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Abstract: The high number of annual safety accidents and casualties reflects the problems of slow
detection of safety accidents and untimely early warnings in current construction safety manage-
ment, and China urgently needs new methods and technologies to improve the safety management
efficiency of the construction industry. However, there are fewer achievements in the use of new
technologies for intelligent construction safety management, and most of the research focuses on
intrusion detection and specific event alarms, which cannot be well implemented for systematic
early warning functions. Based on the existing research and the characteristics of early warning
scenarios, this study introduces the convolutional neural network (CNN) to build a video image
recognition and classification model to give early safety warnings for intrusion behavior in hazard
areas of construction and demonstrates the warning effect and accuracy with practical cases. First, it
clarifies the early warning demand information, such as the attributes of construction personnel and
hazard areas. Then, the construction model is realized by multi-scale hierarchical feature extraction
mapping, the Softmax classification function, and the argmax function. Finally, from the empirical
analysis, it can be seen that an early safety warning based on the CNN model has an accurate ability
to identify the intrusion behavior of construction site personnel, which can reduce the probability of
construction safety accidents to a certain extent, and provide enlightenment for further realization of
intelligent construction sites.

Keywords: construction safety management; intrusion behavior; early warning; convolutional neural
network (CNN)

1. Introduction

The construction industry absorbs the most urban labor force and has made outstand-
ing contributions to promoting high-quality economic development in China, but its total
number of accidents remains high among industries, and the effect of safety control on
construction sites is not obvious. According to the Ministry of Housing and Urban-Rural
Development of the People’s Republic of China, there were 737 production safety accidents
and 824 deaths in housing and municipal engineering in 2021, with the main types of
accidents including falls, object strikes, pit collapses, and crane injuries [1]. In order to solve
these accidents and reduce the large number of deaths in China’s construction industry,
we can draw on early safety warning technologies that have been widely used in other
industries. Combining these technologies with the particular environment of construction
sites to build a sound early warning system and provide timely alerts when there are signs
of accidents. Therefore, it has become an urgent problem for the construction industry to
effectively realize the early warning of accidents, improve the level of safety management,
and reduce the incidence of accidents on construction sites.
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The occurrence of construction safety accidents is mostly due to the joint action of
“Men, Machine, Medium and Management” factors. Combined with the “Industrial Safety
Theory” of Heinrich [2] and related research results [3,4], it can be seen that personnel who
do not meet the safety requirements entering the construction hazard area is the key factor
causing construction safety accidents. Here, the behavior of construction personnel to enter
the construction hazard area at random is the “Personnel Invasion Behavior”, which usually
contains two meanings: (1) non-professional construction personnel enter the construction
area containing professional sources of danger; (2) non-site construction personnel enter
the construction area. Construction sites are characterized by the cross-operation of related
professions, uneven quality of personnel, uncertain construction environment, and so on, so
the two kinds of intrusion behaviors are prevalent in daily production activities of China’s
construction sites. It can be seen that the realization of early personnel intrusion warnings
on construction sites is crucial for construction safety management.

Established research mainly uses personnel location information and personnel be-
havior and action information to achieve safety warnings in various fields [5,6]. Navon
and Kolton [7] established an automatic monitoring model that can automatically divide
hazard areas, identify dangerous actions, and provide protective measures. Zheng et al. [8]
established a real-time observation system for dangerous omen events, which realized the
function of early warning by predicting the possible location of dangerous events in real
time and taking timely action after the occurrence of these events. In addition, Shuang and
Zhang [9] applied machine learning techniques to determine the hierarchical relationship
of fatal causes of construction site accidents, providing early warning signs of fatal and
unsafe factors for those involved.

In summary, traditional safety management mainly relies on manual supervision,
which is not only time-consuming and labor-intensive but also inefficient, and some po-
tential safety hazards cannot be controlled at the source. Construction safety management
should consider the use of more advanced technology to strengthen coordinated man-
agement [10] and provide timely reminders or warnings to non-construction personnel
entering hazard areas and approaching hazardous sources. The existing research mainly
focuses on personnel location monitoring, safety protection, and special accident warnings,
etc. The realization of the early warning function is not yet comprehensive, and there are
fewer studies on real-time monitoring and early warning involving personnel intrusion
behavior in hazard areas on construction sites. For the above problems, this paper intro-
duces CNN technology to carry out early safety warning research on personnel intrusion
behavior after identifying hazard areas that are prone to have serious consequences and
collect information on construction personnel. CNN technology has the features of image
labeling, feature mapping acquisition, personnel identification, and simulation, which
can make up for the deficiencies of other techniques and lay the foundation for real-time
monitoring of unsafe posture.

2. Literature Review
2.1. Overview of Early Warning Approaches for Intrusion Behavior

The idea of early warning arose from the prediction of economic fluctuations [11].
Gu [12] proposed three stages of early warning through his study of economic warnings,
namely defining the meaning of warning, finding the source of warning, analyzing warning
signs, and predicting the level of warning, where warning refers to the monitoring objects,
the source of warning is the source of danger, the warning signs are the precursors of the
occurrence of police situations, and the level of warning is the predicted hazard level.

The study of early safety warnings for personnel intrusion behavior on construction
sites focuses on two aspects: one is to identify the construction hazard area, and the other
is to provide real-time warnings and deal with the intrusion. For the identification of
construction hazard areas, in addition to research on classification [13] and evaluation [14],
real-time positioning technology can be used to collect the location trajectory of construction
personnel and achieve static or dynamic identification and automatic classification of
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construction hazard area [15]. A real-time hazard area automatic identification model
based on BIM and real-time positioning technology can identify potential hazard areas
for construction personnel paths [16]. In terms of intrusion warnings, the identification of
personnel intrusion behavior is the first step in early safety warnings. Behavior-based safety
(BBS) is often used to identify unsafe worker behavior, but traditional BBS management
systems rely on empirical manual procedures that do not effectively capture complex
intrusion-related information.

At present, methods to identify and warn about personnel intrusion behavior from a
technological perspective show greater advantages. Some studies use positioning technolo-
gies, such as ultra-wide band (UWB) [17] and real-time location sensing [15,18] to track the
location of workers and machinery to identify and warn of personnel intrusion behavior at
construction sites. Computer-based location tracking technology integrated with BBS [19]
and BIM [20] is effective in automatically identifying construction personnel entering haz-
ard areas, providing timely warnings, and capturing worker responses. However, the
positioning system is used to capture the temporal and spatial trajectories of construction
personnel and machinery and cannot identify intrusions in dynamic environments that
evolve over time. In addition, wearable sensor technology requires high costs, affects
worker operations [21], and is relatively few used in intrusion behavior recognition.

With the development of artificial intelligence, machine vision technology, which
does not require contact with the observed object, is gradually being used in hazardous
working environments that are not suitable for manual work or in construction situations
where manual vision has difficulty meeting the requirements. The application of this
technology in construction personnel intrusion is mainly through the collection of on-site
video data, and then machine vision algorithms, such as ResnNet [22] and R-CNN [23],
to obtain information about the location of construction site personnel, which is also
known as target detection. Gao [4] adopted a moving target detection algorithm to detect
workers entering the dangerous area in real time and to discriminate intrusion behavior
based on their behavioral characteristics. Wei et al. [24] utilized a spatiotemporal attention
network to remove redundant information from the video, thus achieving accurate and
automatic identification of workers from the construction scene. Lie et al. [25] developed
a novel deep-learning scheme that actively recognizes construction worker violations
through the aggregation of CNN and long-term and short-term memory networks, allowing
the extraction of image features without the involvement of cumbersome parameters.
Each of these detection models has its own strengths, but most of them still need to
improve their real-time performance, accuracy, and simplicity of implementation steps.
Wang [26] combined BIM technology with machine vision technology to construct an early
warning model for construction personnel intrusion in the hazard areas of a building
construction site.

Existing research is focused on enabling proactive and real-time intrusion warnings.
Intrusion sensing and alerting technologies have the potential to improve worker safety in
construction site work zones by providing warnings when a hazardous situation exists [27].
When equipment is too close to the unknown or other equipment, radio frequency (RF)
remote sensing and actuating technology can alert moving workers and equipment opera-
tors in active and real-time mode [28]. Modern proactive safety systems provide advanced
real-time tracking of on-site workers, which alerts them to real-time audio warnings if
they get too close to danger [29]. Visualization techniques can enhance safety manage-
ment by assisting with safety training, job hazard area (JHA) identification, on-site safety
monitoring, and warnings [21]. The intrusion detection system uses Bluetooth low energy
(BLE) beacons to visualize intrusion in hazard areas of construction sites by combining
spatiotemporal trajectories of workers captured by the system with BIM [30]. BLE real-time
location systems (RTLS) can filter out unnecessary alarms and generate timely vibration-
tactile alarms, providing easily perceived proximity safety alarms for construction site
workers [31]. A haptic-based warning mechanism has been introduced to identify intrusion
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hazards in construction work zones. Tactile signals in this mechanism can increase worker
awareness of the dangers of intrusion [32].

From the existing literature, it can be seen that most studies have used localization
techniques to obtain location information for people and machinery, and there are few early
warning studies that use machine vision techniques, such as CNN, to monitor workers’
intrusion into hazard areas in real time. Although intrusion detection techniques have
been widely studied and applied, they can only support in-event inspection and post-event
control. Therefore, further in-depth research is still needed to achieve proactive measures to
improve the efficiency of construction safety management through early warning systems.

2.2. Overview of the Convolutional Neural Network Model

A convolutional neural network (CNN) was proposed in 1962 by Hubel and other
biologists after studying neuronal cells in the visual cortex of cats [33]. The network has a
convolutional layer to form a feature map, a pooling layer to downscale the feature map
data, and a full connection layer to summarize the input feature information of the pooling
layer, and it runs in a stepwise fashion. These features can greatly reduce the complexity of
the network and the computational complexity of the training process and improve the
accuracy and efficiency of feature recognition, which are mainly used in risk intelligence
detection [34] and machine vision detection [35,36]. The CNN is one of the most popular
deep neural networks and performs very well on pattern recognition and machine learning
problems, especially in applications dealing with image data [37]. The CNN model was
built to evaluate its performance on image recognition and detection datasets, and the
results showed good computational accuracy [38,39]. CNN also has great development
prospects in the field of construction safety.

Some scholars have already begun to use machine learning techniques to analyze civil
engineering activities. Exploring intelligent detection of concrete damage reduction by
building a CNN model, thus reducing the frequency of construction site safety accidents
caused by damage to concrete components [40]. Kalman filtering is used to locate workers
and construction machinery in real time and predict their movement trends to prevent
collisions between workers and machinery [41]. A CNN-based safety fence detection model
can improve the efficiency of safety inspection at construction sites [42]. Data learning and
mining of typical safety hazards at construction sites through CNN models, while using
machines to automatically identify typical hazards, could achieve the goal of improving
the efficiency of construction site safety management [43]. A deep learning model that
integrates the advantages of CNN and RNN is capable of capturing powerful acoustic
features from time-frequency spectrograms and utilizing acoustic modal techniques to
accurately identify the start and end times of individual construction activities for efficient
automated monitoring of building construction activities [44].

Target detection technology with multi-target classification and localization as the
main task is the basis of intrusion recognition implementation, and CNN has gradually
become an important part of target detection. The R-CNN (regions with CNN features)
algorithm is proposed for the first time to realize the application of deep learning in the field
of target detection [45]. With the continuous improvement of technology, Faster R-CNN has
greatly improved in accuracy and detection speed and has also become the final version of
the family of target detection structures such as R-CNN, SPP-Net, and Fast R-CNN [46].
Since computer vision pattern recognition methods for identifying unsafe behaviors on
construction sites rely on manual computation of complex image features, some studies
have borrowed from other fields and used machine vision algorithms, such as CNN, to
obtain construction site coordinate information for locating construction site personnel.
CNN-based deep learning methods can effectively detect and monitor workers’ behavior
in complex environments [47,48]. A hybrid deep learning model has integrated CNN
and long short-term memory (LSTM) and can automatically identify unsafe operations
of workers [49]. A construction activity image recognition system incorporating deep
learning can utilize the powerful image extraction capability of CNN to automatically feed
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feature data into the network for full-connectivity training, thereby effectively improving
the efficiency of construction management [25].

According to the literature mentioned above, the existing research has produced a
series of results in terms of construction site personnel localization, personnel attributes,
and construction site component recognition, indicating that it is feasible to apply CNN to
construction site safety management. However, the research mainly focuses on personnel
safety protection equipment wearing recognition, personnel simple behavior recognition,
component breakage recognition, etc., which can only solve specific safety management
problems. For complex engineering projects, there are still restrictions on safety warnings
for construction site personnel. Therefore, it is worth further research on combining early
warning theory and CNN to establish a construction hazard area intrusion warning system.

3. Methodology

Adopting CNN as the realization method of the early warning function in this study,
the early warning demand information should be determined first, i.e., the “hazard area”
information and “personnel attribute information” required by the early warning function
should be determined. Then, it is necessary to implement the function, i.e., selecting
the appropriate algorithm to build the model, and then use the collected data for model
pre-training and model validation.

3.1. Process of Personnel Intrusion Behavior Early Warning

The implementation of the early safety warning function for personnel intrusion in
the construction hazard area can be described as follows: first, identify the construction
personnel in the monitoring video at the edge of the hazard area and calculate the personnel
coordinates through the background coordinate system. Then, the relative position of the
personnel and hazard area is determined based on the coordinates, and if the relative
distance is greater than the safety threshold set in advance and the personnel is not a
construction professional in the area, a strong reminder is made, and the safety management
personnel are notified. The work process is shown in Figure 1 below:
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(1) Start the workstation system. After setting up the camera group and installing
the communication wires, the operator can open the camera group and the video
identification terminal of the workstation through remote control at the workstation
and transmit the real-time video acquired by the camera group in the hazard area of
the construction site to the terminal in the form of frame images.
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(2) Realize real-time detection of construction site personnel. First, CNN obtained the
characteristic map of construction site workers. Then, the classification function of the
Softmax function is used to separate the construction personnel in any video frame
image, so as to achieve the purpose of detecting the construction site personnel in the
video.

(3) Real-time measurement of personnel coordinates. After the coordinate recognition
of the human body and the drawing of the human body range frame, the coordinate
regression function is used to realize the coordinate output of the human body range
frame.

(4) Realize early warnings according to detection results. When the body and construc-
tion of the danger zone at the edge of the distance is less than the safe distance of
construction site rules, under the condition of appropriate comprehensive safety, the
personnel access the properties and reminders or warnings for location information
are given, and the image is saved automatically. The early safety warning procedure
is performed in the next frame image in a row to complete construction hazard area
identification.

The “composite classification model” determines whether the construction workers
enter the hazard area and then provides the corresponding level of warning according to
the attribute information of the workers and the category of the hazard area.

(1) Ordinary reminder: When personnel enter the hazard area conforming to their own
attribute information;

(2) Emergency reminder: When personnel enter the hazard area that does not conform to
the information of their own attributes, they will make an emergency reminder and
send the information to the security officer for disposal.

3.2. Identification of Hazard Areas at Construction Sites
3.2.1. Division of Hazard Areas

At present, most of the construction site hazard areas are divided into pits, holes, edges,
machinery, and other sources of danger as the origin to expand a certain distance, and then
the closed area is drawn with this distance as radius or side length. The classification of
hazard areas in this case is based on the classification of construction safety accidents in
previous years and the proportion of accidents, but it is difficult to cope with the complex
construction site environment by relying on the several existing types of fixed accidents as
a support.

By analyzing the construction sites for each type of professional work, this paper
found that the daily working scenes and common hazards of civil construction personnel,
machinery operators, and electric power engineering personnel are greatly different, so
unified management of different types of work often leads to inefficiency. Due to the
differentiation of safety education, personnel can be safer in their own professional area
than in the construction area of other types, which is why accidents are mostly concentrated
in the work area of non-specialized trades. It has also been documented that a large
proportion of construction professionals are involved in safety accidents, usually in non-
professional work areas [50]. Therefore, this paper will divide the hazard area based on
the working area of each type of construction personnel and combine it with the rules for
defining the unsafe environment of the construction site, to achieve regional specialization.

(1) Hazard areas in civil construction. The area may contain hazards such as edges,
opening holes, etc. The rules for defining this large category of hazard area draw on
previous research, expanding the edge of the construction area by 1 m and using this
expansion line as the boundary point for the civil construction hazard area [51].

(2) Hazard area for the movement of machinery. Danger sources include working cranes
arms, moving machinery and equipment, etc. Mark the path of the machinery and
equipment activity and extend the outermost edge by 1 m as the boundary of the
machinery movement hazard area.
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(3) Hazard area for power leakage. The main sources are wires and cables. In the direction
perpendicular to the main body of the wire, the projection of the wire and cable is
expanded by 1 m, which defines the boundary of the leakage hazard area.

3.2.2. Modeling of Construction Site

According to the above method of dividing the hazard area of the construction site,
the construction site is simulated, as shown in Figure 2.
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Area A indicates the hazard area for civil construction, where “a1” indicates a hazard
area, such as edges and opening holes, and “a2” indicates a hazard area under crane
arms. Area B is the hazard area for power leaks. Area C is the hazard area for mechanical
movement. This study mainly focuses on civil construction workers (C), machine operators
(M) and electrical technicians (E) who tend to have high casualty rates at construction sites.

3.3. Quantification of Construction Personnel Information
3.3.1. Collection of Personnel Attribute Information

Construction projects consist of multiple divisional projects, and each divisional
project requires a variety of professional construction personnel; hence, each complete
construction project contains a variety of different attributes of workers. The different
worker attributes are mainly represented by key information, such as the type of work,
equipment, and years of experience. The collection of this type of information is achieved
through the “Construction Site Personnel Management System” developed with the fifth
author’s participation [52]. The system is built based on BIM-RFID technology, which can
realize real-time detection of personnel attribute information on the construction site.

The construction site personnel management system under BIM-RFID technology
includes: RFID chip system, BIM security area system, site management system, intelligent
storage system, and intelligent gate system. First, during the process of construction per-
sonnel wearing built-in RFID chip helmets entering the site from the induction channel,
the information of construction personnel including basic information of workers, work
type, project, and necessary safety equipment is entered. The RFID chip containing per-
sonnel information is programmed using Python, and then, based on the BIM platform,
the construction personnel’s attribute information is monitored. The recorded work type
information can distinguish the professional construction area of the personnel so as to
detect whether the workers stay in the non-specialized construction area.

The personnel attributes contain three pieces of information: job type, coordinates, and
time. As mentioned above, letters C, M, and E represent their type of work (T). The coordinates
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of personnel are represented by (x, y). The time of personnel presence is indicated by t. The
attribute information of individual personnel can be expressed as (T, (x, y), t).

3.3.2. Quantification of Personnel Behavior

The vast majority of construction site accidents occur in the hazard area, so it is
meaningful to know exactly if a construction worker is in the hazard area. By adding the
position input function of “Personnel Identification Box” (as shown in Figure 3) to the
construction personnel classification model, the real-time coordinates (x, y) of personnel
are obtained, and then the boundary coordinate information of personnel and hazard areas
can be used to realize the quantitative analysis of the safety of construction site personnel.

(x, y) =
(

x1 + x2 + x3 + x4

4
,

y1 + y2 + y3 + y4

4

)
(1)
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In Equation (1), (x, y) is the body center coordinates of the personnel on the elevation
perpendicular to the ground; x1, x2, x3, x4 are the horizontal values of the four corners of
the personnel identification box; y1, y2, y3, y4 are the vertical values of the four corners of
the personnel identification box.

After obtaining the coordinates of the personnel, the linear distance (s) between the
worker and the edge of the hazard area is calculated. The calculation formula is shown in
Equation (2):

s =|δa − δb| (2)

where “s” denotes the linear distance between the worker and the hazard area. “δa” denotes
the horizontal coordinates of the worker on the elevation perpendicular to the edge of the
hazard area, and “δb” denotes the horizontal coordinates of the edge of the hazard area on
the elevation. If the linear distance (s) > the safety threshold, then no voice alert is given; if,
on the contrary, the linear distance (s) ≤ the safety threshold, perform voice alerts.

3.4. CNN Model of Intrusions in Hazard Area
3.4.1. Personnel Image Acquisition and Marking

Under the premise of conforming to the “Technical Code for Video Surveillance on
Construction Site”, the video camera groups that can obtain images from all angles of the
construction hazard area are arranged. There have been studies on the layout of camera
sets at construction sites, which are divided into two categories: flat view perspective and
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top view perspective [36]. With more accurate acquisition of human real-time behavior as
the starting point, the layout of camera sets is selected from a flat view perspective.

After setting up the camera set, the image collection of the workers on the construction
site was carried out. Through the data communication line of the construction site that
has been set up, the captured images are transmitted to the image processing terminal,
and the pre-prepared LabelMe marking software is used to mark the collected pictures
containing the daily activities of the workers on the construction site; that is, the “objects”
to be recognized by CNN in this training. Finally, the marked field photos are unequally
divided into two parts, and the larger number of photo sets are divided into training sets,
while the smaller portion is divided into verification sets.

3.4.2. Personnel Image Feature Mapping Acquisition

Feature mapping is the key to successful identification of construction workers in
images later and is a prerequisite for early warning of construction site workers’ intrusive
behavior. For a captured construction site image, a fast local Laplace filter can be built to
enhance the features of each pixel in the image [53]. Before performing a fast local Laplace
filter transformation containing images of construction workers, if the image of each layer is
set to be 1/4 of the image of the previous layer, the image resolution of each layer is halved
compared to the image of the previous layer, and a Gaussian pyramid on the construction
site image is built (see Figure 4 below).
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In the above figure, the image “Z1” has the same resolution as the original image, and
the images “Z2”, “Z3” . . . “Zn” (n ≥ 3) are in turn half the resolution of the previous image.
This process, on the one hand, can improve the accuracy of image recognition at a later
stage; on the other hand, after the “filtering” process, an image is theoretically used as n
images, which reduces the pressure of image acquisition at an earlier stage.

After the images are filtered by the ladder of the “multi-scale pyramid”, the distance
between each image in the “pyramid” has the properties of (A = 0) and (σ = 1) (A is the
mean value, σ is the standard deviation). The feature recognition model is fx, and ax is any
parameter of the function fx, then the feature recognition model is considered to be the
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CNN model at each resolution, and all model parameters within the model are shared at
each scale by the principle of neuronal operation:

θx = θ0, x∈ {1, 2, . . . , N} (3)

θ0 is initial parameter.
In the range x, for any multiscale feature recognition model containing M phases as fx,

there exists:
fx(Xx; θx) = WM HM−1 (4)

Wm is the weight matrix of stage M, HM−1 is the output of stage M − 1, H0 = Xx. The
output of the intermediate hidden stage m is:

Hm = pool(tanh(WmHm−1 + bl)) (5)

The pool function represents the pooling operation, tanh is the activation function, Wm
and bl are weight matrices, a vector of parametric parameters, defined θx:

θx = aWm + bbl , (a ∈ R, b ∈ R) (6)

Lastly, linearizing and unifying the feature maps obtained from each CNN model
generates a three-dimensional feature matrix F.

F = [ f1, u( f2), . . . , u( fN)] (7)

u stands for sampling function. N = 3, as the “pyramid” in the passage has three levels.
In conclusion, the feature extraction process of video acquisition images on construc-

tion sites is obtained, as shown in Figure 5.
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After labeling the acquired images of the construction site, multi-scale division of
the image is achieved using a fast Local laplican filter, which is able to characterize the
image at multiple scales and geometrically increase the image at the same time. Finally,
the TensorFlow learning framework is used to train the features of the images at each
scale to obtain a complete feature map, which is a generalized pixel-wise representation of
construction personnel.

As can be seen from the multi-scale layered feature extraction process in the above
figure, the more scales in Equation (4) fx = ( Xx; θx), the more capable the feature map
obtained by this process will be to represent all the features of the actual effects of the
construction site workers in the video.
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3.4.3. Personnel Identification and Classification Model Construction

The “map” is used to classify each pixel in the image to be recognized, and the category
to which most pixels in a particular image belong is calculated to realize the detection of
construction site workers (as shown in Figure 6).
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“F” is a description of the characteristics of the workers at the construction site capture
image obtained through a “Gaussian pyramid” transformation. The Softmax function is
used to determine the pixel class distribution of the construction site surveillance images
input to the detection model. Finally, through the linear regression effect of the argmax
function, an overview and probability of the class to which the pixels in each region of the
image belong is output to achieve accurate recognition of each part of the specific image.

The predicted distribution of each pixel of the image obtained by the classifier Softmax
classifier is set to gi,a. Then, for an image containing m pixels (m > 0), the distribution of the
target classification to which each pixel belongs conforms to the following equation:

gm,a =
1

X(m) ∑
i∈m

gi,a (8)

where X(m) is the entire set of pixels within that image, and the argmax function is
processed to obtain the predicted class of each pixel in that particular image as follows:

PK =
argmax
a∈classesgm,a (9)

PK is the probability of the predicted outcome of element k in the image with respect
to a particular class. The prediction results for each region of the image are combined to
achieve recognition of the image.

4. Results
4.1. Test and Analysis Based on the CNN Model

In order to test whether the developed model meets the requirements, 850 images
were separated from the video captured from this construction site. Meanwhile, in order
to reduce the amount of test video processing and increase the number of samples, this
paper selects 4000 images of construction site personnel that meet the requirements from
the open-source MOCS (Moving Objects in Construction Sites) dataset and SODA (Site
Object Detection Dataset) dataset to obtain a total of 4850 images as sample data for feature
extraction and training of intrusion behavior. The constructed sample dataset is divided
unequally, where 80% is divided into training sets and 20% is divided into test sets. After
labeling the samples, the training is started using the TensorFlow learning framework on
the basis of the downloaded weight data. The loss function used in this training is the
Cross-entropy Loss, and the training error and test error are maintained at 0.03–0.06 after
200 rounds of training, which shows that the fitting of the model can meet the requirements.
Specific test results are introduced into the confusion matrix for presentation, as shown
in Table 1.
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Table 1. Statistics of Image Recognition Results Collected at Construction Site.

Confusion Matrix
Predicted Value

Precision Recall F1 ScorePositive Negative

True value
Positive 2809 423

0.8691 0.9314 0.8992
Negative 207 1411

The test results show that the model designed in this paper for personnel intrusion
behavior has a Precision of 87%, Recall of 93%, and F1 score of 90%. It shows that the
model has high accuracy of detection results, comprehensive detection targets, and high
comprehensive performance, which can effectively identify the intrusion behavior of
construction personnel. Meanwhile, the statistics of multiple tests show that the time to
both collect and detect one frame is less than 0.05 s, which can provide accurate early safety
warning for construction site personnel in real time.

4.2. Early Warning of Intrusion Behavior Based on CNN

In this paper, the hazard area adjacent to the building in the construction site is used
as the object for the study of personnel intrusion behavior. The image was first collected
and processed at the edge of the building, then the background of the image was modeled
and the coordinate system was established (the origin of the coordinate system is located
in the upper-left corner of the image, the horizontal direction to the right of the point is the
positive direction of the X axis, the vertical direction of the point is the positive direction of
the Y axis, and the scale was 8). The processing diagram is shown in Figure 7. According to
the safety warning principle set above, the program will respond if intrusion of personnel
into the hazard area is found. Then, it will issue a reminder or alarm according to the
personnel attribute and automatically save the recognition image.
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The green box that frames each construction worker in Figure 7 is the “Personnel Iden-
tification Box” mentioned above. “Person: 92%” indicates that the objects in the box have a
92% probability of being workers. A, B, C, and D represent the four angular coordinates
of the “Personnel Identification Box” in the context of this facade. For convenience, the
leftmost edge of Figure 7 is assumed to be the edge of the hazard area.

As can be seen from Figure 8, the abscissa of the four corners of the leftmost person in
Figure 7 are 3.20, 3.80, 3.98 and 5.27, respectively. Using Equation (1) and scale conversion,
the person’s center abscissa is

( 3.20+3.80+3.98+5.27
4

)
/8 = 0.475.
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At this point, the straight-line distance between personnel and the hazard area is
d0.475 − 0e = 0.475 < 1, thus triggering the voice warning “You have entered the regular
hazard area, please pay attention to your safety”, and the attribute information of this
personnel “(T, (0.475, y), 09:23)” is output to the safety personnel data center.

Therefore, a warning of personnel intrusion behavior is completed, and the model
saves the result and enters the next monitoring screen for analysis.

5. Discussion

This study combined early warning theory and CNN technology to carry out early
safety warning research on intrusion behavior in construction hazard areas, which was
mainly divided into two processes: “determination of early warning demand information”
and “realization of early warning function”.

The personnel attribute information collection system in the study has the advantages
of stable identification of personnel and interactive storage of data. The BIM-RFID tech-
nology introduced by this system makes it possible to trace the later information and can
realize automatic personnel information management. The environment of construction
sites is complex and changeable; some special types of construction personnel need to
operate in the hazard area at all times. Various factors may lead to deviation in the focus of
safety management, and the traditional approach of forming a hazard area by expanding
the origin of dangerous sources is difficult to cope with the site conditions. In fact, different
types of construction personnel on the construction site most of the time in a different
spatial state, in different environments, lead to different sources of danger faced by each
type of work, and the different content and process of each type of work so that they are
subject to a large difference in safety education. This means that the same construction
personnel can have a high safety factor in the professional area, but it may be dangerous to
enter the professional construction area of other work types. This situation can be regarded
as the construction personnel entering the “hazard area”. Therefore, this study can make
up for the above problems to a certain extent by dividing the hazard areas of construction
sites based on the working areas of each work type.

The key to the realization of the early warning function is to accurately capture the
real-time behavior of construction personnel, and efficiently process the data information.
The camera group is deployed to acquire images from all perspectives in the construction
hazard area, and the acquired real-time videos are transmitted to the terminal in the form of
frame images. The complex characteristics of the viewpoint arrays required for temporary
characterization of construction personnel and identification of intrusions in hazard areas
need to utilize tedious parameters for feature extraction. However, vision-based methods
are difficult to identify unsafe behavior data captured using digital images and videos [24].
Therefore, this paper combines the Softmax function and the argmax function to achieve
the extraction and classification of image features and uses the unique superiority of the
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CNN model in image processing, which can effectively detect the intrusion behavior in the
hazard area of the relevant personnel.

To summarize the full text, the main contents are as follows:

(1) A construction site personnel management system based on BIM-RFID was adopted
to realize real-time detection of personnel attribute information on the construction
site. According to industry norms and operating time characteristics, construction
personnel were classified into three categories: civil construction personnel, mechani-
cal operation personnel, and electrical engineering personnel. In combination with
the safe operation scope of each professional construction personnel, three types
of construction hazard areas, including civil construction hazard areas, machinery
moving hazard areas, and power leakage hazard areas, were established.

(2) Based on personnel attributes and hazard area division, the rationale for construction
intrusion behavior was elaborated. The center coordinates were determined according
to the posture of the construction personnel, and the safety threshold was then com-
pared with the linear distance (the distance between the personnel center coordinate
point and the hazard area) and the personnel work area for a two-level differential
warning.

(3) The method of multi-scale hierarchical feature extraction was used to obtain the feature
map of construction personnel, and then the Softmax classification function and
argmax function were employed to establish the recognition model. The model was
applied to a specific project for empirical research, which shows that its determination
of intrusion behavior of construction site personnel is relatively accurate and can
achieve the function of prior warning.

6. Conclusions

On the basis of the characteristics of the early warning scene, this study analyzed
the early warning demand information of intrusion behavior. From the perspective of
hazard area division, the early safety warning model of personnel intrusion behavior was
established by combining CNN to obtain feature mapping of images. Then, the feasibility of
the application of the CNN model in engineering construction safety warnings is illustrated.
The analysis reveals that the present model shows the advantages of real-time detection,
lower data complexity, and efficient extraction and classification in construction early safety
warning, and also theoretically provides a new perspective for the early safety warning
research of intrusion behavior in the construction site.

Although the established model in this paper shows the prospect of realizing the early
warning function through the verification of actual cases, there are some limitations on
the determination of the “hazard area division” and “personnel attribute information”
required to realize the early warning function because the hazard area and personnel
attributes corresponding to different engineering projects and construction conditions
may be different. At the same time, the images used in the study have a relatively high
definition, and there are not many overlaps and occlusions of the targets, so the errors
caused by the dense presence of targets such as occlusions are not considered. Therefore, if
this model is adopted by a wide range of field practitioners, further research is needed on
the information required for early warning of dangerous construction area intrusion and
the accuracy of picture recognition containing complex personnel behavior.

Author Contributions: Conceptualization, Y.X. and M.L.; Methodology, J.Z. (Jinyu Zhao), W.Z. and
Y.X.; Investigation, J.Z. (Jinyu Zhao), Y.X. and M.L.; Software, Y.X. and J.Z. (Jing Zhao); Validation,
J.Z. (Jinyu Zhao) and W.Z.; Writing—original draft preparation, J.Z. (Jinyu Zhao), Y.X. and J.Z. (Jing
Zhao); Writing—review and editing, J.Z. (Jinyu Zhao), W.Z. and M.L.; Supervision, J.Z. (Jinyu Zhao)
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no funding.

Institutional Review Board Statement: Not applicable.



Buildings 2023, 13, 2206 15 of 17

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. National Engineering Quality and Safety Supervision Information Platform. Ministry of Housing and Urban-Rural Development

of the People’s Republic of China (MOHURD). Available online: https://zlaq.mohurd.gov.cn/fwmh/bjxcjgl/fwmh/pages/
default/index.html (accessed on 1 January 2023).

2. Heinrich, H.W. Industrial Accident Prevention: A Scientific Approach, 2nd ed.; McGraw-Hill Book Company: New York, NY, USA,
1941; pp. 354–396.

3. Wang, C. Research on the Subway Construction Safety Management Based on Worker’s Unsafe Behavior. Master’s Thesis, Tianjin
University of Technology, Tianjin, China, 2014.

4. Gao, H.; Luo, H.B.; Fang, W.L. Methods of intrusion identification in hazardous areas based on computer vision. J. Civ. Eng.
Manag. 2019, 36, 123–128. [CrossRef]

5. Fouda, M.; Taleb, T.; Guizani, M.; Nemoto, Y.; Kato, N. On supporting P2P-based VoD services over mesh overlay networks. In
Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4
December 2009; pp. 1–6. [CrossRef]

6. Kim, K.; Kim, M. RFID-based location-sensing system for safety management. Pers. Ubiquitous Comput. 2012, 16, 235–243.
[CrossRef]

7. Navon, R.; Kolton, O. Model for automated monitoring of fall hazards in building construction. J. Constr. Eng. Manag. 2006, 132,
733–740. [CrossRef]

8. Zheng, X.Z.; Wang, X.L.; Liu, H.L.; Sun, Z.G.; Guo, J. Real-time monitoring and early warning system for near-miss incidents of
subway station construction. J. Xi’an Univ. Sci. Technol. 2019, 39, 589–596. [CrossRef]

9. Shuang, Q.; Zhang, Z. Determining critical cause combination of fatality accidents on construction sites with machine learning
techniques. Buildings 2023, 13, 345. [CrossRef]

10. Nnaji, C.; Karakhan, A.A. Technologies for safety and health management in construction: Current use, implementation benefits
and limitations, and adoption barriers. J. Build. Eng. 2020, 29, 101–212. [CrossRef]

11. Altman, E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J. Finance 1968, 23, 589–609.
[CrossRef]

12. Gu, H.B. Macroeconomic early warning research: Theory, method and history. Econ. Theor. Bus. Manag. 1997, 4, 1–7.
13. Guo, H.L.; Liu, W.P.; Zhang, W.S. A BIM-PT-integrated warning system for on-site workers’ unsafe behavior. Chin. Saf. Sci. J.

2014, 24, 104–109. [CrossRef]
14. Zhao, T.S.; Xu, K.; Zhou, W. Graded management of hazardous area in construction site. Ind. Saf. Environ. Prot. 2018, 44, 43–46.
15. Teizer, J.; Cheng, T. Proximity hazard indicator for workers-on-foot near miss interactions with construction equipment and

georeferenced hazard areas. Autom. Constr. 2015, 60, 58–73. [CrossRef]
16. Kim, H.; Lee, H.S.; Park, M.; Chung, B.; Hwang, S. Automated hazardous area identification using laborers’ actual and optimal

routes. Autom. Constr. 2016, 65, 21–32. [CrossRef]
17. Maalek, R.; Sadeghpour, F. Accuracy assessment of ultra-wide band technology in locating dynamic resources in indoor scenarios.

Autom. Constr. 2016, 63, 12–26. [CrossRef]
18. Vahdatikhaki, F.; Hammad, A. Risk-based look-ahead workspace generation for earthwork equipment using near real-time

simulation. Autom. Constr. 2015, 58, 207–220. [CrossRef]
19. Li, H.; Dong, S.; Skitmore, M.; He, Q.H.; Yin, Q. Intrusion warning and assessment method for site safety enhancement. Saf. Sci.

2016, 84, 97–107. [CrossRef]
20. Dong, S.; Li, H.; Skitmore, M.; Yin, Q. An experimental study of intrusion behaviors on construction sites: The role of age and

gender. Saf. Sci. 2019, 115, 425–434. [CrossRef]
21. Guo, H.L.; Yu, Y.T.; Skitmore, M. Visualization technology-based construction safety management: A review. Autom. Constr. 2017,

73, 135–144. [CrossRef]
22. Xing, Z.X.; Gu, H.L.; Wei, Z.G.; Qian, H.; Zhang, Y.; Wang, L.J. Contrastive Study of the Pedestrian Head Detection Method Based

on Convolutional Neural Network. Saf. Environ. Eng. 2019, 26, 77–82. [CrossRef]
23. Guo, Y.; Su, P.F.; Wu, Y.F.; Guo, J. Object detection and location of robot based on Faster R-CNN. J. Huazhong Univ. Sci. Technol.

(Nat. Sci. Ed.) 2018, 46, 55–59. [CrossRef]
24. Wei, R.; Love, P.; Fang, W.; Luo, H.; Xu, S. Recognizing people’s identity in construction sites with computer vision: A spatial and

temporal attention pooling network. Adv. Eng. Inform. 2019, 42, 21–29. [CrossRef]
25. Ding, L.; Fang, W.; Luo, H.; Love, P.E.; Zhong, B.; Ouyang, X. A deep hybrid learning model to detect unsafe behavior: Integrating

convolution neural networks and long short-term memory. Autom. Constr. 2018, 86, 118–124. [CrossRef]

https://zlaq.mohurd.gov.cn/fwmh/bjxcjgl/fwmh/pages/default/index.html
https://zlaq.mohurd.gov.cn/fwmh/bjxcjgl/fwmh/pages/default/index.html
https://doi.org/10.13579/j.cnki.2095-0985.2019.01.019
https://doi.org/10.1109/GLOCOM.2009.5425840
https://doi.org/10.1007/s00779-011-0394-0
https://doi.org/10.1061/(ASCE)0733-9364(2006)132:7(733)
https://doi.org/10.13800/j.cnki.xakjdxxb.2019.0405
https://doi.org/10.3390/buildings13020345
https://doi.org/10.1016/j.jobe.2020.101212
https://doi.org/10.1111/j.1540-6261.1968.tb00843.x
https://doi.org/10.16265/j.cnki.issn1003-3033.2014.04.016
https://doi.org/10.1016/j.autcon.2015.09.003
https://doi.org/10.1016/j.autcon.2016.01.006
https://doi.org/10.1016/j.autcon.2015.11.009
https://doi.org/10.1016/j.autcon.2015.07.019
https://doi.org/10.1016/j.ssci.2015.12.004
https://doi.org/10.1016/j.ssci.2019.02.035
https://doi.org/10.1016/j.autcon.2016.10.004
https://doi.org/10.13578/j.cnki.issn.1671-1556.2019.01.011
https://doi.org/10.13245/j.hust.181210
https://doi.org/10.1016/j.aei.2019.100981
https://doi.org/10.1016/j.autcon.2017.11.002


Buildings 2023, 13, 2206 16 of 17

26. Wang, W.; Liu, S.K.; Zhang, Y.G.; Zhao, C.N.; He, H.G. Research on early warning of intrusion into hazardous construction area
based on bim and machine vision technology. Saf. Environ. Eng. 2020, 27, 196–203. [CrossRef]

27. Awolusi, I.; Marks, E.D. Active Work Zone Safety: Preventing accidents using intrusion sensing technologies. Front. Built Environ.
2019, 5, 21. [CrossRef]

28. Teizer, J.; Allread, B.S.; Fullerton, C.E.; Hinze, J. Autonomous pro-active real-time construction worker and equipment operator
proximity safety alert system. Autom. Constr. 2010, 19, 630–640. [CrossRef]

29. Forsythe, P. Proactive construction safety systems and the human factor. Proc. Inst. Civ. Eng. Geotech. Eng. Manag. Procure. Law
2014, 167, 242–252. [CrossRef]

30. Arslan, M.; Cruz, C.; Ginhac, D. Visualizing intrusions in dynamic building environments for worker safety. Saf. Sci. 2019, 120,
428–446. [CrossRef]

31. Huang, Y.; Hammad, A.; Zhu, Z. Providing proximity alerts to workers on construction sites using Bluetooth low energy RTLS.
Autom. Constr. 2021, 132, 103928. [CrossRef]

32. Sakhakarmi, S.; Park, J. Improved intrusion accident management using haptic signals in roadway work zone. J. Saf. Res. 2022,
80, 320–329. [CrossRef] [PubMed]

33. Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol.
1962, 160, 106–154. [CrossRef]

34. Li, H.M.; Duan, P.S.; Meng, H.; Guo, H.D. Study on safety early-warning assessment of damaged steel structure reconstruction
based on ipso-bp. J. Saf. Sc. Technol. 2019, 15, 174–180. [CrossRef]

35. Xiao, H.H.; Shi, J.L. Video captioning based on C3D and visual elements. J. South Chin. Univ. Technol. (Nat. Sci. Ed.) 2018, 46,
88–95. [CrossRef]

36. Yang, L.Q.; Cai, L.Q.; Gu, S. Detection on wearing behavior of safety helmet based on machine learning method. J. Saf. Sci.
Technol. 2019, 15, 152–157. [CrossRef]

37. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [CrossRef]

38. Chauhan, R.; Ghanshala, K.K.; Joshi, R.C. Convolutional neural network (CNN) for image detection and recognition. In
Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar,
India, 15–17 December 2018; pp. 278–282. [CrossRef]

39. Agarap, A.F. An architecture combining convolutional neural network (CNN) and support vector machine (SVM) for image
classification. arXiv 2017, arXiv:1712.03541. [CrossRef]

40. Jahanshahi, M.R.; Masri, S.F.; Padgett, C.W.; Sukhatme, G.S. An innovative methodology for detection and quantification of
cracks through incorporation of depth perception. Mach. Vis. Appl. 2013, 24, 227–241. [CrossRef]

41. Zhu, Z.; Park, M.W.; Koch, C.; Soltani, M.; Hammad, A.; Davari, K. Predicting movements of onsite workers and mobile
equipment for enhancing construction site safety. Autom. Constr. 2016, 68, 95–101. [CrossRef]

42. Kolar, Z.; Chen, H.; Luo, X. Transfer learning and deep convolutional neural networks for safety guardrail detection in 2D images.
Autom. Constr. 2018, 89, 58–70. [CrossRef]

43. Lin, P.; Wei, P.C.; Fan, Q.X.; Chen, W.Q. CNN model for mining safety hazard data from a construction site. J. Tsinghua Univ. (Sci.
Technol.) 2019, 59, 628–634. [CrossRef]

44. Xiong, W.; Xu, X.; Chen, L.; Yang, J. Sound-based construction activity monitoring with deep learning. Buildings 2022, 12, 1947.
[CrossRef]

45. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In
Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

46. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

47. Nath, N.D.; Behzadan, A.H.; Paal, S.G. Deep learning for site safety: Real-time detection of personal protective-equipment. Autom.
Constr. 2020, 112, 103085. [CrossRef]

48. Shahverdy, M.; Fathy, M.; Berangi, R. Driver behavior detection and classification using deep convolutional neural networks.
Expert Syst. Appl. 2020, 149, 122290. [CrossRef]

49. Lung, L.W.; Wang, Y.R. Applying deep learning and single shot detection in construction site image recognition. Buildings 2023,
13, 1074. [CrossRef]

50. Lai, X.Y.; Zhang, M.G.; Xu, S. Influence of safety attitude and its components on construction workers’ safety behaiour. J. Civ. Eng.
Manag. 2019, 36, 74–80. [CrossRef]

51. Liu, W.P. The Schematic Studies of Construction Accident Warning System Based on BIM and Positioning Technology. Master’s
Thesis, Tsinghua University, Beijing, China, 2015.

https://doi.org/10.13578/j.cnki.issn.1671-1556.2020.02.027
https://doi.org/10.3389/fbuil.2019.00021
https://doi.org/10.1016/j.autcon.2010.02.009
https://doi.org/10.1680/mpal.13.00055
https://doi.org/10.1016/j.ssci.2019.07.020
https://doi.org/10.1016/j.autcon.2021.103928
https://doi.org/10.1016/j.jsr.2021.12.015
https://www.ncbi.nlm.nih.gov/pubmed/35249612
https://doi.org/10.1113/jphysiol.1962.sp006837
https://doi.org/10.11731/j.issn.1673-193x.2019.08.028
https://doi.org/10.3969/j.issn.1000-565X.2018.08.013
https://doi.org/10.11731/j.issn.1673-193x.2019.10.024
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICSCCC.2018.8703316
https://doi.org/10.48550/arXiv.1712.03541
https://doi.org/10.1007/s00138-011-0394-0
https://doi.org/10.1016/j.autcon.2016.04.009
https://doi.org/10.1016/j.autcon.2018.01.003
https://doi.org/10.16511/j.cnki.qhdxxb.2019.26.008
https://doi.org/10.3390/buildings12111947
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1016/j.autcon.2020.103085
https://doi.org/10.1016/j.eswa.2020.113240
https://doi.org/10.3390/buildings13041074
https://doi.org/10.13579/j.cnki.2095-0985.2019.02.011


Buildings 2023, 13, 2206 17 of 17

52. Zhao, J.; Zhao, J.Y.; Zhang, S.K. Research on construction site personnel management system based on BIM-RFID. Value Eng.
2019, 38, 12–14. [CrossRef]

53. Paris, S.; Hasinoff, S.W.; Kautz, J. Local laplacian filters: Edge-aware image processing with a laplacian pyramid. ACM Trans.
Graph. 2011, 30, 68. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.14018/j.cnki.cn13-1085/n.2019.08.004
https://doi.org/10.1145/2010324.1964963

	Introduction 
	Literature Review 
	Overview of Early Warning Approaches for Intrusion Behavior 
	Overview of the Convolutional Neural Network Model 

	Methodology 
	Process of Personnel Intrusion Behavior Early Warning 
	Identification of Hazard Areas at Construction Sites 
	Division of Hazard Areas 
	Modeling of Construction Site 

	Quantification of Construction Personnel Information 
	Collection of Personnel Attribute Information 
	Quantification of Personnel Behavior 

	CNN Model of Intrusions in Hazard Area 
	Personnel Image Acquisition and Marking 
	Personnel Image Feature Mapping Acquisition 
	Personnel Identification and Classification Model Construction 


	Results 
	Test and Analysis Based on the CNN Model 
	Early Warning of Intrusion Behavior Based on CNN 

	Discussion 
	Conclusions 
	References

