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Abstract: Low-carbon concrete mixes that incorporate high volumes of fly ash and slag as cement
replacements are becoming increasingly more common as part of efforts to decarbonise the con-
struction industry. Though environmental benefits are offered, concretes containing supplementary
cementitious materials exhibit different creep behaviour when compared to conventional concrete.
Creep can significantly impact long-term structural behaviour and influence the overall serviceability
and durability of concrete structures. This paper develops a creep compliance prediction model
using supervised machine learning techniques for concretes containing fly ash and slag as cement
substitutes. Gaussian process regression (GPR), artificial neural networks (ANN), random forest
regression (RFR) and decision tree regression (DTR) models were all considered. The dataset for
model training was developed by mining relevant data from the Infrastructure Technology Institute
of Northwestern University’s comprehensive creep dataset in addition to extracting data from the lit-
erature. Holdout validation was adopted with the data partitioned into training (70%) and validation
(30%) sets. Based on statistical indicators, all machine learning models can accurately model creep
compliance with the RFR and GPR found to be the best-performing models. The sensitivity of the
GPR model’s performance to training repetitions, input variable selection and validation methodol-
ogy was assessed, with the results indicating small variability. The importance of the selected input
variables was analysed using the Shapley additive explanation. It was found that time was the most
significant parameter, with loading age, compressive strength, elastic modulus, volume-to-surface
ratio and relative humidity also showing high importance. Fly ash and silica fume content featured
the least influence on creep prediction. Furthermore, the predictions of the trained models were
compared to experimental data, which showed that the GPR, RFR and ANN models can accurately
reflect creep behaviour and that the DTR model does not give accurate predictions.

Keywords: artificial neural networks; concrete; creep; machine learning; sustainability

1. Introduction

It is estimated that the construction industry accounts for 39% of global carbon dioxide
(CO2) emissions [1]. Cement alone makes up approximately 5% of global anthropogenic
CO2 emissions [2] due to its high embodied carbon and concrete’s great consumption
rates—concrete is the second most consumed material on the planet, second only to water.
With the introduction of the United Nation’s (UN) Sustainable Development Goals (SDGs)
and increasing national and global sustainability targets, the construction industry must
adopt greener construction practices. One approach to reducing the embodied carbon of
cement and concrete-based materials is through the partial substitution of cement with
materials featuring reduced environmental impacts and cementitious properties, referred
to as Supplementary Cementitious Materials (SCMs). Fly ash and slag, bi-products of
coal burning and steel production, respectively, have been studied extensively and are
commonly adopted as SCMs in the industry. Replacing high volumes of ordinary Portland
cement (OPC) with SCMs is becoming increasingly common in the construction industry
due to the high CO2 emission savings that can be achieved.
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Blending fly ash or slag with OPC leads to the creation of additional hydration prod-
ucts, particularly calcium silicate hydrate (C-S-H), which is the primary component of
strength and durability in concrete. However, negative changes to the microstructure of
the cement matrix may be observed, including larger pore volumes with a finer pore distri-
bution. This can reduce durability performance due to the greater potential for chloride ion
permeability and water absorption [3]. Creep and shrinkage are important durability prop-
erties of concrete that significantly impact long-term performance and are influenced by the
incorporation of mineral admixtures. Creep in concrete is a time-dependent, macroscopic
deformation that occurs due to sustained loading [4]. Total creep strain is characterised by
two components: drying creep and basic creep. Basic creep is the component of total creep
strain that grows with time under sustained loading and is not influenced by drying effects.
The drying creep element is the portion of creep strain that occurs when loaded concrete
loses moisture and dries. Substitution of OPC with SCMs has been found to have various
effects on creep strain. Shariq et al. [5] experimentally investigated creep and shrinkage
strains in concrete containing Ground Granulated Blast-Furnace Slag (GGBFS) at replace-
ment ratios of 20%, 40% and 60%. Creep and shrinkage strains were found to increase
with GGBFS content. Average creep coefficients for 20%, 40% and 60% GGBFS concrete
were 16.3%, 33.3% and 55.2% higher than concrete with no GGBFS concrete, respectively,
after 150 days of loading. Conversely, many researchers have found that SCMs may lead
to reduced creep strains. Qin et al. [6] analysed creep and shrinkage in self-compacting
concrete (SCC) containing recycled aggregates and various blends of fly ash, slag and silica
fume and observed that incorporating combinations of SCMs led to reductions in creep
strains. Similar behaviour has been reported for the inclusion of ultra-fine GGBFS and
silica fume in high-performance concrete (HPC) by Jianyong and Yan [7]. Creep strain
more than halved when substituting 30% of OPC with ultra-fine GBFS and reduced by
approximately 65% when a blend of silica fume and GBFS were used at 10% and 30%
substitution ratios, respectively. Gedam et al. [8] experimentally investigated four different
HPC mixes that included either fly ash, silica fume or GGBFS as an SCM. After 500 days
of loading, total creep in mixes containing GGBFS, fly ash and silica fume were 40.12%,
22.49%, and 57.11% lower, respectively, than that of the reference mix containing OPC
only. Reduced creep due to SCM incorporation has been attributed to additional C-S-H
gel formation, which effectively refines early-age micro-cracks and improves the physical
performance of HPC [8]. Chern and Chan [9] examined basic and drying creep in blast
furnace slag concrete. The experimental test results suggested that basic creep is lower in
concrete containing GGBFS when compared to OPC concrete. However, drying creep and
total deformation were found to increase when incorporating the SCM. It is clear from the
above that the effect of SCMs on the time-dependent behaviour of concrete is complex and
depends on a multitude of factors, including the material properties of cement and SCMs,
mix design, and curing and mixing conditions.

The application of artificial intelligence (AI) in many fields is growing rapidly, includ-
ing in engineering and material sciences [10,11]. Complex systems and behaviour such
as concrete creep can be accurately predicted using machine learning (ML) algorithms
trained on comprehensive datasets [12–14]. Additionally, ML can be employed to elucidate
underlying mechanisms governing behaviour. Molecular dynamics simulation is another
emerging technique to predict material properties and behaviour [15]. Artificial Neural
Networks (ANNs) and regression analysis are commonly adopted ML techniques for civil
engineering systems. The Infrastructure Technology Institute of Northwestern University’s
(NU-ITI) concrete creep and shrinkage database [16] is a valuable tool that can be har-
nessed for deep analysis of time-dependent behaviour in concrete. A number of researchers
have utilised the NU-ITI dataset to develop accurate prediction models for concrete creep
using ML techniques [17–20]. Developing creep models for sustainable concrete mixes
using ML has also received some research attention. Back-propagation neural network
(BPNN) and support vector machine (SVM) models were utilised by Rong et al. [21] to
investigate the drying creep of recycled aggregate concrete (RAC). Various ML models were
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compared for their suitability in predicting total creep in RAC by Feng et al. [22,23]. Few
research works have attempted to analyse creep in concrete containing SCMs using ML.
Sadowski et al. [24] employed a firefly-algorithm (FA)-based ANN technique for modelling
creep in concrete containing GGBFS. The developed model was highly accurate based
on an assessment of the following statistical indicators: Correlation coefficient R2, mean
absolute error (MAE), mean squared error (MSE) and root mean square error (RMSE).
However, the dataset utilised for ML model training was limited to 12 different mix designs
and only 132 individual data points. All specimens were loaded at 28 days at 50% of
first-crack strength, with loading sustained for 150 days. OPC replacement ratios ranged
from 0–60% at increments of 20%. Gedam et al. [25] applied ANNs to develop drying
shrinkage and specific creep prediction models for HPC. A set of 106 experimental results,
consisting of 2176 data points, was used to develop the dataset for model training for
both drying shrinkage and creep prediction. It is unclear how many data points were
specifically for creep measurements. The academic references used to source the data are
listed, though many of them are not available in the open literature. Compressive strengths
ranged from 20–83 MPa, and loading ages from 7–73 days. The developed models were
able to accurately reflect creep behaviour and outperformed existing creep equations. A
modified ACI model that considers the effect of SCMs on creep strain was developed by
Chen et al. [26] using particle-swarm optimisation. Liu et al. [27] analysed creep in concrete
containing SCMs using linear regression, support vector regression (SVR), random forest
(RF) and extreme gradient boosting (XGB) techniques. A large database was constructed
using experimental results reported in the literature. The influence of each adopted input
parameter on creep prediction was investigated by conducting a sensitivity analysis based
on the Shapley additive explanation (SHAP). The strength-to-stress ratio was determined to
be the most influential input parameter, followed by time. This is likely due to compressive
strength not being adopted as an input parameter directly and is instead reflected through
applied stress and strength-to-stress ratio. Furthermore, the XBG model was found to
accurately predict the creep compliance of SCM concrete and performed better than the
other ML models considered. This study, however, did not consider curing conditions on
creep behaviour aside from loading age.

In this paper, ML techniques are employed to predict and analyse creep in concretes
containing SCMs, including fly ash, slag and silica fume. ANN, RF, and decision tree
regression (DTR) are considered in this study as they are commonly adopted for concrete
property prediction [28]. Gaussian process regression (GPR) model is also considered, as
the ML techniques mentioned above may lead to overfitting. This paper builds on the
existing literature by considering high volumes of cement substitution with fly ash and slag
and through investigation of various input variables not considered in previous ML studies.
Additionally, a sizable database is developed, consisting of creep data that are available
either publicly or in the open literature. This study is necessitated by the increasing use of
concrete with high-volume fly ash and/or slag as cement substitutes and the complexities
associated with accurately modelling creep. The paper first presents a discussion on
the development of the database and the selection of input variables. Subsequently, the
background theory for each adopted ML technique is outlined. The performances of the
ANN, RF, DTR and GPR models are then analysed and compared. Sensitivity and Shapley
value additive (SHAP) analyses are also conducted, which assess the influence of input
variables on model performance and creep behaviour, respectively.

2. Concrete Creep Database and Input Variables

A database was compiled by supplementing the Infrastructure Technology Institute
of Northwestern University’s (NU-ITI) database for concrete creep and shrinkage [16]
with experimental results from the literature. Data relating to concrete containing fly ash
and/or slag were first extracted from the NU-ITI dataset, including any related control
tests. This included nine creep curves for concrete containing slag (185 data points) and six
control creep curves (97 data points) that did not feature any slag content. For fly ash-based
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concrete, 64 curves (1111 data points) and 18 control curves (159 data points) were extracted.
The following changes were made to filter and clean the extracted data;

• ‘Suspicious data’, as labelled in the NU-ITI database, was removed
• Negative time and creep data points were removed
• Tests conducted at temperatures exceeding 50 ◦C were removed
• Data points at times t > 1000 days were removed
• Corrections were made to data for tests conducted by Li and Yao [7] (CT_id 1173

and 1174). Slag and superplasticiser quantities changed to 180 kg/m3 and 9.6 kg/m3,
respectively.

• Results by Vincent et al. [29] (CT_id 1374 and 1375) removed. This was due to excep-
tionally large creep strains when compared to other experiments, which also appeared
to differ from the source article.

• Results by Collins et al. [30] (CT_id 1140–1154) removed. This was due to exceptionally
large creep strains when compared to other experiments.

Due to the small size of available data for slag concrete, the experimental results
of Shariq et al. [5] and Qin et al. [6] were incorporated into the dataset. Shariq et al. [5]
experimentally investigated creep and shrinkage in GBFS concrete with cement substitution
ranging from 0–60%. In total, 12 creep curves were reported, for which 3 were controls
(0% GBFS). Manual extraction of these data resulted in the generation of 111 data points.
Qin et al. [6] analysed drying shrinkage and creep deformations in concrete containing
combinations of fly ash, slag and silica fume. SCM replacement ratios of 50% and 75% were
considered. Three control curves (35 data points), six curves for concrete containing fly ash
and slag (69 data points) and two curves for concrete with fly ash only (28 data points) were
added to the dataset. After making the aforementioned modifications, 465 data points were
available for creep in concrete with slag or slag + fly ash as SCMs (including related control
tests), and 991 data points for fly ash concrete. Thus, the database consisted of 1456 data
points in total.

Across key properties relating to concrete creep modelling, there were missing data in
the complied dataset for relative humidity during creep testing (RH), relative humidity
during preconditioning (H0) and 28-day elastic modulus Ec,28. Missing data for RH and
H0 were estimated using the mode imputation method. The mode for RH was 40% for the
slag-based concrete data and 60% for fly ash concrete. The data were separated for mode
determination to capture potential differences in local conditions between tests on slag
and fly ash concrete. Note that only 31 and 129 RH data points were missing for slag and
fly ash concrete, respectively. In total, 45 data points were missing for H0 data relating to
slag concrete, and no data were missing for fly ash concrete. The mode for H0 was 98%.
Median imputation was not applicable due to the partial categorical nature of the RH and
H0 data: 99% means sealed specimen, 100% means storage in water, 101% represents steam
and 85% moist conditions. The 28-day elastic modulus was estimated using the following
ACI-209 equation;

Ec,28 = 4733
√

fc (1)

The ACI-209 equation was selected due to its common adoption and dependence
on compressive strength only, which, for the case of this study, was convenient due to
data availability. The creep compliance reported in the NU-ITI database was split into
two groups: measurement of elastic strain at the beginning of the creep test and measure-
ment of creep strain only. The majority of the slag concrete creep data did not record elastic
strain. Conversely, most of the data for fly ash concrete did measure creep strain. During
preliminary analyses, it was observed that model development using ML was more success-
ful when elastic strain was considered. Hence, Ec,28 was utilised to estimate elastic strain
for relevant data points, ensuring uniformity across the dataset. This approach introduces
two potential sources of error: inaccurate estimation of Ec,28 and use of 28-day modulus
for elastic strain calculation despite loading age. These errors are, however, assumed to be
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small. In total, only 142 data points (9.39% of the dataset) did not measure elastic strain,
report 28-day elastic modulus and were not loaded at 28 days.

The adopted input variables and their ranges, mean and standard deviation are listed
in Table 1. Input variables selection considered the significance of creep, limitations of
the available data and parameters required by codified creep equations. Histograms for
each input parameter are shown in Figures 1 and 2. It can be seen that the number of data
points for time decreases exponentially as time increases. Most of the data were measured
at times t ≤ 150 days, with limited data available at t > 500 days. The majority of the data
featured a loading age of 28 days (899 data points) or 7 days (405 data points). Only a few
experiments adopted different loading ages. V/S ratios fell mostly into three ranges: 12.0,
20.0–22.22 and 30.0–33.5 mm. Ratios of 50.8 and 60 mm are also present in the data, albeit
to a lesser extent. The most common relative humidity ranges were 40–45%, followed by
60–65% and 50–55%. A smaller number of tests were conducted on sealed specimens (99%)
and on specimens stored in water (100%). The 28-day compressive strengths ranged from
15.5–188.9 MPa, with the 80–90 MPa band being the most frequently occurring in the dataset
by a large margin. Consequently, water-to-binder ratios were commonly between 20–30%
and elastic moduli between 40,000–45,000 MPa. There is a relatively uniform distribution of
other strength grades. Slag substitution ratios varied from 0–60% of total binder content, see
Figure 2c. Note that 0% is omitted for clarity due to the high number of data points without
slag content (1149). Higher replacement ratios (40–42% and 50–60%) are better represented
in the data than lower ratios (20% and 30–35%). The fly ash-to-total binder ratios are shown
in Figure 2d and ranged from 0–50%. Unlike slag, lower substitution rations were more
common for fly ash, with 10–20% appearing the most frequently followed by 30–32%. Only
a small section of the dataset features ratios above 32%. In total, 464 data points featured
silica fume content (SF), of which more than half (261 points) equated to 29.37 kg/m3, with
the remaining points evenly distributed from 34–89 kg/m3. The impact of adopting relative
humidity H0 during preconditioning as an input variable on model accuracy is explored in
the Sensitivity Analysis presented in Section 5.

Table 1. Statistical properties of adopted input variables in dataset.

Input Variable Notation Range Mean Standard Deviation Unit

Time since loading t 0–977 109.22 138.10 days
Loading age t0 7–730 40.22 87.94 days
Relative humidity during test RH 40–100 52.54 15.41 %
Compressive strength at 28 days fc,28 15.5–118.9 69.44 23.53 MPa
Elastic modulus at 28 days Ec,28 18,651.9–50,800.0 39155 6863 MPa
Cement content C 124–620 398.41 116.90 kg/m3

Water content W 85.00–228.24 150.81 40.48 kg/m3

Total aggregate content A 1046.4–1874.0 1636.53 175.98 kg/m3

Fly ash content FA 0–517 78.50 68.73 kg/m3

Slag content S 0–355 42.76 90.86 kg/m3

Volume-to-Surface ratio V/S 12–60 25.13 13.31 mm
Silica fume content SF 0–89 12.86 21.14 kg/m3

Relative humidity during
preconditioning H0 65–100 95.25 10.25 %
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Table 2 compares the input variables adopted herein with those considered in stud-
ies in the literature on training ML models to predict the creep in concrete containing
SCMs [24,25,27] and the ACI and B3 creep equations. It can be seen that mix proportions,
compressive strength, t0, RH, and V/S are commonly considered. Elastic modulus of con-
crete, at 28-days or at t0, has not been adopted as an input variable by other studies, though
it is considered by design equations. Additionally, the relative humidity of preconditioning
is only considered herein. Various factors considered by design equations, including the
curing method, cement type, air content and unit weight of concrete, could not be adopted
here, and likely in other studies, due to lack of available information.
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Figure 2. Histograms of input variables relating to concrete properties: (a) 28-day compressive
strength, (b) 28-day elastic modulus, (c) slag-to-binder ratio, (d) fly ash-to-binder ratio, (e) water-to-
binder ratio and (f) aggregate-to-binder ratio.



Buildings 2023, 13, 2252 8 of 24

Table 2. Comparison of input variables adopted herein with relevant literature and codified
creep equations.

Input Variable This Paper [25] [24] [27] ACI-209 B3

Time since loading X X X X - -
Loading age X X - X X X
Age at drying commencement - X - - X X
RH X X - X X X
fc,28 X X - - - X
Ec,28 X - - - - X
Compressive strength at t0 - - - - X -
Elastic modulus at t0 - - - - X -
Applied stress - - - X - -
Stress-to-strength ratio - - - X - -
C X X X X X X
W (or W/C) X X - X - X
A (or A/C) X X - X - X
FA X X - X - -
S X X X X - -
Volume-to-Surface ratio X X - X X X
SF X X - X - -
Water-to-binder ratio - - X - - -
Fine aggregate content - - X - X -
Course aggregate content - - X - - -
Slump - - X - X -
Compaction factor - - X - - -
Air content - - - - X -
Cement type - - - - X X
Curing method - - - - X X
Relative humidity of preconditioning X - - - - -
Temperature - - - X - -
Unit weight of concrete - - - - X -
Ultimate shrinkage strain - - - - - X
Pore relative humidity - - - - - X
Shrinkage half time - - - - - X

3. AI Regression Models

Supervised ML is a subcategory of ML and AI. Typical supervised learning includes
learning (or training) and application procedures with the framework shown in Figure 3. It
is a standard method for predicting concrete properties, including those relating to strength
and durability. In total, 12 factors that are relevant to the concrete and creep test features
are used as supervised learning inputs (Table 2). Creep deformation (εcr) is the output of
the supervised machine learning algorithms.

3.1. Artificial Neural Network (ANN)

An ANN is a standard supervised ML method composed of artificial neurons (nodes)
that simulate our brains’ information transformation. There are various ANN algorithms,
and the Back-propagation Neural Network (BPNN) algorithm is one of the most widely
used to optimise the neural network training through back-propagation of the error gradi-
ent. BPNN’s structure is shown in Figure 4. Hornik et al. [31] proved that a single hidden
layer network is good enough to develop reliable predictions for BPNN. Thus, this paper
also uses a single hidden layer.
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BPNN contains many neurons in each layer, and the connection between neurons
is assigned weight, representing the connection’s importance. BPNN is trained through
feed-forward stages and back-propagation stages. In the feed-forward stages, input layer
neurons pass the input into the hidden layer. Neurons in the hidden layer execute a
weighted summation of all inputs and compute activation value according to an activation
function. Each neuron’s activation value in hidden layers is then used as the input for
neurons in the output layer. The output layer also uses activation functions to determine
the final results. Activation function is shown in Equation (2) below:

f j =
1

1 + exp
(
−∑ wjioi + t

) (2)
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where wji is the connection weight of neurons i to neuron j. Neuron i is located in the
layer before neuron j. oi and i are output from neuron i and the bias value. In BPNN, the
network error is passed backwards from the output layer to the input layer, and weights
are adjusted to reduce the network error. This paper uses the Levenberg–Marquardt (LM)
algorithm to adjust the neurons’ weights and improve the BPNN’s performance. Details
of LM are explained in Smith et al. [33]. Collected data are categorised into training and
testing subsets (70% and 30%, respectively) to ensure the training quality of ANN.

3.2. Decision Tree Regression (DTR)

Using a decision tree, continuous data (input) are repeatedly partitioned into nodes to
determine the output values. The partition follows binary decision rules with the structure
shown in Figure 5. Nodes with and without outgoing edges are called interior nodes and
leaves accordingly. The binary decision rules are explained below:
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Each data cluster (xj) arriving in a node is split into two sub-clusters, following
Equation (3).

R1(j, s) =
{

x|xj < s
}

and R2(j, s) =
{

x|xj ≥ s
}

(3)
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where Xj is referring to X1,2,3 . . . and s is referring to a, b, c . . . in Figure 5. The aim of binary
decision rules is to find values of xj and s that minimise Equation (4).

∑i:xi∈R1(j,s)

(
yi − ŷR1

)2
+ ∑i:xi∈R2(j,s)

(
yi − ŷR2

)2 (4)

where ŷR1 is the average response of training observations in R1(j, s), and ŷR2 is the average
response of training observations in R2(j, s). In this study, data have been divided into
training and testing data (70% and 30%, respectively). The study also uses the fitrtree”
function in MATLAB (version R2021b) for DTR construction. De Azevedo et al. [34] show
the details of DTR.

3.3. Random Forest Regression (RFR)

RFR conglomerates many DTR models’ outcomes and determines the average value
from each DTR prediction. Therefore, the prediction accuracy is higher than DTR’s in
Section 3.2. Figure 6 shows the configuration of RFR. The Least Squares Boost (LSB) is the
algorithm that combines DTR and achieves an acceptable accuracy for DTR training. Alatefi
and Almeshal [35] explained the details of LSB, which is the algorithm used in this paper.
Again, data have been divided into training and testing data (70% and 30%, respectively).
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3.4. Gaussian Process Regression (GPR)

Gaussian process regression (GPR) is a non-linear, non-parametric machine learning
technique based on Bayesian probability theory [36]. It provides a flexible and probabilistic
approach for regression tasks, allowing for the estimation of complex relationships between
input variables and output values. One of the key advantages of GPR is its ability to handle
small datasets, provide robust estimates even in the presence of noise and provide a reliable
response to input data.

Consider a dataset D = {(xi; yi) | i = 1 . . . n} of observations where xi is the input
vector, and yi is a scalar output. The core assumption of GPR is that the output y is
determined as;

y = f (x) + ε (5)

where ε denotes noise (random variable) that is governed by an identically distributed
Gaussian distribution, ε ∼ N

(
0, σ2). The observations in the data are considered as

generated from a Gaussian process, which is a collection of random variables such that
any finite subset follows a multivariate Gaussian distribution featuring a mean of zeros.
The kernel function k (x, x′), also known as the covariance or similarity function, plays an
important role and governs the relationship between observations. Hence, the selection of
kernel function is critical and different kernel functions can impact model performance. As
it is assumed that the training and testing data are multivariate Gaussian distributed, the
following distribution can be expressed;[

y
y∗

]
∼ N

(
0,
[

K KT
∗

K∗ K∗∗

])
(6)

where K is the covariant matrix defined as;

K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

. . . . . . . . . . . .

. . . . . . . . . . . .
k(xn, x1) k(xn, x2) . . . k(xn, xn)

 (7)

K∗ is the n× 1 covariant matrix of the test point x′ and all input data points x and K∗∗
is the self-covariant matrix of x′.

Once the kernel function and hyperparameters are selected, the GPR model is trained
by iteratively updating its prior distribution over functions using Bayesian inference and
the observed training data. Post-training, Bayesian inference is utilised to estimate the
predicted output value y∗ for a test point x′, along with its associated uncertainty, by
conditioning the posterior distribution on the observed training data and the input of the
test point. This iterative learning process enables the GPR model to generate predictions
and quantify their uncertainties based on the learned information from the training data.

4. Model Performance and Results
4.1. Artificial Neural Network

The training and testing are carried out in a MATLAB environment through the Neural
Net Fitting Designer toolbox [37]. A sigmoidal tangent function with a linear activation
function was considered for hidden nodes in the model, and a linear activation function for
the output layer in the model setup, see Equation (1). The ANN model was trained with
one hidden layer and one output layer through the LM algorithm. The number of hidden
neurons was determined as 2(n + 1) = 26, as it has 12 inputs. Figure 7 shows the ANN’s
construction in MATLAB.
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Table 3 shows the R-squared (R2), root-mean-square deviation (RMSE), mean absolute
error (MAE) and Mental State Examination (MSE) achieved for the training and testing
subsets. Figure 8a,b shows the predicted and true responses for the ANN model. The
models achieved R2 = 0.99 and 0.91 and RMSE of 2.032 and 3.028 for training and testing.
The high R2 and RMSE values indicate that ANN can give a reliable prediction for concrete
creep behaviour.

Table 3. Achieved prediction accuracies of trained ANN, DTR, RFR and GPR models.

Model Set RMSE R2 MSE MAE

ANN Training 2.032 0.989 4.128 1.333
ANN Testing 3.028 0.908 9.172 2.194
DTR Training 3.791 0.962 14.374 2.339
DTR Testing 5.679 0.902 32.254 3.557
RFR Training 0.722 0.999 0.521 0.517
RFR Testing 2.218 0.985 4.918 1.414
GPR: Squared Exponential Validation 2.946 0.980 8.676 1.990
GPR: Matern 5/2 Validation 2.419 0.990 5.853 1.592
GPR: Exponential Validation 2.428 0.990 5.897 1.532
GPR: Rational Quadratic Validation 2.295 0.990 5.265 1.516
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Figure 8. Predicted versus true responses for ANN model with training data (a) and testing data (b),
DTR model with training data (c) and testing data (d), and for RFR model with training data (e) and
testing data (f).

4.2. Decision Tree Regression

DTR was carried out using “fitrtree” functions in MATLAB with default settings.
Recursive binary splitting was adopted as the training algorithm with 291 nodes. The mini-
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mum leaf size was determined as two through hyperparameter optimisation. Figure 8c,d
plots predicted responses against true responses for training and testing data. Table 3 also
shows the RMSE, R-squared, MSE, and MAE based on predicted and true responses, which
shows the model achieved R2 = 0.96 and 0.90 and RMSE of 3.791 and 5.67 for training
and testing. DTR’s prediction is less accurate than ANN’s based on the RMSE and R2

values. The outcome confirms Dietterich [38]’s finding that DTR can be unsteady and the
insignificant input variable variation can significantly affect tree structure.

4.3. Random Forest Regression

MATLAB carried out RFR through “fitrensemble” functions. Least-squares boosting
was adopted as the training algorithm with 1001 observations. Hyperparameters optimisa-
tion indicates that the optimum number of learning cycles (trees) is 482, the learning rate
is 0.19021, and the minimum leaf size is 8. Figure 8e,f plots predicted responses against
true responses for training and testing data. Based on Table 3, RFR’s prediction is more
reliable than DTR as it considers the performance of many DTR algorithms together. It
also achieves a higher R-squared and a lower RMSE than ANN. This is because RFR is less
prone to overfitting compared with ANN [39].

4.4. Gaussian Process Regression

The creep compliance prediction model was developed in MATLAB software using
the regression learner tool. The GPR algorithm with various kernel functions was adopted
for model training. The length scale and noise standard deviation hyperparameters were
taken as 589.9 and 13.77, respectively. A constant basis function and the isotropic kernel
were adopted. The input parameters were scaled (standardised), and numeric parameters
were locally optimised using the MATLAB advanced options. The dataset was split into
training and validation subsets of sizes 70% and 30%, respectively. Table 3 compares the
accuracies achieved by each model. High accuracies were observed for all adopted kernel
functions with the Matern 5/2, rational quadratic (RQ) and exponential models, each
achieving R2 = 0.99 and providing close results for other indicators. The Matern 5/2-GPR
model’s predicted response versus the true response for the validation data is shown in
Figure 9.
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5. Sensitivity Analysis

The random selection of validation can influence the performance of the ML models.
To examine this, the RQ and Matern 5/2 GPR models were trained an additional five times,
and the changes in the accuracy indicators were examined. The results of this analysis
are presented in Table 4, revealing that the selected GPR models demonstrated consistent
performance with small reductions in accuracy shown across multiple training repeti-
tions. The sensitivity of the GPR models to input variables and validation methodology
is also analysed. Training was conducted with consideration of relative humidity during
preconditioning. The performance of the GPR models when considering this variable is
provided in Table 5. The results provided in Tables 3–5 show that the accuracy indicators
do not noticeably change when adopting H0 as an input variable and that these small
changes are within variations observed due to training repetitions. Changing the validation
methodology from holdout (30%) to cross-validation (5-fold) caused a small reduction in
model performance based on the accuracy indicators. However, the accuracy of the trained
models is still high. The additional input variable had a negligible impact on the accuracy
of the GPR models when adopting cross-validation.

Table 4. Sensitivity of Matern 5/2 and RQ GPR model performance to training repetitions.

Kernel Function Repeat No. RMSE R2 MSE MAE

Matern 5/2 1 2.505 0.98 6.275 1.694
RQ 1 2.526 0.98 6.383 1.692
Matern 5/2 2 2.688 0.98 7.227 1.694
RQ 2 2.980 0.98 8.878 1.769
Matern 5/2 3 3.094 0.98 9.572 1.801
RQ 3 2.892 0.98 8.365 1.747
Matern 5/2 4 2.430 0.98 5.907 1.581
RQ 4 2.437 0.98 5.939 1.577
Matern 5/2 5 3.100 0.97 9.610 1.801
RQ 5 2.951 0.98 8.709 1.746

Table 5. Sensitivity of GPR model accuracy to input variables and validation methodology.

Changed Input Variables Validation Algorithm and Kernel Function RMSE R2 MSE MAE

GPR: Squared Exponential 2.852 0.98 8.134 1.993
+H0 Holdout—30% GPR: Matern 5/2 2.498 0.98 6.238 1.685

GPR: Exponential 2.476 0.98 6.132 1.542
GPR: RQ 2.490 0.98 6.198 1.669

GPR: Squared Exponential 3.974 0.96 15.796 2.100
- Cross—5-fold GPR: Matern 5/2 3.723 0.96 13.864 1.759

GPR: Exponential 2.580 0.98 6.656 1.450
GPR: RQ 3.401 0.97 11.566 1.729

GPR: Squared Exponential 4.074 0.96 16.596 2.131
+H0 Cross—5-fold GPR: Matern 5/2 3.530 0.97 12.460 1.776

GPR: Exponential 2.574 0.98 6.624 1.441
GPR: RQ 2.979 0.98 8.872 1.677

The effect of dataset size is an important parameter that requires further validation.
This was examined herein by varying the size of the dataset used for model training and
assessing the effect on prediction accuracy. The R2 indicator is plotted against training data
size, which ranges from 436 (30% of the total dataset) to 1019 data points (70% of the total
dataset) for the RQ-GPR, ANN, DTR and RFR models, see Figure 10a. Data points were
removed at random to reduce dataset size. It can be seen that R2 converges for the DTR,
RFR and GPR models when the training data size reaches approximately 800 data points.
The ANN model converges at approximately 860 data points. In this paper, the number of
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training data is 1019. Therefore, the training of ANN and DTR can achieve a high accuracy
for concrete creep prediction. The R2 for RFR is always above 0.98 for the data size from
436 to 1019. This indicates that RFR performs better when there is a limited sample size.
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The random selection of data points may, however, not cause a significant reduction in
accuracies of model prediction due to the input variable of time, which causes every creep
curve to feature multiple data points. In order to investigate this, a second analysis was
conducted where entire creep curves were removed at random as opposed to removing
individual data points. The results of this analysis are presented in Figure 10b for the
RQ-GPR model. It can be seen that the effect of dataset size now has a much larger impact
on model accuracy (R2), though the model accuracy still plateaus at 80% of the dataset size,
which validates the size of the dataset used for model development.

6. Shapley Additive Explanation (SHAP) Analysis

The significance of each input parameter on creep compliance prediction is assessed
by conducting a SHAP analysis [40]. This involves computing and analysing Shapley
values for a set of query points across a dataset. Shapley values, a concept originally from
cooperative game theory, assist with ML model interpretability and explain predictions by
quantifying the contribution of each feature (input variable) to the prediction [41]. Shapley
values consider all possible combinations of inputs/features as well as interactions and
dependencies between them. For a given prediction, the Shapley values (contributions) of
each feature sum to the value of the prediction, and the Shapley value for a specific feature
is the difference between the actual prediction and the mean prediction.

In order to ensure a high representation of the data, the query points were selected
herein using 3–4 data points from every creep curve available in the dataset that included
the initial time and final time of the creep test. The Shapley values were computed using the
developed RQ-GPR model and the “explainer” function in MATLAB. Figure 11a,b depicts
the averaged Shapley values (absolute) and the Shapley value distribution, respectively,
for slag concretes. In order of decreasing significance, the input variables are found to
be t, V/S, Ec,28, fc,28, S, W, C, H0, FA, A, t0, RH and SF. Aside from time, V/S was
the most influential variable and was mostly negatively correlated with creep compliance.
This indicates that an increasing V/S results in decreasing creep strain. The averaged
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Shapley values for Ec,28 and fc,28 were similar with both parameters featuring a strong
influence on creep compliance prediction. The remaining input variables were noticeably
less influential, particularly H0, FA, A, t0, RH and SF. The lower importance of t0 and
RH may be attributed to their low variability in the dataset. Most tests on the slag concrete
commenced at 28 days, and the RH varied only from 45–65%.
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Figure 12a depicts the averaged Shapley values (absolute), and Figure 12b displays the
Shapley value distribution for fly ash-based concretes. For fly ash concretes, the input variables
by order of reducing influence are t, Ec,28, t0, fc,28, V/S, RH, W, FA, SF, C , FA, A, S
and H0. As with slag concrete, Ec,28, V/S and fc,28 were highly influential. However, the
absolute Shapley values for t0 and RH are substantially higher in fly ash concrete than in
slag concrete. This is to be expected and is now reflected in the Shapley values due to the
higher variability of these parameters in the dataset. Across both slag and fly ash datasets,
the Shapley values for H0, C, A, FA and SF are small. This suggests that these parameters
are not as important in creep compliance prediction as the other parameters. Conversely,
water content W shows high significance in both datasets. Slag content S was important
for predicting creep in slag concrete, whereas fly ash content showed a low impact on
creep for fly ash concrete. Liu et al. [27] also observed the low importance of SCM content
when compared to other variables on creep prediction in concrete through Shapley value
additive analysis. However, the significance of slag content appears to be higher in the
analysis presented herein. Interestingly, there are differences in the significance rankings of
parameters t, A and V/S. Aggregate content was reported to have a major influence on
creep compliance prediction, with the volume-to-surface ratio showing low importance
in [27]. The opposite effect of these two parameters is observed herein. Furthermore, time
since loading was only the 6th most influential parameter in [27], whereas in this analysis,
it is determined to be the most significant. These differences may be due to the adoption of
different input variables and datasets adopted for model training. For example, there is a
higher maximum quantity of slag content in the dataset developed in this paper.

Figures 13 and 14 depict the dependence analysis of the Shapley values. This involves
plotting the input parameters against their individual Shapley values, which enables
an assessment to be conducted on the influence of parameter value on creep prediction.
An obvious and expected trend is observed in Figure 13a for time since loading, where
the Shapley values rise with time in a fashion resembling a creep curve. Figure 13d–f
shows that increasing loading age, compressive strength and elastic modulus lead to a
reduction in Shapley values, indicating that increasing these parameters reduces creep
strain development. No clear trend can be seen for relative humidity and volume-to-
surface ratio, aside from the negative Shapley values occurring at the maximum input
values (RH = 100% and V/S = 60 mm). These query points are the outliers (dots) shown
in Figure 12b, meaning the input values are greater than 1.5 times the interquartile range
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below the first quartile. Similar behaviour is shown for slag and fly ash, as the largest input
values give negative Shapley scores without an evident trend occurring at lower input
values. This suggests that high SCM ratios lead to a reduction in creep strain. However, this
effect is likely eclipsed by the changes in compressive strength and elastic modulus that
occur when increasing SCM content based on the significance analysis discussed earlier.
There is no noticeable relationship between cement, total aggregate or silica fume content
on Shapley values. Increasing water content is, however, shown to lead to an increase in
Shapley values and, therefore, creep strain.
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7. Model Comparison

The performances of the trained ML models are investigated further by comparing
creep strain predictions to experimental data used for model training and by examining the
effect of varying input parameters. Figures 15 and 16 show a select set of creep curves for
fly ash and slag concrete, respectively, with varying cement substitution rations and the pre-
dictions of the RQ-GPR, RFR, ANN and DTR models. The RQ-GPR, RFR and ANN models
achieve highly accurate representations of experimental data. However, it is observed that
the DTR model is not capable of reflecting creep behaviour and produces unrealistic results
despite showing promising performance based on the examined statistical indicators in
Section 4.2. This may be attributed to instabilities with DTR caused by small variations in
data, which can result in the generation of completely different trees. Figure 15 also depicts
the effect of changing the loading age from 28 days, as conducted in the experiments, to
7 days. In this case, the RQ-GPR, RFR and ANN give similar results, which matches the
expectation of an increased creep strain. Figure 16 shows creep strain curves produced by
the trained ML models for cement replacement ratios not conducted in the experiments
(10%, 30% and 50%). Compressive strength and elastic modulus at intermediate cement
substitution ratios were obtained via linear interpolation. Again, the RQ-GPR, RFR and
ANN models yield almost identical predictions that satisfy intuitive expectations. The
input variables for creep data shown in Figures 15 and 16 are provided in Table 6.
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Table 6. Input variables for model comparisons.

Figure
RH t0 V/S C W A S FA SF fc,28 Ec,28

(%) (days) (mm) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) MPa MPa

Figure 15 40 28 30.42 620 186 1576 0 69 0 82.3 41,627
Figure 15 40 28 30.42 552 186 1576 0 138 0 76.3 39,444
Figure 15 40 28 30.42 483 186 1576 0 207 0 74.5 39,163
Figure 15 40 7 30.42 620 186 1576 0 69 0 82.3 41,627
Figure 15 40 7 30.42 552 186 1576 0 138 0 76.3 39,444
Figure 15 40 7 30.42 483 186 1576 0 207 0 74.5 39,163

Figure 16 62.5 28 60 350 175 1812 0 0 0 30.8 26,254
Figure 16 62.5 28 60 280 175 1812 70 0 0 26.8 24,479
Figure 16 62.5 28 60 210 175 1812 140 0 0 25.02 23,674
Figure 16 62.5 28 60 140 175 1812 210 0 0 21.86 22,129
Figure 16 62.5 28 60 315 175 1812 35 0 0 28.76 25,367
Figure 16 62.5 28 60 245 175 1812 105 0 0 25.89 24,077
Figure 16 62.5 28 60 175 175 1812 175 0 0 23.44 22,902

8. Conclusions

A creep compliance prediction model was developed for sustainable concretes con-
taining slag and fly ash using ANN-, DTR-, RFR- and GPR-supervised ML algorithms.
A dataset of concrete creep was constructed using data extracted from the NU-ITI creep
database and from experimental results reported in the literature. The selected input
variables were time, loading age, 28-day compressive strength, 28-day elastic modulus,
relative humidity during creep testing, volume-to-surface ratio, cement content, water
content, total aggregate mass, slag content, fly ash content and silica fume content. The
effects of considering humidity during specimen preconditioning as an input variable were
also explored. Mode imputation was conducted for missing data on relative humidity and
humidity during preconditioning, whereas a 28-day elastic modulus was estimated using
the AC1 equation when required. Model training utilised 70% of the dataset, while the
remaining 30% was reserved for model verification. A sensitivity analysis was conducted
on the GPR model to analyse changes in performance due to training repetitions, input
variable selection and validation methodology. A SHAP analysis was performed to investi-
gate the contribution, and hence significance, of each input variable on creep prediction.
Additionally, the predictions of the trained ML models were compared to experimental
data and the effect of varying input parameters was examined. The following conclusions
have been drawn from this work;

• RFR and GPR models were the best-performing ML techniques, achieving R-squared
values of 0.99 for validation data. ANN and DTR also achieved accurate results and
obtained R-squared values for validation data of 0.91 and 0.90, respectively.

• The selection of kernel function for the GPR model was not found to greatly impact
accuracy indicators. Exponential, squared exponential, Matern 5/2 and RQ kernel
functions of the GPR model all demonstrated consistent and accurate performance.

• The performance of the GPR model was proven to not be sensitive to training repe-
titions and random splitting of training and testing data. Only small reductions in
accuracy indicators were observed across five training repetitions.

• Consideration of humidity during preconditioning as an input variable for the GPR
models did not noticeably improve or reduce accuracy.

• Time since loading was the most significant parameter for creep prediction, followed by
compressive strength, elastic modulus, volume-to-surface ratio, loading age, relative
humidity and water content.

• Cement content, aggregate content and humidity during preconditioning did not show
great importance in creep prediction. Similarly, fly ash and silica fume content were
found to have a low influence.
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• Slag content did, however, show a moderate importance level for creep modelling.
• The RQ-GPR, RFR and ANN models accurately reflect creep behaviour. However, the

DTR model cannot accurately produce concrete creep curves.
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