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Abstract: Coupled steel plate and reinforced concrete (SPRC) composite shear walls have been widely
constructed in the core tube of super tall buildings in seismic regions. However, relevant research
progress is far behind the practical application of this coupled composite wall system. Particularly, the
current seismic design method does not consider the coupling mechanism and lacks efficiency in the
computation of seismic base shear. In this research, the energy balance-based plastic design (EBPD)
method is developed and used to design twelve prototype structures considering different structural
heights and coupling ratios (CR). With the ABAQUS-based numerical techniques verified by relevant
experimental results, all the prototype cases were studied by pushover analysis and nonlinear
dynamic analysis to examine the effectiveness of the EBPD method in ensuring satisfactory seismic
performance of coupled SPRC composite walls. The results indicate that the coupled SPRC composite
walls designed by the EBPD method can satisfy the code requirements on lateral deformation under
moderate and rare earthquakes. The analytical average story shear and bending moment distribution
patterns have acceptable agreement with the relevant design assumptions. Favorable CR ranges
are suggested for the coupled SPRC composite walls with different story numbers to achieve good
earthquake-induced deformation characteristics.

Keywords: steel plate; composite shear wall; coupled wall; energy balance; plastic design; coupling
ratio

1. Introduction

Coupled steel plate and reinforced concrete (SPRC) composite walls are commonly
used in the core tube of super tall buildings. Architecturally, the core tube walls with large
openings at each story provide space, support and a gateway to the vertical transportation
system of the super tall buildings. Structurally, the wall openings are large enough to divide
the core tube walls into separate piers joined only by steel coupling beams (SCB) at floor
levels, thereby forming the coupled wall system. For the bottom stories and basement of
super tall buildings, the axial load demand transferred from the upper stories is extremely
high, with the result that it is very difficult to satisfy the axial load ratio limitation. By
embedding steel plates in the middle of the concrete wall, the SPRC composite section can
achieve a stable high strength in axial and shear resistance with a reasonable thickness.
Figure 1 shows a construction site with coupled SPRC composite walls of a super tall
building. However, in practical design, the characteristics of the coupling mechanism are
ignored; mainly the composite action of the SPRC walls is considered in calculating the
axial load capacity. Although coupled SPRC composite walls have been widely constructed,
their benefits and advantages over conventional isolated composite walls have not been
satisfactorily utilized because current codes do not differentiate between coupled and
non-coupled composite walls [1].
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Previous research on coupled SPRC composite walls has been limited, largely due to
the difficulty and cost of experimental studies. In the reported tests on the subassembly
models consisting of one-and-a-half stories of SPRC walls and a half-span of SCB, the test
subassemblies were subjected to horizontal reversed cyclic loads applied to the top of the
SPRC walls to evaluate the responses of the SCBs and the SPRC wall piers [2,3]. These
subassembly test results demonstrated the high performance of the test models with the
fully developed coupling mechanism. The influences of the key design parameters and
construction details on the overall behavior of the coupled SPRC composite walls were
also revealed. Another reported test on a 1:4 scale five-story coupled SPRC composite wall
system focused on the plasticity development and distribution pattern determined by the
coupling mechanism [4]. The test results indicated that the coupled composite system can
be designed to dissipate energy primarily by the shear deformation of the SCBs and the
plastic hinge deformation at the bottom of the SPRC wall. It is worth mentioning that
another type of coupled composite wall system has also been tested, where the test model
was a 1:5 scale five-story core tube containing a steel truss instead of steel plate-reinforced
concrete wall piers joined by reinforced concrete or steel-reinforced concrete coupling
beams [5]. The test results showed that the embedded steel trusses significantly affect the
seismic performance of the coupled composite core walls in terms of lateral load carrying
capacity, energy dissipation and damage mode.

It can be seen that although only limited experimental studies have been conducted,
the excellent overall seismic performance of the coupled SPRC composite walls has been
validated. Further research is needed to develop systematic and efficient seismic design
method for coupled SPRC composite wall systems. In this research, the energy balance-
based plastic design (EBPD) method is introduced and used for the seismic design of the
coupled SPRC composite system. The EBPD method is based on the energy balance concept,
which suggests that the input earthquake energy is equal to the sum of the damping energy
and cumulative plastic work [6]. This energy balance-based design method was first
introduced to the design of steel moment frames. The advantage of the energy concept
was demonstrated by directly calculating the base shear from the energy balance equation
without further iteration [7]. The plastic limit analysis was then used in accordance with the
pre-selected yielding pattern and the target ultimate lateral drift of the structural system [8].
It was indicated that the seismic design results from the EBPD method became more
controllable than those from conventional seismic design methods. The EBPD method has
been applied to the seismic design of various structural systems, including steel concentric
braced frames [9], hybrid coupled walls [10], buckling-restrained braced non-ductile RC
frames [11] and composite partially restrained steel frame-reinforced concrete infill walls
with concealed vertical slits [12]. The EBPD method was further improved by introducing
an energy reduction factor to take into account the accumulated damage and the pinching
effect of concrete structures [13,14].
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In this research, the EBPD method is developed for the seismic design of coupled
SPRC composite walls. In order to examine the seismic performance of the coupled SPRC
walls designed by the EBPD method, 12 prototype cases with different structural heights
and coupling ratios (CR) were designed and studied. A series of pushover analyses and
nonlinear dynamic time history analyses were conducted to examine the performance
characteristics of the coupled SPRC composite walls designed using the EBPD method.

2. EBPD Method for Coupled SPRC Composite Walls
2.1. Energy Balance Equation

The energy balance equation of a structural system subjected to earthquake ground
motions is expressed by Equation (1):

Ee + ηEp = γEI (1)

where Ee and Ep are the elastic and plastic energy developed in the structural system; EI is
the total input earthquake-induced energy; η is the energy reduction factor; and γ is the
energy modification factor. In order to calculate the total input earthquake energy EI, the
structural system is assumed to be an elastic multi-degree-of-freedom (E-MDOF) system,
where mi and ki are the concentrated mass and the lateral stiffness of the ith story. The
E-MDOF system can be further decomposed into multiple modes of elastic single-degree-
of-freedom (E-SDOF) systems. The ith mode E-SDOF system can be defined by Mi and Ki,
or the ith modal mass and stiffness. The EI can be computed by Equation (2):

EI = ∑N
i=1

1
2

M∗
i Sv,i

2 = ∑N
i=1

1
2

M∗
i

(
Sa,iTi

2

)2
(2)

where N is the total story number of the structure; and Sv,i, M∗
i , Sa,i and Ti are the pseudo

velocity, the effective modal mass, the pseudo acceleration and the period corresponding to
the ith mode E-SDOF system. Sa,i can be determined using the design response spectrum
given in the Chinese code [15]. The energy modification factor γ can be obtained by
Equation (3):

γ =
2µ − 1

R2
µ

(3)

where µ is the displacement ductility factor; and Rµ is the ductility reduction factor. It
is obvious that γ is introduced to account for the difference between the energy that an
inelastic and an elastic structural system can absorb.

The elastic energy stored in the structure, Ee, is the elastic vibrational energy that is
gradually released as the vibrational velocity reduces.

Ee =
1
2

Vy∆y =
1
2

M
(

T1

2π
·
Vy

G
·g
)2

(4)

where M and G are the total mass and the seismic weight of the structure; Vy and ∆y are
the design base shear and the corresponding roof lateral displacement; and T1 is the elastic
fundamental period of the structure.

As shown in Figure 2, the plastic energy Ep is associated with the design base shear Vy
and can be computed as the work performed by the design base shear Vy after the yielding
of the structure.

Ep = ∑N
i=1 Fihiθp = Vyθp∑N

i=1 λihi (5)

where Fi is the lateral load applied to the ith floor; hi is the height measured from the
ground to the ith floor level; and θp is the plastic rotation, or the difference between the
target ultimate lateral drift ratio, θu, and the inter-story-drift ratio at yielding, θy, which
can be 1/250, as suggested by Park et al. [16].
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According to previous research [17], the lateral force at the ith floor Fi can be computed
by Equations (6) and (7):

Fi = λiVy = (βi − βi+1)

(
Gnhn

∑N
j=1 Gjhj

)0.75T−0.2
1 Vy (6)

βi =
Vi

Vn
=
(
∑N

j=i Gjhj/Gnhn

)0.75T−0.2
1 (7)

where λi is the lateral force distribution factor for the ith floor; Gn and Gj, and hn and hj
are the seismic weight concentrated at the roof and the jth floor, and the structural height
measured from ground to the roof and the jth level, respectively; Vi and Vn are the story
shears of the ith story and the top story; and βi is the story shear distribution factor for the
ith story.

The hysteretic energy modification factor η is used to account for the area reduction of
the ideal load versus displacement hysteretic loops due to stiffness degradation, strength
deterioration, and pinching effects of concrete structures. The formulas in Table 1 can be
used to estimate the value of η corresponding to different hysteretic models. It is suggested
that the small Takeda model is suitable for coupled SPRC composite walls [12].

Table 1. Hysteretic energy modification factor η.

Model Ring-Spring Large Takeda Small Takeda

Teff < 1 s 0.3 + 0.35(1−Teff)
0.85 + 0.6(1−Teff)

0.65 + 0.5(1−Teff)
0.85 + 0.6(1−Teff)

0.5 + 0.4(1−Teff)
0.85 + 0.6(1−Teff)

Teff ≥ 1 s 0.353 0.765 0.588

In Table 1, Teff is the equivalent fundamental period of the structure and can be
calculated by:

Teff = T1

√
µ/(1 + αµ − α) (8)

where α is the ratio of the initial stiffness to that after yielding; and µ is the displacement
ductility ratio. Combining Equations (2), (4) and (7) into Equation (1), the design base shear
can be obtained.

Vy =
−ηθp∑N

i=1 λihi +

√(
ηθp∑N

i=1 λihi

)2
− 4 · (2T2

e /8π2M) ·
(
−γ∑N

i=1
1
2 M∗

i Sv,i
2
)

2T2
1 /8π2M

(9)
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The lateral force at each floor can be calculated by Equation (10) with the consideration
of the additional lateral force ∆Fi caused by the P-∆ effect.

Fi = λiVy + ∆Fi = λiVy + Giθu (10)

Then the total overturning moment Motm can be determined by Equation (11).

Motm = ∑N
i=1 Fihi (11)

2.2. Plastic Design of Coupled SPRC Composite Walls

The coupling ratio is defined as the ratio of the moment due to the coupling effect to
the total overturning moment.

CR =
Tlw

Tlw + Mcw + Mtw
(12)

where T is the sum of the axial tension force transferred from coupling beams to an SPRC
wall pier; lw is the centroidal distance between the two adjacent SPRC wall piers; and
Mcw and Mtw are the overturning moments carried by the wall piers on the compression
side and the tension side, respectively. Based on the pre-selected CR value and the total
overturning moment, the total shear demand of the coupling beams is given by:

T = ∑N
i=1 Vbi =

Motm·CR
lw

(13)

where Vbi is the shear demand of coupling beam at the ith floor. The shear demand distri-
bution among the coupling beams at different floors can be determined by Equation (14).

Vbi =
βi

∑N
i=1 βi

·∑N
i=1 Vbi (14)

As shown in Figure 3, the shear capacity of the SCBs (red line) can be adjusted by up to
20% of the maximum of the shear demand (black line) to allow the redistribution of shear
forces among SCBs on different floors [18]. The shear forces transferred from the SCBs to
the adjacent walls are amplified by a factor of 1.11 due to the overstrength of the SCBs [19].
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The overturning moment carried by the wall piers, Mw, is the sum of the moments
resisted by the wall on the compression side, Mcw, and that on the tension side, Mtw, and
can be calculated by Equation (15).

Mw = Mcw + Mtw = Motm·(1 − CR) (15)

However, the overturning moments resisted by the wall piers are not evenly dis-
tributed. Table 2 lists the distribution proportions between the compression and tension
piers corresponding to different CRs.

Table 2. Proportions of bending moment distribution (%).

Wall Pier
CR

0.3 0.4 0.5 0.6

Compression pier 0.55 0.58 0.61 0.64
Tension pier 0.45 0.42 0.39 0.36

3. Prototype Coupled SPRC Composite Walls

Based on the proposed EBPD method, a total of 12 prototype cases of the coupled SPRC
composite wall were designed in accordance with the Chinese codes [15,20], considering
three structural heights of 12, 16, 20 stories and four coupling ratios of 30%, 40%, 50% and
60%. The design peak ground acceleration (PGA) was 0.4 g. The 12 prototype structures
were divided into three groups, each group containing four prototype cases with the same
story number. Then different coupling ratios were assigned to the four cases of each
group. The prototype case is identified by the story number and CR. For example, the
identification C-12-30 represents a 12-story coupled SPRC composite wall structure with
a CR of 30%. All the prototype cases have the same overall dimensions. The length and
story height of the wall pier are 4000 mm and 3000 mm, respectively. The clear span
length of the SCBs is 2000 mm. The wall thicknesses for the C-12, C-16 and C-20 groups of
prototype cases are 200 mm, 250 mm and 300 mm, respectively. The nominal compressive
strength of the concrete is 40 MPa, while the nominal steel yield strength is 400 MPa for
the longitudinal and transverse reinforcements. The nominal yield strength of the steel
for the SCBs, the embedded steel columns at boundary elements and the steel plates is
345 MPa. The thicknesses of the steel plates embedded in the wall piers for the C-12, C-16
and C-20 groups are 5 mm, 6 mm and 7 mm respectively. The cross-sections of the SCBs
and the embedded steel columns at the boundary elements of the SPRC wall piers for the
C-12 group prototype cases are given in Tables 3 and 4.

Table 3. Cross-section dimensions of SCBs (d × bf × tw × tf) for C-12 group (Unit: mm).

ID 2nd–4th Stories 5th–7th Stories 8th–10th Stories 11th Floor–Roof

C-12-30 410 × 200 × 8 × 30 410 × 200 × 7.5 × 30 410 × 200 × 6.5 × 30 240 × 200 × 6 × 20
C-12-40 460 × 200 × 9.5 × 30 460 × 200 × 9 × 30 460 × 200 × 7.5 × 30 340 × 200 × 6 × 20
C-12-50 570 × 200 × 10 × 35 570 × 200 × 9 × 35 560 × 200 × 7.5 × 30 400 × 200 × 6 × 20
C-12-60 580 × 200 × 12 × 40 570 × 200 × 11 × 35 560 × 200 × 9 × 30 400 × 200 × 7 × 25

The C-12 group prototype cases are used as the example to show the design results
of the SPRC composite walls. The stirrup reinforcement at the boundary elements of the
wall piers of all the 12 prototype structures consists of #12 rebars at a spacing of 100 mm.
The uniformly distributed reinforcement of the wall piers in both horizontal and vertical
directions consists of #12 rebars at a spacing of 200 mm. The longitudinal reinforcement at
the boundary elements of the wall piers is shown in Table 5.
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Table 4. Embedded steel column (d × bf × tw × tf) of wall piers for C-12 group (Unit: mm).

ID 1st Story 2nd Story 3rd–8th Stories 9th–12th Stories

C-12-30 400 × 160 × 5×15 400 × 160 × 5 × 12 400×160×8×15 400 × 160 × 8 × 15

ID 1st–2nd Stories 3rd Story 4th–8th Stories 9th–12th Stories

C-12-40 400 × 160 × 5 × 12 400 × 160 × 8 × 15 400 × 160 × 5 × 12 400 × 160 × 5 × 12
C-12-50 400 × 160 × 5 × 12 400 × 160 × 5 × 12 400 × 160 × 5 × 12 400 × 160 × 5 × 12
C-12-60 400 × 160 × 5 × 12 400 × 160 × 5 × 12 400 × 160 × 5 × 12 400 × 160 × 5 × 12

Table 5. Longitudinal reinforcement at boundary elements for C-12 group.

ID 1st Story 2nd Story 3rd–4th Stories 5th Story 6th–12th Stories

C-12-30 8#32 8#28 8#32 8#25 8#18
C-12-40 8#32 8#25 8#32 8#22 8#18

ID 1st Story 2nd Story 3rd Story 4th Story 5th–12th Stories

C-12-50 8#25 8#18 8#32 8#28 8#18
C-12-60 8#20 8#18 8#28 8#25 8#18

4. Finite Element (FE) Modeling and Verification
4.1. Concrete Modeling

Numerical models of the 12 prototype structures were established using ABAQUS.
The concrete damage plasticity (CDP) model is adopted to simulate concrete. The stress–
strain relationship of concrete in the CDP model is shown in Figure 4. The initial elasticity
modulus E0 can be calculated using the compressive strain εc,e0 and stress σc,e0 correspond-
ing to the elastic limit by Equation (16). σc,e0 can be taken as one-third of the concrete
compressive strength f c. The cracking strain in the tensile stage εt,in and the inelastic strain
in the compression stage εc,in can be computed by Equations (17) and (18).

E0 =
σc,e0

εc,e0
(16)

εt,in = εt − εc,inσt/E0 (17)

εc,in = εc − σc/E0 (18)

where σt is the stress at any point at the hardening stage of tension; εt is the corresponding
strain; and εc and σc are the strain and stress during the hardening stage of compression.

The tensile and compressive damage variables Dt and Dc are introduced to account for
the stiffness degradation of concrete caused by damage during the stress–strain hysteretic
process. The expressions of the uniaxial tensile and compressive stress–strain relationship
of the concrete can be given by Equations (19) and (20). Inserting Equations (17) and (18)
into Equations (19) and (20), the tension plastic strain, εt,p, and the compression strain, εc,p,
can be calculated by Equations (21) and (22)

σt = (1 − Dt)E0
(
εt − εt,p

)
σc (19)

σc = (1 − Dc)E0
(
εc − εc,p

)
(20)

εt,p = εt,in −
Dt

1 − Dt

σt

E0
(21)

εc,p = εc,in −
Dc

1 − Dc

σc

E0
(22)
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Other basic parameters in the CDP model are summarized in Table 6. f b0/f c0 is the
ratio of the biaxial compressive strength to the uniaxial compressive strength. K is the ratio
of the second stress invariant on the tensile meridian to that on the compressive meridian.
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Table 6. Parameter values in the CDP model.

Dilation
Angle

Flow Potential
Eccentricity f b0/f c0 K Viscosity

Coefficient
Concrete

Poisson’s Ratio

38◦ 0.1 1.16 2/3 0.001 0.2

4.2. Reinforcement Modeling

The Usteel02 model in ABAQUS is adopted to simulate the reinforcing bars with
consideration of the loading phase, yield plateau, unloading phase and failure of the
reinforcement. The corresponding stress–strain curve of the Usteel02 model in the PQ-fiber
subprogram is depicted in Figure 5.
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4.3. Structural Steel Modeling

The modeling of the structural steel material for the steel members follows the con-
stitutive relationship provided in the Eurocode [21] and used in previous research [22,23],
which is indicated by Equation (23) and Figure 6.

σ =



εEs ε ≤ εp
f y εp ≤ ε ≤ εy

fy +
fu− f y
εs−εy

(
ε − εy

)
εy ≤ ε ≤ εs

f u εs ≤ ε ≤ εt

f u

(
1 − ε−εt

εu−εt

)
εt ≤ ε ≤ εu

0 ε > εu

(23)

where σ is the stress of the steel; f u is the ultimate tensile stress of the steel; εp is the
proportional limit strain of the steel; εs is the ultimate strength strain of the steel; and εt is
the strength degradation strain of the steel.
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Figure 6. Constitutive model of steel.

4.4. FE Types and Mesh Size

In the numerical simulation, a three-dimensional solid eight-node hexahedral element
C3D8R is used for concrete. The truss element T3D2 is used for reinforcement, which can
only bear axial loads. The reduced integral curved shell element S4R with four nodes is
used for steel members. In order to obtain accurate and computationally cost-effective
simulation, the reinforcement and steel members of all 12 prototype cases adopt a mesh
size of 200 mm. Concrete meshing sizes of 200 mm, 250 mm and 300 mm are used for the
C-12, C-16 and C-20 groups of prototype cases, respectively.

4.5. Verification of Modeling Techniques

To verify the accuracy of the above-mentioned numerical modeling techniques, the 1:4
scale five-story coupled SPRC composite wall specimen [4] was modeled and analyzed.
Then the numerically simulated results were compared with the experimental ones. The
experimental and simulated results are compared in Figure 7, which shows the lateral force
versus displacement hysteretic loops and skeleton curves.
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Figure 7. Comparison of experimental and numerical results.

5. Pushover Analysis

A pushover analysis on the 12 prototype cases of the coupled SPRC wall structures
was conducted to obtain the capacity curves. The lateral force distribution pattern proposed
by Chao et al. was adopted [18].

5.1. Capacity Curves

The capacity curves of the 12 prototype cases are shown in Figure 8. On each capacity
curve the circle, square and triangle marks indicate the yielding of 50% of the SCBs, the
yielding of the bottom region of the wall pier and the yielding of longitudinal reinforcement
or steel members at the upper region of the wall pier, respectively. It can be seen that the
capacity curves of the three prototype groups demonstrate very similar characteristics.
The yielding of 50% of SCBs manifests the yielding of the entire structural system with a
significant reduction in the lateral stiffness, followed by yielding of the bottom region of
the wall piers. The yielding of the upper region of the wall piers occurs when the capacity
curves are close to the peak lateral load capacity. Within each prototype group, the smaller
the CR, the smaller the roof lateral drift ratio corresponding to the yielding of 50% of the
SCBs. However, the roof lateral drift ratios corresponding to the yielding of the bottom
region and upper region of the wall piers increase. This means using a smaller CR can
result in better post-yield deformation capacity. On the other hand, the larger the CR, the
greater the lateral load capacity.
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Figure 9 shows the maximum inter-story drift ratio of the 12 prototype structures
corresponding to the characteristic events. As can be seen in Figure 9a, when 50% of SCBs
yield, the maximum inter-story drift ratios of all prototype cases do not exceed 1/120.
When the bottom sections of the wall piers yield, almost all prototype cases have developed
maximum inter-story drift ratios between 1/120 and 1/80, as shown in Figure 9b.
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5.2. Distribution Proportion of Bending Moment

The bending moment demands between the adjacent wall piers in the coupled SPRC
walls is not evenly distributed. According to the analysis results, all the three prototype
groups exhibit a similar moment distribution pattern, which can be demonstrated with the
C-16 prototype cases as an example. As shown in Figure 10, when the maximum inter-story
drift ratios are less than 0.0015, the bending moments resisted by the two wall piers are
approximately equal. However, along with the increase in the maximum inter-story drift
ratios, the difference in the bending moments developed in the compression and tension
wall piers increases. The larger the CR, the greater the bending moment difference between
the two wall piers.
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The distribution proportions of bending moments between wall piers for all twelve
prototype cases obtained from the analysis are compared with the proportions used in the
design in Table 7. It can be seen that when the CR is 30%, 40% and 50%, the bending moment
distribution proportions obtained from the pushover analysis are in good agreement with
those used in the design. When the CR is 60%, the results of the pushover analysis are
slightly different from those of the design. It is proved that the bending moment distribution
proportions for the compression and tension wall piers provided in Table 2 are reasonable.

Table 7. Distribution of bending moments between wall piers.

ID
Pushover Design

Tension Wall Compression Wall Tension Wall Compression Wall

C-12-30 0.44 0.56
0.45 0.55C-16-30 0.44 0.56

C-20-30 0.44 0.56

C-12-40 0.42 0.58
0.42 0.58C-16-40 0.42 0.58

C-20-40 0.42 0.58

C-12-50 0.38 0.62
0.39 0.61C-16-50 0.39 0.61

C-20-50 0.39 0.61

C-12-60 0.33 0.67
0.36 0.64C-16-60 0.34 0.66

C-20-60 0.35 0.65
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6. Dynamic Response Analysis
6.1. Earthquake Records

Five suitable earthquake ground motion records from the PEER Ground Motion
Database and two software-generated artificial records were selected for the nonlinear
dynamic analysis of the twelve prototype cases of the coupled SPRC composite walls.
The basic information of the ground motion records is displayed in Table 8. Considering
the site characteristics and the epicentral distance, the selected suite of ground motions
is random and needs to be scaled to different PGA levels to create the moderate and
rare earthquake input in accordance with the design level PGA of 0.4 g. The response
spectra for the seven selected records scaled to a PGA of 0.4 g, and the target spectrum
generated according to the Chinese code [15] are shown in Figure 11a. To further validate
the applicability of the selected ground motion records, the difference between the average
response spectrum of the selected suite of ground motion records and the code-generated
design response spectrum should not exceed 10% at the two frequency domains of [0.1 s, Tg]
and [T1 − 0.2, T1 + 0.5]. Tg and T1 are the characteristic periods relating to the site and
the fundamental period of the structural system respectively. The target design response
spectrum is compared with the average response spectrum of the seven ground motion
records, as shown in Figure 11b. It is clear that the selected suite of seven ground motion
records can be used for the nonlinear dynamic analysis of the prototype cases.

Table 8. Selected suite of ground motion records.

ID Magnitude PGA
(cm/s2)

Duration
(s) Earthquake Station

RSN951 6.7 99.47 34.99 Northbridge-01 Bell
Gardens-Jaboneria

RSN1000 6.7 100.84 40 Northbridge-01 LA-Pico and Sentous
RSN1008 6.7 96.89 39.99 Northbridge-01 LA-W15th St

RSN5776 6.9 152.68 60 Iwate_Japan Kami_Miyagi
Miyazaki City

RSN5779 6.9 70.46 60 Iwate_Japan Sanbongi
Osaki City

Artificial 1
(R1) - 44 30 - -

Artificial 2
(R2) - 44 30 - -

6.2. Maximum Inter-Story Drift Ratio

Figures 12 and 13 show the average maximum inter-story drift ratios of the 12 coupled
SPRC prototype structures under moderate and rare earthquake levels, respectively. The
dashed vertical line in Figure 12, corresponding to the horizontal axis coordinate 1/120,
represents the target maximum inter-story drift ratio under moderate earthquake levels. It
is clear that none the 12 prototype cases exceed this limit. As can be seen in Figure 13, the
maximum inter-story drift ratios of all prototype cases do not exceed the corresponding
limit value of 1/80. By comparison of the overall distribution characteristics of the maxi-
mum inter-story drift ratios, it becomes clear that with the increase in the structural height,
the influence of the CR increases. For example, in Figure 12c, the maximum inter-story drift
ratios of the lower to middle stories of C-20-60 are larger than those of C-20–30, while those
of the upper stories are vice versa. This means for the 20-story prototype cases, using high
CR values can more efficiently control the inter-story drift ratios than using low CR values.
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Figure 11. Response spectra of selected suite of ground motion records.

6.3. Story Shear Distribution

Figures 14–16 summarize the maximum story shear distribution of all the 12 prototype
structures under moderate earthquakes. At the design stage, the story shear is evaluated
based on the shear distribution factor βi, as described in Section 2.1. It is shown from
Figures 14–16 that, in general, the design maximum story shear distribution agrees well
with the average analytical results for the upper stories. For the middle stories, the average
analytical results are much lower than the design shear forces. For the lower stories, the
design shear force is less than the average analytical shear force. However, it is also noticed
that for each group of cases, the higher the CR, the smaller the difference between the
design story shear and the average analytical story shear at the middle and upper stories,
which is especially the case for the C-20 group cases.
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6.4. Overturning Moment Distribution

The analysis results for overturning moment distribution along the structural height
of all 12 prototype structures under moderate earthquakes are shown in Figures 17–19. It
can be seen from the figures that the CR values have a significant influence on the story
bending moment distribution. When using CR values of 0.3 and 0.4, the design bending
moment is only slightly smaller than the average analytical results at the upper stories of
the structure, while the design bending moments in the middle and lower stories of the
structure are greater than the average analytical overturning moments of the structure.
When the CR values are 0.5 and 0.6, the design overturning moments are very close to the
average analytical results.
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7. Conclusions

In this research program, the EBPD method is developed for coupled SPRC composite
wall systems and applied to the design of 12 prototype structures considering different
story numbers and coupling ratios. The ABAQUS-based numerical techniques are applied
to simulate the experiment on a 1:4 scale five-story coupled SPRC composite wall test
model. The simulated results were found to agree very well with the experimental data
and the accuracy of the numerical techniques was verified. Then, the 12 prototype cases of
the coupled SPRC composite walls were modeled and numerically studied in a pushover
analysis and nonlinear dynamic analysis. According to this study, the following conclusions
can be drawn.

(1) The EBPD method is a very efficient seismic design method that combines the benefits
and advantages of the energy balance concept and the plastic limit analysis. Through
the application of the energy concept, the seismic design base shear can be directly
obtained without the need for design iterations. The preferred plasticity development
and distribution pattern can be directly reflected in the design stage. The pushover
analysis and the nonlinear dynamic analysis prove the applicability and the efficacy
of the EBPD method to the seismic design of coupled SPRC composite walls.

(2) The suggested numerical techniques with ABAQUS can be used to simulate the
main seismic behavior of the coupled SPRC composite walls with good accuracy
and efficiency.

(3) The pushover analysis results indicate that the yielding of the majority of the SCBs
is the threshold of the yielding of the entire structural system. The greater the CR,
the larger the roof lateral drift ratio corresponding to the yielding of the majority of
the SCBs, and the smaller the roof lateral drift ratio corresponding to the yielding of
the wall piers. The post-yield deformation capacity of the coupled SPRC wall system
decreases with increases in the CR. However, the peak lateral load capacity increases
with the CR. The limits of the maximum inter-story drift ratio corresponding to the
yielding of SCBs and the bottom section of wall piers can be satisfied. The bending
moment distribution pattern between the compression and tension wall piers agrees
well with the design assumptions.

(4) The nonlinear dynamic analysis results indicate that the average maximum inter-story
drift ratios can still be within the code limits under moderate and rare earthquakes.
The average story shear distribution patterns show noticeable differences from the
design story shear distribution assumption, but the design story forces tend to be
safer compared with the numerical analysis results. Increasing the CR can reduce the
difference between the design story shear and the average analytical story shear force.
A similar trend is found in terms of the overturning moment distribution pattern
between the two wall piers.

(5) The results of the pushover analysis and the dynamic response history analysis
indicate that the influence of CR on the structural deformation responses is relevant
to the structural height. For 12-story coupled SPRC composite walls, the suggested
range of the CR is 30–40%; for 16-story and 20-story coupled SPRC composite walls,
the suggested range of the CR is 50–60%.
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Nomenclature

θu target ultimate lateral drift ratio
θy inter-story-drift ratio at yielding
θp plastic rotation
γ energy modification factor
µ displacement ductility factor
λi lateral force distribution factor for the ith floor
Rµ ductility reduction factor
η energy reduction factor
α ratio of the initial stiffness to that after yielding
βi story shear distribution factor for the ith story
εc,e0, σc,e concrete compressive strain and stress of elastic limit
εt,0, f t ultimate tensile strain and stress
εcu, σcu ultimate compressive strain and stress of concrete
εtu ultimate tensile strain of concrete
f c, εc,0 concrete compressive strength and corresponding strain
εc, σc concrete strain and stress during the hardening stage of compression
σt, εt concrete stress at the hardening stage of tension and corresponding strain
εt,in, εc,in cracking strain in the tensile stage and inelastic strain in the compression stage
εt,p, εc,p tension plastic strain and compression plastic strain
εp proportional limit stain of steel
εs strain hardening ultimate strain of steel
εy maximum yield strain of steel
εt strength degradation strain of steel
εu ultimate strain of steel
f b0/f c0 ratio of the biaxial compressive strength to the uniaxial compressive strength
mi, ki concentrated mass and the lateral stiffness of the ith story
d section depth of steel member
tf flange thickness
tw web thickness
bf flange width
Mi, Ki the ith modal mass and stiffness
Mi * ith effective modal mass
Sv,i, Sa,i ith pseudo velocity, ith pseudo acceleration
N total story number
K ratio of second stress invariant on tensile meridian to that on compressive meridian
Dt, Dc tensile and compressive damage variables
E0 initial elasticity modulus
Ee, Ep elastic and plastic energy of structure
EI input earthquake energy
Vy, ∆y design base shear and the corresponding roof lateral displacement
M, G total mass and the seismic weight of the structure
Gi, Gn seismic weight concentrated at ith floor and roof
Motm, Mw total overturning moment, overturning moment resisted by wall piers
Mcw, Mtw overturning moment resisted by compression and tension piers
CR coupling ratio
T accumulated axial force transferred from all steel coupling beams
T1, Ti fundamental period of structure and period of ith mode
Tg characteristic periods relating to the site
Teff equivalent fundamental period of structure
Vbi shear demand of coupling beam at ith floor
Vbmax maximum shear demand of coupling beam
Vn shear strength of coupling beam after amplitude modification
Fi, hi lateral force at ith floor and structural height measured from ground to ith floor
∆Fi additional lateral force due to secondary effect
lw centroidal distance between two adjacent wall piers
f y, f u yield and ultimate tensile stress of the steel
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