loading conditions, whilst the member stability can be checked
directly based on the material strength criteria. Therefore, the method eliminates the need
to calculate effective length factors, and it can be used regardless of the type of structure.
The method is developed based on the finite element method, and it can thus be applied
to a broad range of problems. However, when a member is under a high axial force, the
finite element method requires more elements to approximate the member deformed shape.
Advanced techniques may need to maintain the modeling and analysis efficiency for the
design of modern complex steel structures.

The paper aims to provide a comprehensive understanding of the current state of the
art in non-linear behavior and the design of steel structures, and to identify key areas for
future research and development. The steel material properties are first discussed, and
the material nonlinear effect is illustrated. The geometric nonlinear responses rising from
initial imperfections, second-order effects, and large deformation are introduced. Moreover,
both the analysis and the design methods for steel structures considering nonlinear effects
are provided. Finally, an outlook for the application of an advanced design method for
modern steel structures is explored.

2. Materially Nonlinear Effect
2.1. Stress-Strain Response

Steel exhibits nonlinear behavior due to its elastic-plastic nature. As the load on the
structure increases, plastic hinges would occur when the members’ ultimate strength has
been reached. This phenomenon should be considered in the design of steel structures, and
this is essential. Accordingly, numerical analysis requires a correct representation of the
material stress-strain relationship to predict accurate stiffness variations due to yielding
and plasticity.
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2.1.1. Mild Steel

The commonly used steel material model is based on an incremental theory of plasticity
and isotropic hardening. Annex C.6 of EN 1993-1-5 [24] specifies that material properties
could be taken as four characteristic types illustrated in Figure 1. Models (a) and (b), which
ignore the strain-hardening effects, are widely used in design practices for simplicity and
safety. Compared to model (a), model (b) is suitable for evaluating the ultimate capacity
of structures with low redundancy, as the slight stiffness of the yielding plateau used can
avoid numerical divergence. The conservative treatment can reserve the potential capacity
to resist accidental load. However, some researchers are concerned that underestimation of
member plastic behavior could lead to inaccurate prediction of overall structural responses,
especially under extreme events [25]. For more accurate analysis, models (c) and (d) with
strain-hardening are usually utilized. Model (c) is simple, but the recommended limiting
value of the principal strain of this model is 5% in order to avoid unconservative results [26].
Alternatively, the true stress-strain curve modified from tests according to model (d), which
considers the Lüders-bands effect, can be used in refined analysis under extreme loads,
such as progressive collapse as well as seismic and ultimate bearing capacity analysis.
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2.1.2. Stainless Steel

Stainless steel is also an important member in the steel structure family, which has
been used in construction for decades [27,28]. The prominent stress-strain characteristic
of stainless steel is that it has no yielding plateau, as shown in Figure 2. The two-stage
Ramberg–Osgood model [29] is often adopted as the constitutive model of stainless steel.
Several methods were proposed [30–32] to predict the strain at the ultimate tensile stress
and the strain hardening exponents, where the 0.2% proof stress measured from the ex-
perimental stress-strain response is taken as the material yield strength. Nominal values
of the yield strength fy and the ultimate strength fu of different stainless steel provided by
EN 1993-1-4 [33] are given in Table 1. EN 1993-1-4 [33] and EN 10088-1 [34] give a value of
200 × 103 N/mm2 for the modulus of elasticity for all of the standard austenitic and duplex
grades that are typically used in structural applications. For ferritic grades, a value of
220 × 103 N/mm2 is given. However, tests on ferritic stainless steels consistently indicate
that a value of 200 × 103 N/mm2 is more appropriate [35,36]. Therefore, it is expected
that the next revision of EN 1993-1-4 will recommend 200 × 103 N/mm2 to be used for the
structural design for all stainless steels.
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Figure 2. Stress-strain curves for three main families of stainless steel [37].

The material properties of cold-formed steel sections illustrate a typical feature that
the corner regions of CFS cross sections have a higher yield strength than the other parts.
Essentially, strain hardening occurred in the cold-forming process, and this resulted in
an increase in strength. The effect is more significant in stainless steel sections than in
conventional carbon steel sections due to the shape of the stress-strain curve and the
high ratio of ultimate to yield strength. The strength enhancement effects were studied,
and several models [32,38–40] were proposed for predicting the enhancement effect. The
enhanced yield strength is presented as a function of the unformed material’s yield and
its ultimate tensile strength as well as the approximate level of strain induced during
the forming.
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Table 1. Nominal values of the yield and ultimate strength for common stainless steels (MPa).

Type of Stainless Steel Grade

Product Form

Cold-Rolled Strip Hot-Rolled Strip Hot-Rolled Plate

Nominal Thickness t

t ≤ 8 mm t ≤ 13.5 mm t ≤ 75 mm

fy fu fy fu fy fu

Austenitic

1.4301 230 540 210 520 210 520

1.4307 220 520 200 520 200 500

1.4318 350 650 330 650 330 630

1.4401 240 530 220 530 220 520

1.4404 240 530 220 530 220 520

1.4541 220 520 200 520 200 500

1.4571 240 540 220 540 220 520

Duplex

1.4062 530 700 480 680 450 650

1.4162 530 700 480 680 450 650

1.4362 450 650 400 650 400 630

1.4462 500 700 460 700 460 640

1.4482 500 700 480 660 450 650

1.4662 550 750 550 750 480 680

Ferritic

1.4003 280 450 280 450 250 450

1.4016 260 450 240 450 240 430

1.4509 230 430 - - - -

1.4521 300 420 280 400 280 420

1.4621 230 400 230 400 - -

2.1.3. High Strength Steel

High Strength Steel (HSS) refers to a type of steel that exhibits higher strength and
great anti-corrosion properties compared to conventional steel due to the presence of alloys,
such as manganese, silicon, and phosphorus. Generally, the steel with yield stress not
less than 460 MPa can be defined as a high strength steel [41]. The steel is typically used
in applications where high levels of strength are required, such as in the construction of
bridges, stadiums, and high-rise buildings. The use of HSS enables designers and engineers
to achieve structural integrity while reducing material weight and costs.

Compared to mild steel, HSS exhibits different material properties beyond the yield
point. Figure 3 shows a comparison of typical stress–strain curves for various steel grades.
Based on standard tension coupon tests, ref.[42] has pointed out the length of the yield
plateau decrease with an increase in the yield stress, and this normally disappears when
the yield strength is not less than 500 MPa. The strains corresponding to ultimate tensile
strengths are lower for steels with higher yield strengths, which implies that the ductility
of HSS is worse. The strain hardening of high strength steel is also less significant that of
normal strength steel [43].

For conveniently modeling the behavior of HSS, several constitutive models have
been proposed, including multi-linear models, a non-linear model based on the Ramberg-
Osgood model, and a revised multi-linear model, as shown in Figure 4. The model shown
in Figure 4a is used for HSS with yield plateaus, while the others are used for HSS without
yield plateaus. The parameters of the models may be determined according to [44].
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2.2. Residual Stress

Another factor that would cause material nonlinearity and influence the stability of
the member is residual stress. The superposition of residual stresses with external loading
may cause premature yielding and reduce the stiffness of the structure, thereby increasing
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deflections and second-order effects. Residual stress is initial self-balancing stress in steel
sections that results from non-uniform heating or cooling during fabrication [45]. The
distribution of residual stresses depends on dimensions of web and flanges as well as steel
grade and fabrication procedures. The stresses in hot-rolled and welded cross sections are
clearly distinct, as shown in Figure 5, according to ECCS [46]. In the figures, σt and σc
denote the residual tensile and compressive stresses, respectively. The subscripts f and s
stand for the flanges and web, respectively. Different residual stress patterns were also
proposed for different materials, section types, and fabrication methods [47–53]. Based
on residual stress models, the development of plasticity on a section and the variation
of the section properties can be easily evaluated. Conventionally, residual stress models
were developed based on experiments, where the hole-drilling and sectioning methods
are frequently used [54–56]. For practical structural design, the effects of residual stress
are generally considered through the column buckling curves. However, the conventional
residual stress patterns were derived based on limited test data and ordinary steel grade.
Research has illustrated that the residual stress patterns would considerably influence the
member buckling behaviors, and some patterns would provide non-conservative results
of the ultimate capacity [57]. Moreover, with the development of modern structures, the
shapes and sizes of cross sections significantly different to traditional steel members would
be used where the specified residual stress patterns may be inapplicable. Therefore, the
finite element method is introduced to investigate the residual stress distributions as the
actual heating or cooling process can be explicitly simulated in numerical analysis [58–61].
The simplified residual stress patterns can be easily and directly modeled in numerical anal-
ysis of member buckling behaviors. With the increasing use of advanced analysis, accurate
patterns of the initial stress are becoming ever more important for modern structural design.
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3. Geometrically Nonlinear Effect
3.1. Influences of Global Deformations

A geometrically nonlinear effect refers to the mechanical response of an object that is
influenced by its deformation. Examples of geometric nonlinearity include large deflections
or rotations as well as snap-through and load stiffening. The large deflections, including
the rigid-body movements, could change the structural shape and, hence, its stiffness, and
this cannot be accurately described using linear theory. Additionally, as the direction of a
load always keeps constant in structural engineering, large deformations would influence
the internal force components of structural members, as shown in Figure 6.
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Geometrically nonlinear behaviors depend on many factors, including the configura-
tion of the structural system, the material properties, boundary conditions, and the applied
loads. The geometrically nonlinear behaviors unusually result in a compression member
buckling or instability, leading to sudden and significant deflections of a structure under
certain loads. The buckling of a frame member can be caused by flexural or torsional load,
and it can be categorized as flexural, torsional, and flexural-torsional buckling. Symmetry
of a member cross section can also affect its deformations under stress: a non-symmetric
system may twist under compression, for example, leading to unexpected nonlinear buck-
ling behaviors. As buckling could occur before the stress reaches the yield point, the
buckling is usually considered separately from the stress strength design. The conventional
stability design methods adopt effective length factors in order to evaluate the member
buckling strength with different boundary conditions. The effective length factors are a
function of material stiffness and slenderness. Traditional research has proposed different
effective length, moment magnification factors, and design equations for different buckling
modes [62–65]. Based on the equations and coefficients, the global structural design is often
replaced by the stability check of individual structure members. However, the member
stability design method is developed based on several simplified assumptions or typical
structural forms. For instance, the frame stability design method adopts the simplified
assumptions, adjoining columns in the storey above and below the buckle simultaneously
in order to consider, conservatively, the interactions between the members. For modern
structural system, such as modular constructions and tapered members, where the system
and connection behaviors are different to conventional frames, the accurate calculation of
the effective length is difficult.

3.2. Geometric Imperfections

The fundamental factors that cause member buckling include initial imperfection
and rotational boundary conditions. Structural initial imperfection refers to any deviation
from the ideal geometry of a structural member that is present before any external load
is applied. Small imperfections can amplify the member deformation under compression
loading by introducing second-order moments, which leads to a failure at loads much
lower than expected. The buckling loads of the long slender column, considering initial out-
of-straightness, can be approximately predicted using the Perry–Robertson formula, which
is the basis for the buckling formulation that is adopted in EN 1993-1-1 [17]. Subsequently,
the buckling curves in EN 1993-1-1 [17] are developed with varied section types and axes of
buckling. However, the limitation of the effective length method is distinct in the analysis
of structures with significant P-∆ effects. According to AISC360-22 [18], the effective length
is only valid when the ratio of the maximum second-order drift to the maximum first-order
drift in all storeys is less equal than 1.5.

One of the major factors contributing to the P-∆ effects is the structural global imper-
fection. According to EN 1993-1-1, the initial imperfection of a frame is shown in Figure 7.
Three methods, namely, the eigen-buckling mode, the notional force, and the direct mod-
eling methods, are commonly used to simulate global imperfections. The eigen-buckling
mode method adopts the first eigen-buckling mode or composite eigen-buckling modes
as the structural initial imperfection, where eigen-buckling analysis should be conducted
before structural nonlinear analysis. The notional force method uses equivalent forces to
generate the global imperfection, as shown in Figure 8. The coefficient of the equivalent
force can be calculated as φ = φ0αhαm, where φ0 = 1/200 is the basic value; αh = 2√

h
but
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2/3 ≤ αh ≤ 1.0 is the reduction factor for columns with height h; αm =

√
0.5
(

1 + 1
m

)
is the

reduction factor for the number of the column; and m is the number of columns in a row.
The notional force method requires calculation of the equivalent horizonal loads. However,
the loads would induce additional load to structural internal forces and support reactions;
therefore, additional pre- and post-processes are required. The codes also only provide the
calculation method of the equivalent load for frame structures. For other structural forms,
such as reticulated shell structure, the notional force method is difficult to apply. The direct
modeling method directly builds the numerical model with initial imperfection by shifting
the nodes to a certain or random position. The method requires a huge modeling effort for
large structures, and it may generate an imperfection that contributes to structural capacity.
Analysis appropriately considering the structural influences of global imperfections would
obtain a more reliable member response, and the modelling method of complex global
imperfections is currently one the research hotspots of advanced structural analysis [66–69].
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For member imperfection, a half-sinusoidal or parabolic shape with specified ampli-
tude provided in design codes, such as EN 1993-1-1 [17], AISC-360-22 [18], and GB50017-
2017 [19], is usually used for member initial imperfections. The imperfection values
specified by EN 1993-1-1 are given in Table 2, where e0 is the value of imperfection
and L is the member length. The classification of the buckling curves can be seen in
Table 6.2 of EN 1993-1-1 [17], which depends on section types, fabrication process, and plate
thickness. The imperfection values are used for equivalent imperfection, which directly
incorporate the influences of residual stress. AISC360 adopts a unified value, L/1000, as
the initial imperfection of the member. The effects of residual stress are considered through
stiffness reduction factors in nonlinear analysis. Similar to global imperfection, EN1993-1-1
provides the notional force method for member imperfection, as shown in Figure 9. For
more conveniently considering the member initial imperfection, researchers derived the
beam-column element, which incorporates the effects of member imperfection [70], as
shown in Figure 10. The element is developed based on high-order shape function, which
improves the element accuracy and enables nonlinear analysis with less elements.
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Table 2. Initial member imperfection value e0/L for members [17].

Buckling Curves Elastic Analysis Plastic Analysis
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3.3. Rotational Stiffness of Joints

The rotational stiffness of joints and supports has an influence on the P-∆ effects
as well. A significant source of inaccuracy in the design of columns using the effective
length method is uncertainty in the estimation of rotational boundary conditions for the
column [71,72]. The effective length method adopting the idealized joint assumption would
obtain incorrect internal forces of a member, especially the internal moments, which would
affect the design of connections and, subsequently, the behaviors of the adjacent members.

According to the rotational stiffness, joints can be classified as pin, rigid, and semi-
rigid joints. For frame structures, the joint classification can be referred to as it is presented
in Figure 11, where K = I/L; I is the second moment of inertia; L is the length of the
member; and the subscripts c and b stand for the columns and beams, respectively.
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Figure 11. Classification of joints by stiffness [73].

EN1993-1-8 suggests a bi-linear moment-rotational curve for inelastic structural anal-
ysis, as shown in Figure 12. Some other models for typical joint types, such as end-plate
connections [74], single-and double-web angle connections [75], and top and seat angle
connections [76] obtained from regression can be found in the literature.
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The conventional numerical simulate method usually adopts spring elements to
simulate the nonlinear behaviors of semi-rigid connections. The proposed moment-rotation
model would be used as the constitutive relation of the springs. The conventional modeling
method has to build the beam-column elements and the end springs element into the
analysis of the program. Some scholars have proposed the element directly incorporating
the end springs in the element formulation, as shown in Figure 13. The stiffness matrix
of the spring element is condensed into the beam-column element stiffness matrix, which
greatly reduces the modeling efforts and improves the computational efficiency.
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3.4. Local Buckling

Local buckling refers to the buckling or the deformation that happens in a specific
localized region of a structural element rather than its entire length. The main effect of local
buckling is that it causes a redistribution of the longitudinal stress, resulting in an increase
in stress at the plate near the buckling area. Local buckling usually occurs in thin-walled
sections, and design codes are therefore often required to create a section classification
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before stability design to ensure that the local buckling can be appropriately considered.
In a beam, local buckling may manifest as lateral distortions or waves along the length,
and may result in a formation of local kinks or curvatures in a column. This effect leads to
ultimate loads below the squash load of the section.

Design methods for addressing local buckling in structural elements typically involve
ensuring that the member’s cross section is adequately resistant to buckling via various
approaches. The most classic methods for considering the local buckling effect are the
effective width method and the direct strength method [78]. The effective width method
involves determining an effective width for the cross section based on the boundary
conditions and the geometry of the element. The effective width represents the portion of
the cross section that is expected to carry the majority of the applied loads. By considering
the effective width, the designer can calculate the buckling resistance of the element using
appropriate formulas or design guidelines. However, the method ignores equilibrium and
compatibility between the flange and the web in determining the elastic buckling behavior.
For members with folded-in stiffeners, the calculation of different effective widths along
the member is cumbersome [79]. To simplify the design process, the direct strength method
is proposed. The method involves calculating the strength and stability of the cross section
directly, considering both elastic and plastic behaviors. The fundamental idea behind the
direct strength method is based on accurate member stability, as shown in Figure 14. The
finite strip method is usually used to determine the member stability capacity and the
strength reduction factors. Some studies [80–82] have also derived the reduction factors
based on experiments.
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To mitigate the potential effects of local buckling, several design strategies can be em-
ployed. These include increasing the section thickness, using stronger materials, providing
intermediate supports, adding stiffeners or reinforcements, or altering the section shape to
improve its stability.

The direct analysis method is also suggested by design guidelines for thin-walled mem-
bers [78]. EN1993-1-5 [24] Table C.2 provides the value of member initial imperfections
as shown in Table 3. These guidelines help designers ensure that structural members are
designed to withstand the anticipated loading conditions and prevent local buckling failures.
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Table 3. Equivalent geometric local imperfections [24].

Component Shape Magnitude

Longitudinal stiffener with length a bow a/400

Panel or subpanel with short span a buckling shape a/200

Stiffener or flange subject to twist bow twist 1/50

4. Analysis and Design

It is necessary to consider structural nonlinear effects in structural analysis and design.
The commonly adopted method for simulating and predicting the nonlinear effects in struc-
tural engineering is the finite element method. The advantage of the finite element method
is the possibility of simulating different structural properties, such as initial imperfection,
special section configuration, and boundary conditions for a wide class of problems. The
forces and the displacements within and between each element are calculated by solving
non-linear mechanics equations. Therefore, sophisticated and comprehensive mathematical
models are required to accurately predict the structural nonlinear response. Various finite
element modeling procedures, including different elements, iterative methods, calculation
of section properties, and coupling techniques, have been developed for nonlinear analy-
sis. Based on rigorous numerical analysis results, structures can be reliably optimized to
prevent failure.

The finite element method’s critical and challenging aspect is the accurate and efficient
evaluation of the member P-δ effect. Different methods, such as the stiffness reduction
method [83–85], the notational forces method [17–20], and the column element with initial
imperfection [86–88], have been proposed.

Figure 15 illustrates and compares several structural analysis methods. The figure
shows that among all of the analysis methods, advanced analysis that explicitly considers
system effects, such as load redistribution after first yielding, can more accurately predict
the behavior and the ultimate load-carrying capacity of a structural system. By using the
advanced analysis method, the system failure mode becomes apparent, and it is thereby
possible to consider the consequences of failure in the design process [89].
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4.1. Linear Analysis

Linear analysis, which has been used for decades, assumes that the deflection is
proportional to the applied force. Thus, it is possible to superimpose force diagrams of
various loads in order to obtain the final force analysis of the structure. This method simply
evaluates the distribution of forces in the structure that do not provide any information on
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structural stability or true capacity. When second-order effects of the structure cannot be
ignored, other approaches must be employed to check the safety of a structure.

A commonly used method to consider the second-order effect is the moment amplifi-
cation method, which enlarges the bending moment of linear analysis using amplification
factors as follows:

Mu = B1Mnt + B2Mlt (1)

where B1 and B2 are the moment amplification factors, and where Mnt and Mlt are the
first-order moments ignoring and considering lateral translation.

For the axial compressed member, the design codes provide the reduction factors in
order to consider the effects of the initial imperfection of the member and the residual stress.
For instance, the buckling curves, as shown Figure 16, that are presented by EN1993-1-1
provide the evaluation method of the ultimate capacity for a column’s flexural buckling
with different section types.
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In the buckling analysis, the linear method treats the member as a defect-free axial
compression member. When the axial load does not exceed an eigenvalue, the member
remains straight, and it only generates uniform compressive stress on the section. When
the pressure reaches a certain limit value greater than critical axial load, the member will
suddenly buckle, transforming from the original equilibrium into a new equilibrium form
adjacent to it but bending. An eigenvalue problem is formulated by a standard procedure
as follows:

|KL + λcrKG| = 0 (2)

where KL and KG are the linear and the geometric stiffness matrices.
Eigenvalue buckling does not give a load-displacement curve, but it does give a single

load value when the structure is buckling. This method is simple to calculate and is the
upper limit of the results of nonlinear buckling analysis, and it is therefore still widely used.

4.2. Geometric Nonlinear Analysis

Compared with the linear analysis, structural geometric nonlinear deformation re-
quires more complex formulas to describe. Therefore, the numerical method is generally
adopted to capture the geometrically nonlinear effect. The Hermite beam-column element
using cubic shape function is the most widely used beam-column in structural analysis.
The bowing effect is introduced to the potential energy equation of the element in order to
derive the geometric stiffness matrix. For severe member deformations where the accuracy
of the Hermite interpolation function is not enough, some advanced elements incorporating
internal degrees of freedom are developed in order to improve the element’s deformation
capacity [90–92]. Beam-column elements with high-order shape functions have also been
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developed. Chan and Zhou [93] proposed a Pointwise Equilibrating Polynomial (PEP)
Euler beam-column element by considering the equilibrium at midspan, and Tang [94]
updated the PEP element into the Timoshenko format.

Along with the evolution of the element technique, the kinematic description of the
motion of a largely deformed element is developed for simplifying the element stiffness
matrix expression. There are three common categories for describing the process of struc-
tural motion: total Lagrangian (TL) formulation, updated Lagrangian (UL) formulation,
and co-rotational (CR) formulation [95]. All variables described in the TL format take the
configuration at the initial moment as the reference configuration, and all of the variables
described in the UL format take the known configuration of the previous step as the refer-
ence configuration. The CR format is usually the known configuration of the above step
as a reference configuration, but its reference configuration is with the unit continuous
rigid body translation and rigid body rotation, so in the formula of the CR format unit, the
freedom will not include the unit rigid body displacement part.

4.3. Post-Buckling Analysis

Post-buckling behavior refers to the response of a structure after buckling. In the
post-buckling phase, the behavior of the structure can be complex and nonlinear. Post-
buckling analysis aims to investigate the response of the structure beyond the point of
buckling, and to understand its structural stability, load-carrying capacity, and potential
collapse patterns. The analysis usually encounters the problem of convergence. The
Newton–Raphson method is often used in the nonlinear iteration method. However, it
is well known that the load control Newton–Raphson method could diverge near the
limit point to capture the unloading stage of the post-buckling behavior. To address this
defect, Zienkiewicz [96] proposed a displacement control method, which adopts a constant
displacement increment for each iteration. Obviously, when the control displacement
tends to retrace in the load-deflection curve, such as snap-back buckling, this method
may be ineffective. Therefore, the arc length method maintaining a constant arc length
in the iterative process has been proposed [97]. This method is a better choice than the
abovementioned methods in post-buckling analysis because it can deal with a loading
variation due to yielding and cohesive effects. However, the arc-length method is also
controversial because it initially guess dependent, relying on an initial guess for the solution
trajectory. The accuracy and efficiency of the method can be affected by the quality of
this initial guess, making it important to carefully select or refine the initial estimation.
In addition, by using arc length as a constraint to guide the iteration, it still cannot be
guaranteed that it can guide the direction of the iteration correctly in the range of post-
buckling that involves multi-loop curved lines.

4.4. Material Nonlinear Analysis

In inelastic analysis of steel frame structures, the material nonlinearity is simulated by
two methods—-namely, the plastic zone method and the plastic hinge method. The plastic
zone assumes that the yield is distributed throughout the section and along the element.
In the plastic zone method, elements of the structure must be discretized into several sub-
element and fiber sections in order to accurately reflect the development of plasticity [98].
This method consumes a lot of computer resources and computational time due to its
numerous elements, and it has generally been deemed impractical in design practices.

In order to solve the shortcomings of the plastic zone method in computational
time, the plastic hinge method, which assumes that the plastic behavior of an element is
concentrated at the nodes, has been developed. The method considers the plasticity by
adding a zero-length plastic spring at the failed end of the element, while the other parts of
the element remain completely elastic. Combining the advanced element technique with
the plastic hinge method can capture inelastic second-order effects using one element per
member method. When the plasticity occurs within the element nodes, the plastic hinge
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method may not be able to truly reflect member behaviors. However, the accuracy of this
method is sufficient for practical purposes.

4.5. Direct Analysis Method

For accurately simulating the structural nonlinear performances, material and geo-
metric nonlinearities should be considered simultaneously in structural analysis in order
to reflect the effects between structural deformations and the development of plastic-
ity [99,100]. It is therefore necessary to conduct second-order inelastic analysis, especially
for irregular structural forms. However, effects of nonlinear parameters, such as initial
imperfections, joint stiffness, and residual stress, are tedious to model with traditional
finite element methods. Walport et al. [101] pointed out the conventional bow imperfec-
tion provided by EN 1993-1-1 [17] is only suitable to second-order elastic analysis, and
they proposed new equivalent geometric imperfections that incorporate the residual stress
effects for inelastic analysis. Bai et al. [102] proposed an initial imperfection shape for
the flexural buckling strength design of tapered I members. The directions of the initial
member imperfections are generally set the same as the global eigen-buckling mode or
the load deflection mode, and this is to generate the most adverse initial configuration.
By adopting the most adverse imperfection, the uncertainty of imperfection is eliminated
in the numerical analysis. Several researchers have also proposed advanced numerical
methods to consider the influences of semi-rigid connections [103–105] and distributed
plasticity [106–108]. With the help of advanced numerical methods, the analysis method
incorporating structural nonlinear influences directly into nonlinear structural analysis is
developed [109–111].

In the direct analysis method, advanced computational techniques, which consider the
actual stiffness, mass distributions, and load patterns of the structure, are employed [112].
The method considers the second-order effects in the analysis in order to ensure that
members can be directly designed according to the section bearing capacity without using
effect length factors. In other words, only the section capacity check is needed for the
member design. This method is not only applicable to prismatic members but also to
the members of the variable section by using a different initial geometrical imperfection
pattern [113]. However, at the present stage, the torsional and flexural-torsional buckling
cannot be directly evaluated based on the sectional capacity, as the warping degree of
freedom could not be well considered in the analysis, and the out-of-plane buckling of
compression-flexure members needs to be further studied.

5. Outlook

The nonlinear problem of steel structures is becoming complex with the developments
of innovative structural forms and new functional requirements on structures. Conven-
tional design methods, such as the effective length method, are mainly develop based
on the elastic analysis method. For the design needs to consider the structural inelastic
performance, such as fire or seismic resistance analysis, the effective length design method
may inaccurately predict the member capacity, which is usually conservative in frame
design [114,115]. Therefore, the accuracy calculation of the effective length factors is always
an important and difficult issue in steel structural engineering.

To avoid the uncertainties induced by the simplified or empirical design assumptions
of conventional design methods, advanced analysis and design methods—-namely, the
directly analysis method—-has been extensively studied. The advanced beam-column
elements have been proposed for both geometric and material analysis. Some elements can
be adopted in the analysis using the one-element-per-member modeling method. However,
at the current stage, the directly analysis method can only be adopted for member flexural
buckling design. For lateral-torsional and local buckling design, empirical equations are still
used in practice. For seismic design, the predominant approach is the response spectrum
analysis method, and it is basically a linear method. Thus, straightforward advanced
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methods for dynamic stability design, including seismic, fire, and progressive collapse
design, need to be studied.

6. Conclusions

The non-linear behavior of steel structures is a result of their inherent properties and
their behavior under loading. It is important to consider these effects in the design and
analysis of steel structures in order to ensure their safety and their efficient performance.
The structural nonlinear problem is very complex, as the influences of initial imperfec-
tion, residual stress, and large deformations are coupled and also interact. Research has
developed different methods to consider structural nonlinear characteristics. In current
design practices, the finite element method and other advanced analytical techniques are
employed to model non-linear behavior. Design codes and standards provide guidelines
for the design of steel structures under non-linear conditions. However, there are many
unsolved problems in the research field of steel structural stability, such as the nonlinear
dynamic stability problems of long-span bridges, long-span thin shells, long-span space
latticed shells, and high-rise structures. With the technical development of fabrication
and construction, some innovative and elaborate analysis and design approaches will be
required to evaluate the nonlinear characteristics of modern steel structures. Designers and
engineers must be aware of non-linear behavior, and they must incorporate its effects into
their steel structure designs.
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