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Abstract: The large-span, relaxed antenna network is a large deformation flexible structure due to
its low pre-tension level of the wires. Its dynamic analysis under a wind load belongs to dynamic
and geometric nonlinear problems, which is very complex to accurately calculate and solve. This
paper explores the possibility of the finite particle method (FPM) to the aeolian vibration analysis
of a large-span, low stress-tensioned antenna cable net. In the FPM, the antenna network structure
is discretized into a group of finite particles, where the motions of all particles follow Newton’s
second law and can be solved dynamically using a central difference scheme. The effectiveness and
applicability of the FPM were verified by comparing the calculation results of the finite element
method and FPM. The FPM was used to study the effects of wind speed and the distribution of
vibration on the aeolian vibration of antenna cable nets. The results showed that this method is
suitable for studying the aeolian vibration of a large-span, low stress-tensioned antenna network and
has high computational efficiency and accuracy.

Keywords: slack cable net; finite particle method (FPM); large deformation and rotation; nonlinear
vibration; cable dynamic response; parameter study

1. Introduction

The long wave antenna mainly uses very low frequency (VLF) technology to serve
the long wave communication. Its wavelength range is 10~100 km, and the common use
frequency is 10~30 kHz. Due to its long wavelength, small signal attenuation, and long
propagation distance, it is widely used in national defense and military fields by various
countries [1,2]. The long wave antenna structure can cover hundreds of hectares, and
its structural system has the characteristics of a high support mast height, large antenna
network span, and low antenna operating tension. Due to the large span of the antenna
network structure, wire breakage accidents caused by wind loads often occur, resulting in
the interruption of the antenna communication function and tower mast collapse accidents,
causing serious economic losses [3]. Under the excitation of wind loads, the most frequent
occurrence of wind-induced vibrations in large-span, relaxed antenna networks typically
lasts for several hours, sometimes for more than a few days. This leads to antenna fatigue,
broken strands, and hardware damage to tower components, and it limits the usage stress
of the wire. Therefore, studying the wind-induced vibration analysis of large-span, slack
antenna network wires has important practical significance.

The essence of the wind-induced vibration of the wires in a large-span antenna network
is the vortex-induced vibration phenomenon of the wires under a wind load. That is,
when transverse wind blows over the wires at a lower wind speed of about 0.5~10.0 m/s,
stable-shedding Karmen vortices are generated on the back of the wires, and alternating
forces are applied on the wires, causing a vertical vibration of the wires within the range
of 1~2 times their diameter. The frequency of vibration is generally between 3–150 Hz.
The long-term effect of aeolian vibration is a huge potential and irreversible danger to
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large-span antenna cable structures. Usually, when its damage to the cable structure is
discovered, its concealment has already posed a significant threat to the overall safety of
the antenna cable network [4]. Due to the frequent occurrence of wind-induced vibrations
and their potential harm, many scholars have conducted research on this issue: Zhang
Jianguo et al. [5] studied the characteristics of wind-induced vibrations in large cross-
section conductors of ultra-high voltage transmission lines; J. Vecchiarelli [6] calculated
and studied the aeolian vibration response of transmission lines using the finite difference
method; Oumar Barry [7], based on the Hamilton Variational principle, established the
finite element dynamic equation of the aeolian vibration of the conductor and analyzed the
natural vibration mode of the conductor; Li Li et al. [8] studied the use of the improved
energy balance method (EBM) and finite element method (FEM) to analyze the vibration
response of wires under gentle wind vibration.

The above research can obtain relatively accurate responses in the calculation and
analysis of the wind-induced vibration of wires, but some influencing factors have not been
fully considered. For example, the EBM is based on the standing wave assumption, which
ignores the dynamic characteristics of the wire itself and results in significant calculation
errors; the finite difference method (FEM) usually assumes that the conductor is analyzed
according to the sine wave vibration, which is different from the actual situation, and the
FEM has the problems of complex calculation and low efficiency when considering geomet-
ric nonlinearity. On the other hand, although the finite element method has been widely
used in general cable structure engineering to establish structural models and estimate the
dynamic characteristics of large-span cable structures, due to the low pre-tensioning level
of large-span antenna networks, the cable structure may experience relaxation in a specific
section under a wind load. In this case, the stiffness matrix of the corresponding relaxed
part of the cable elements in the FEM calculation is singular and cannot be solved [9,10]. In
addition, when analyzing problems involving large rotations, large deformations, or mech-
anism movements and non-continuum deformations, the implicit finite element method
will encounter fundamental difficulties due to theoretical limitations [11]. The explicit finite
element method using a co-rotating coordinate system can effectively handle the large
rotation problems of beams, plates, and shells, but there are still significant difficulties
in solving the large rotation and deformation of solids [12]. However, other numerical
analysis methods, such as the discrete element method (DEM) [13] and meshless method
(MM) [14], have certain limitations, and there are difficulties in their application in the
analysis of the complex mechanical behavior of the structures.

The finite particle method (FPM) is a new method for analyzing complex structural
behavior [15]. It is based on vector form mechanics theory and numerical calculations,
with point value description and path elements as basic concepts, and describes structural
behavior with clear physical models and particle motion-control equations. The calculation
of the FPM does not require the stiffness matrix of the assembled elements, nor does it
require iterative solving of the control equations. Compared with the traditional FEM, this
method has significant advantages in solving the complex behavior analysis of structures,
such as dynamic, geometric nonlinearity, material nonlinearity, buckling and wrinkling
failure, mechanism motion, contact, and collision. Luo Yaozhi and Yu Ying et al. [16–18]
developed the FPM for link and beam elements and applied it to analyze structurally
complex behaviors, such as geometric buckling, material failure, fracture, collision, and
the continuous collapse of spatial structures, obtaining more accurate results. The FPM
has been used for the motion analysis of movable structures and infinitesimal displace-
ment mechanisms [19,20]; motion analysis of the behavior of large deformations, shape
finding, and wrinkling of spatial structural membrane materials [21,22]; and material
nonlinearity analysis of 3D solids in structural and geotechnical engineering [23,24].Yu
Ying et al.’s [25] research indicates that the FPM is essentially an explicit integration method
for solving dynamic problems. However, this method has shortcomings in considering
the damping construction form, and further efforts are needed to establish a correct and
reasonable model for the energy dissipation mechanism of the structure. Xie Wenping,
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Xu Ningbo, et al. [26,27] used the FPM for shape finding and a dynamic analysis of wires.
It has been verified that this method has significant advantages in calculating dynamic
nonlinear problems of components.

The aforementioned studies indicate that the FPM can achieve significant improve-
ments in solving the problem of stiffness matrix singularity that may occur in certain
special structures using general numerical methods, such as the FEM and DEM or MM,
which inspires the great potential of the FPM in solving the dynamic response of large-span
antenna with low pre-tension relaxed cables under wind loads. On the other hand, the
current use of the FEM to calculate the dynamic response of large-span relaxed antenna
networks cannot effectively solve the equilibrium state solution after partial element relax-
ation, and there is also a problem of low solving efficiency. Therefore, this study derived
the central difference equation for calculating the wind-induced vibration response of
wires using the FPM and established a dynamic analysis model for large-span relaxed
antenna networks based on the FPM. This model can adapt to the dynamic solution of
large-span, relaxed antenna cable structures, effectively avoiding the difficulty of solving
pathological mechanisms caused by possible cable tension relaxation in some elements
of the antenna during a dynamic calculation. Afterwards, based on the FPM solution,
MATLAB programming was used to calculate the wind-induced vibration response of the
wire, and the key parameters affecting the wind-induced vibration of the wire were studied.
Finally, the practical application of the proposed FPM, large-span, relaxed antenna network
dynamic analysis model has demonstrated the universality of the FPM in the dynamic
time history analysis of large-span, relaxed antenna cables and verified its accuracy in the
nonlinear dynamic response calculation results of large-span, relaxed cable structures.

2. Basic Theory of FPM for Analysis of Cable Aeolian Vibration
2.1. Point Value Description

According to the deformation characteristics of wires, the finite particle method is
employed to discretize the wire structure of a long-span antenna network into a set of
particles with three-dimensional translational degrees of freedom, and the particles are
connected by a series of truss elements with only an axial deformation. All the mass, internal
force and external force on the structure are borne by the particles, and the continuous
deformation and motion state of the whole structure in space and time is described by the
trajectory of a finite number of particles in a short period of time, which is called the “point
value description”. When the FPM is used to analyze the aeolian vibration of the wire, it
is necessary to first describe the point value of the wire and divide the wire into a finite
number of particles. The point value description of the wire is shown in Figure 1 below.
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Figure 1. Point value description of a single cable.

Any particle with a point value description of the structure above is subject only to a
concentrated force. Taking point i in Figure 1 as an example, all internal forces (forces acting
on the particle by the unit connected to the particle) and external forces are equivalent
to concentrated forces acting on point i, and point i is in dynamic equilibrium at any
time. Particles are connected by a truss element, and the truss element connected to the
particle has no mass; used to constrain the particle, the truss element always maintains a
static equilibrium state under the action of external forces. Particle motion determines the
deformation of the element, and the internal force generated by the axial deformation of
the element acts equally and in opposite directions on the particle connected with it.
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2.2. Path Unit

As shown in Figure 2, suppose that cable ab undergoes a continuous process of
deformation and motion under the action of external forces. The geometric configurations
at the initial time t0 = 0, the intermediate time ta = t − τ, and the current time t are V0, Va,
and V, respectively. The time trajectory of all particle motion on the (t0~t) wire is segmented
into a series of independent time segments (t0, t1, t2, . . ., t); the motion trajectory of each
time period is a path unit. The problem is transformed into solving the change in the
position, velocity, and other physical quantities of the cable particle set in each path unit.
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Figure 2. Path unit of cable structure.

In any of the path unit, the structure meets the following conditions: the initial state of
the structure is used as a reference to calculate its internal force and displacement and other
physical quantities. The rotation of the member is a medium-large rotation. The influence
of a geometric change on the deformation and internal force calculation is ignored. The
path units are independent of each other, and their internal forces and deformation can be
calculated separately, without integrating the overall stiffness matrix.

After setting the path unit, it is possible to analyze the time history of the particle
position and speed during the aeolian vibration of the wire. For the structure with a large
deformation and large rotation, a group of continuously increasing path units can be used
to deal with it. The assumption of the path unit can ensure that the internal force and
deformation of the structure meet the requirements of material mechanics.

2.3. Equation of Motion for Particle

The motion of the particle of the wire in each path unit follows Newton‘s second law,
and the motion trajectory is independent. For any particle i distributed on the wire, the
motion variable can be decomposed into three translational degrees of freedom components
along the spatial coordinate axis, corresponding to the three particle forces in the coordinate
axis direction. Taking the coordinates of the origin xi

o as the reference, the full displacement
vector of point i can be expressed as Equation (1):

di = xi − xi
o = [di

x, di
y, di

z]
T

(1)

The equation of particle motion in the path unit (ta ≤ t ≤ tk) can be expressed as
Equation (2):
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where Mi is the mass of particle i, including the concentrated mass of the point and

the equivalent mass provided by the connected wire element. [ f ext
x , f ext

y , f ext
z ]

T

i
is the

vector of concentrated external forces acting directly on particle i. [ f ext
ix , f ext

iy , f ext
iz ]

T

i
and

[ f int
ix , f int

iy , f int
iz ]

T

i
are the equivalent external force vectors and internal force vectors provided

by the wire element connected to particle i, respectively. [ f dmp
ix , f dmp

iy , f dmp
iz ]

T

i
is the damping

force acting on particle i. The variable nc represents the number of wire elements connected
to the particle.

The particle velocity and acceleration are written as the central difference expression
of displacement and time, and the physical quantities, such as particle displacement and
the velocity of each time step in the path unit, can be obtained by substituting them into
Equation (1).

2.4. Solutions to Geometric Nonlinear Problems

The key problem of a structural geometry nonlinear analysis is to solve the pure
deformation and rigid body motion of structures in different reference configurations.
The finite particle method adopts the ‘virtual motion’ of the element in the calculation
of geometric nonlinear problems. The internal force and deformation of the element can
be obtained through the ‘virtual motion’ of the element combined with the coordinate
transformation. The ‘virtual motion’ includes forward movement and reversed movement,
as shown in Figure 3, where eA′B′ is the direction vector of the element before and after
movement, lAB and lA′B′ are the length of the element before and after movement, ∆xA and
∆xB are the translational motion vectors of the nodes at both ends of the element, ∆θ is the
rotation angle of the element, and ∆uB is the motion vector of the element node B without
considering the translational motion.

As shown in Equation (2), due to the fact that the control equation of the FPM is a set
of formulas for the motion and displacement of particles, which contain the resultant force
of internal forces at each particle, a complete description of the problem also requires a set
of equations for the relationship between internal forces and the position of particles. The
internal force between two particles is only related to the pure deformation in the relative
position. An important issue is how to calculate the pure deformation. The FPM analysis
method proposes a simple processing concept for this.

First, it is assumed that appropriate choices have been made in the basic configuration
of spatial and temporal points, so that the deformation between particles is very close to a
uniform deformation state.

Second, within the path unit, the pure deformation of structural components is very
small. Therefore, the calculation of internal forces in a structure is a problem of a large
displacement, small deformation, and approximately uniform deformation.

In addition, the structural shape of the path unit (ta ≤ t ≤ tk) at the initial time of ta is
used as the reference for internal force calculation.

Moreover, assuming that the structural element between particles, at any time t in
the path unit, a virtual inverse rigid body motion, including translation and rotation, is
performed to obtain a virtual element shape. The translation vector can be defined as the
displacement of any node during the t-ta period. The rotation vector can be approximated
using the node displacement vector.

Finally, due to the small and nearly uniform deformation of the structure elements
during the t-ta period, the difference between the virtual element shape that has undergone
reverse motion and the basic configuration is a small deformation and small displacement.
Therefore, the deformation and internal forces of a virtual element shape can be represented
with micro-strains and engineering stress. The relationship between internal force and
displacement can be derived using material mechanics. After obtaining the internal forces
of the particles and the stresses within the elements, the elements are then subjected to a
forward rigid motion to return to their original spatial positions.
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The FPM eliminates the rigid body displacement of the element by ‘virtual motion’
and obtains the pure deformation and internal force of the element. The internal force of
the element before the deformation is calculated, and the motion of the element after the
deformation is calculated, which realizes the transformation of the reference configuration
in solving the internal force of the element and obtains the pure deformation of the element
under the premise of ensuring the corresponding spatial and temporal state of the element.
The internal force of the particle depends on the pure deformation of the element, and the
pure deformation of the wire element is the axial expansion deformation.

The finite particle method uses the explicit time integral method to solve the motion
equation, and the stiffness matrix of the structure does not need to be formed in the process
of solving, and the complicated iteration and convergence problems can be avoided for
nonlinear problems. It should be pointed out that since the convergence of the explicit direct
integration algorithm is conditional and stable, the calculation time step must meet the
error control conditions of each different operation. According to the stability criterion, the
calculated critical step size of the cable element should satisfy the following, Equation (3).

∆t ≤ ∆tcr =
2

ωmax
(
√

ξ2 + 1 − ξ), (3)

where ωmax is the maximum natural vibration frequency of the system and ξ is the damping
ratio coefficient corresponding to the highest vibration mode frequency of the system. In
theory, the maximum natural vibration frequency of the system can be obtained by solving
the generalized eigenvalue of the structure, but the calculation process is time-consuming.
In fact, it can be shown that the maximum natural frequency ωmax of the system is always

less than or equal to the maximum natural frequency
e
ωmax of the individual elements. For

a damped system, the critical step size of the central difference method can be expressed as
the following, Equation (4).

∆tcr ≤ min
e

le
c

ce (
√

ξ2 + 1 − ξ), (4)

where ce is the current wave velocity in element e, and for elastic materials ce =
√

E/[ρ(1− ν)2],
E, ν, and ρ are the elastic modulus, Poisson’s ratio, and density of the cable element,
respectively. le

c is the minimum length of the cable element.
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3. Analysis Model of Antenna Cable Net
3.1. Antenna Cable Net Structure Information

A long-wave antenna network is selected as the research object, and its structural
plane layout and size are shown in Figure 4. The antenna network plane is arranged in
a diamond shape, and the X and Y span are 1020 m. Four points A, B, C, and D are the
supports of the antenna network, and the hinged constraints are set. The section and
material information of the wire are shown in the following, Table 1.
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Table 1. Mechanical information of wire materials.

Number Section Diameter
(mm)

Section Area
(mm2)

Elastic Modulus
(N/mm2)

1 40 1257 142,000
2 40 1257 142,000
3 40 1257 142,000
4 40 1257 142,000
5 30 707 61,700
6 30 707 61,700
7 30 707 61,700
8 30 707 61,700
9 30 707 61,700
10 30 707 61,700
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Table 1. Cont.

Number Section Diameter
(mm)

Section Area
(mm2)

Elastic Modulus
(N/mm2)

11 40 1257 142,000
12 40 1257 142,000
13 40 1257 142,000
14 40 1257 142,000
15 40 1257 142,000
16 30 707 61,700
17 30 707 61,700
18 30 707 61,700
19 30 707 61,700
20 30 707 61,700
21 30 707 61,700

3.2. Initial State Analysis of Antenna Network

The FPM model is established according to the plane layout of the structure. First,
according to the topological relationship of the antenna network structure, the wires are
discretized into a finite number of particles, which are connected by rod elements. In order
to ensure the analysis accuracy, the wire network structure is planned to be divided into
863 mass points and 872 truss elements. The FPM calculation model of a wire network
structure is shown in Figure 5.
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In the FPM model, the external force of each particle mainly includes the wind excita-
tion force, the wire dead weight, and the additional dead load force, such as the insulator
and the connecting fittings, and the internal force of the particle is obtained with the pure
deformation of the element. Therefore, the external force vector for particle α is of the
following form, shown in Equation (5).

Fext
α = f ext

α +
n

∑
i=1

f ext
i , (5)

where f ext
α is the vector of concentrated external force on the node where the particle

is located. f ext
i is the equivalent external force vector of the i-th connected member of

particle α. The variable n is the number of connected elements. In particular, when
the cable is subjected to a concentrated force or a uniform force perpendicular to the
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element, the concentrated force can be equivalent to the element end node according to the
balance method.

The FPM is used to determine the initial configuration of the antenna network and the
initial tension of the wires under a gravity load before the analysis of the aeolian vibration
of the antenna network structure. The initial configuration of the wire network calculated
by the FPM is shown in Figure 6 below, and the initial tension of the wire during normal
operation is shown in Table 2 below.
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Table 2. Initial equilibrium tension of wire.

Cable
Number

Wire
Tension/kN

Cable
Number

Wire
Tension/kN

Cable
Number

Wire
Tension/kN

1 173 8 38 15 193
2 238 9 31 16 27
3 173 10 27 17 31
4 237 11 193 18 38
5 27 12 157 19 38
6 31 13 141 20 31
7 38 14 157 21 27

All cables of the antenna network are flexible cables, and the overall structure formed
by connecting with the guyed mast has obvious nonlinear characteristics. The structure
must meet certain sag requirements in the normal working state. For the suspension
cable system, the sag calculation method of any wire of the antenna network is shown in
Figure 7a, and the sag calculation formula is shown in Equation (6) as follows.

S = f /l, (6)

where S is the sag of the wire, f is the distance from the midspan of the wire to the midpoint
of the string, and l is the horizontal span of the wire. In particular, since the 11–15 wires in
the antenna network combine to form the supporting sling of the top capacity line, it can be
regarded as a whole, and its sag can be calculated according to Figure 7b. The maximum
sag of the wire of the antenna network is about 9%, and the sag calculation results of each
wire are shown in the following, Table 3.
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Table 3. Traverse sag.

Number Type Sag Number Type Sag

1 Sling 0.35% 12 Sling 1.21%
2 Sling 0.26% 13 Sling 1.35%
3 Sling 0.35% 14 Sling 1.21%
4 Sling 0.26% 15 Sling 0.96%
5 Top capacity line 5.57% 16 Top capacity line 5.57%
6 Top capacity line 3.99% 17 Top capacity line 3.99%
7 Top capacity line 2.79% 18 Top capacity line 2.79%
8 Top capacity line 2.79% 19 Top capacity line 2.79%
9 Top capacity line 3.99% 20 Top capacity line 3.99%

10 Top capacity line 5.57% 21 Top capacity line 5.57%
11 Sling 0.96% lCD Sling 8.67%

The natural vibration frequency of each order of the wire can be obtained by the
following formula, Equation (7).

f j =
j

2L

√
G
m

, (7)

where j is the natural vibration mode order of the wire, L is the wire length, G is the
tension of the wire, and m is the mass per unit length of the wire. According to the above
formula, Equation (7), the first-order natural vibration frequency of each wire is calculated
as shown in Table 4 below. According to the calculation results, it can be seen that the
natural vibration frequency of some wires is in the range of 3~150 Hz, and the vertical
vibration of the wires may be triggered in the range of 1~2 times the diameter under the
excitation of aeolian vibration.

Table 4. First-order frequency of each wire.

Number Wire Length
(m)

Mass per Unit Length of Wire
(1 × 10–3 N·s2/m)

Initial Tension
(kN)

1st-Order Frequency
(Hz)

1 58 8.59 173 4.90
2 58 8.59 238 5.69
3 58 8.59 173 4.90
4 58 8.59 237 5.69
5 643 1.90 27 0.37
6 530 1.90 31 0.48
7 462 1.90 38 0.61
8 462 1.90 38 0.61
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Table 4. Cont.

Number Wire Length
(m)

Mass per Unit Length of Wire
(1 × 10–3 N·s2/m)

Initial Tension
(kN)

1st-Order Frequency
(Hz)

9 530 1.90 31 0.48
10 643 1.90 27 0.37
11 179 8.59 193 1.68
12 182 8.59 157 1.49
13 183 8.59 141 1.40
14 182 8.59 157 1.49
15 179 8.59 193 1.68
16 643 1.90 27 0.37
17 530 1.90 31 0.48
18 462 1.90 38 0.61
19 462 1.90 38 0.61
20 530 1.90 31 0.48
21 643 1.90 27 0.37

4. Analysis of Aeolian Vibration of Antenna Cable Net
4.1. Aeolian Excitation Force

At a low wind speed, the wire will have periodic vortex-excited resonance. Under the
‘locking effect’, the periodic vortex excitation of the wire is accompanied by a nonlinear
vortex excitation term related to the motion of the wire itself, which makes the interaction
between the wire and the wind enter the fluid–structure coupling action range. It is very
difficult to obtain its theoretical analytical solution, and a semi-empirical model is generally
adopted, such as the simple harmonic force model, lifting oscillator model, empirical
linear model, empirical nonlinear model, generalized empirical nonlinear model, etc. The
energy lost by the wind to the wire during the occurrence of aeolian vibration is related to
the component parameters of the wire and the wind speed. Many scholars from various
countries have done a large number of wind tunnel tests and theoretical studies, among
which the research results of Diana and Falco on the input power of wind energy have been
widely used [28–30]. The wind energy power is calculated using the following expression,
shown in Equation (8).

Pw =


e(a1 ln (y0/D)2+a2 ln(y0/D)+a3) f 3D4, y < 1.2D
74.31 f 3D4, 1.2D ≤ y < 2.0D
0, 2.0D < y

, (8)

where D is the wire diameter, mm; a1 = 0.0526, a2 = 1.4074, a3 = 4.0324, and y0 is a double
amplitude, mm.

The wire in the stable wind field can be approximated as a rigid cylinder, and the air
flow forms a stable Karman vortex street on the back of the cylinder, and an alternating
upward force Fy is formed on the cylinder. In calculation, it can be simplified to assume
that the lift force acting on the wire is sinusoidal, that is, q = Fy sin ωt, and assume that
the vertical displacement of the wire during vibration y = −A0 cos(ωt − φ), where A0 is a
single amplitude and ω is the circular frequency of vibration. In half a cycle, the average
power of the wind input to the wire is as follows in Equation (9).

Pw =
2
T

π
2∫

0

Fdy =
1
2

FyωA0 cos φ (9)
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When a ‘locking effect’ occurs, cos φ = 1 and Pw = πFy f A0. Both Fy and A0 are
functions of the space coordinate x along the wire, Pw = πFy(x) f y(x), then we derive the
formula of alternating upward force Fy in Equation(10).

Fy(x) =
Pw

π f y(x)
sin ωt (10)

According to the expression of wind energy power proposed by Diana and Falco [12],
the above, Equation (10), is substituted into Equation (8) to obtain the aeolian excitation
force in Equation (11).

Fy =


35.9028D2.4874 f 2y0.5126, y < 1.2D
17.5134y−1 f 2D4, 1.2D < y < 2.0D
0, 2.0D < y

(11)

4.2. Cable Self-Damping

The ability of a wire to absorb or consume vibration energy transmitted by wind is
often expressed by its self-damping power. There are many factors that affect the self-
damping power of the wire, including the amplitude and frequency of aeolian vibration,
the operating tension of the wire, the ambient temperature, and the material characteristics
of the wire itself. Generally, the self-damping power of the wires is mainly composed of
structural deformation damping and material deformation damping. Due to the different
production processes of wires, the self-damping power is highly dispersed. At present,
the self-damping power of transmission wires is generally determined through test mea-
surements. Wang Feng and Tang et al. [31,32] conducted an experimental study on the
self-damping characteristics of long-span wires. The self-damping power can be obtained
through the self-damping test of the cable in Equation (12).

Pc =
π

2
Hcy2

0 f 4G−1.5m1.5, (12)

where f is the vibration frequency, y0 is double amplitude, Hc is the hysteresis damping
constant. G is the wire tension; m is the mass per unit length of the wire.

In general, for the convenience of analysis, the self-damping of the wire is simplified
to be equivalent to classical viscous damping. According to the relevant theory of structural
dynamics, for a system of single degrees of freedom with viscous damping under simple
harmonic load, the energy consumed by the damping force in one period can be expressed
as the following formula, shown in Equation (13).

W =

T∫
0

fd
.
ysdt = cA2ω2

T∫
0

cos2 (ωt − φ) = πcA2ω, (13)

where T is the period, fd is damping force, ys is vibration displacement, t is time, c is the
viscous damping coefficient, A is the maximum amplitude. In one period, the self-damping
of a wire per unit length consumes the same energy as that consumed by a system of single
degrees of freedom can be expressed as Equation (14):

W = PcT∆l = Pc∆l/ f (14)

The equivalent viscous damping coefficient is obtained by the following formula,
Equation (15):

ceq =
Hc

4π
f 2G−1.5m1.5∆l (15)

where ∆l is the length of the wire; the equivalent viscous self-damping coefficient of the
above formula is often estimated with the energy balance method. In FPM, the resistance
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action of the structure is usually considered by applying a virtual damping force fd to the
particle, whose expression is shown in Equation (16):

fd = −ξ · m
d
dt

 xi
yi
zi

 (16)

Thus, ξ = c/m, where ξ is the damping ratio, xi is the x-direction distance of the
particle from the equilibrium position, yi is the y-direction distance of the particle from
the equilibrium position, and zi is the z-direction distance of the particle from the equilib-
rium position.

Based on the above analysis, the outline for calculating the aeolian-induced vibration
response of a large-span, relaxed antenna network using the finite particle method is shown
below in Figure 8.
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Figure 8. Flow chart for aeolian-induced vibration analysis of large-span antenna net.

4.3. Vibration Response

The operating tension of each wire in the antenna network is shown in Table 4. The
span L of the antenna network is 1020 m, and the uniform load Fy = qsinωt is applied in the
vertical direction, in which the amplitude of the sine uniform force is q = 100/L(N/m), the
load excitation frequency is 3 Hz, and the damping coefficient per unit length of the wire is
0.1 N·s·m−2.

Using FPM and ANSYS to calculate the vibration response of the antenna cable net
under the above sinusoidal uniform load, the calculation results and analysis time are
shown in the following, Table 5, respectively. The vibration response time history of the
mid-span particle are shown in Figure 9 below.
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Table 5. Comparison of calculation results.

Comparison Item FPM ANSYS Relative Error

Maximum vertical acceleration response (mm·s−2) 156.39 158.20 1.14%
Maximum vertical velocity response (mm·s−2) 12.82 12.79 0.20%

Maximum vertical displacement response (mm·s−2) 2.42 2.43 0.42%
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The calculation results show that the FPM has high accuracy. The stabilized velocity
and displacement exhibit an approximate sinusoidal vibration pattern, and the vibration
frequency is similar to the load excitation frequency. Under the excitation of aeolian wind
loads, the wire will experience an unstable vibration transition period and finally reach
steady-state vibration under the damping effect of the wire. By applying the FPM to the
calculation and analysis of large-span, relaxed antenna cable net wind-induced vibration,
the strong geometric nonlinearity of the antenna cables under low-tension conditions was
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considered, and the calculation results were compared with those of the finite element
method, proving the correctness of the FPM in the calculation of antenna cable wind-
induced vibration.

When the vibration is stable, the vibration frequency of the conductor is shown in the
following table. It can be seen that the maximum difference between the FPM calculation
results and the ANSYS finite element calculation results is only 0.01 mm, which indicates
that the finite particle method has high calculation accuracy and calculation efficiency. The
displacement time–history curve of particle stable vibration is sinusoidal, and the vibration
frequency is basically consistent with the load excitation frequency.

Compared with the finite element method, using the FPM for the calculation and anal-
ysis of wire wind-induced vibration does not require the formation of complex nonlinear
element stiffness or repeated iterative solutions. Therefore, the computational efficiency is
greatly improved compared to the finite element method, and the difficulty of convergence
when using the finite element method to calculate the nonlinear time–history dynamic
response of low tension wires can be effectively avoided. Moreover, the introduction of
the finite particle method into the calculation and analysis of the wind-induced vibra-
tion response of large-span conductors has laid an analytical foundation for the study of
wind-induced vibration prevention schemes.

4.4. Parameter Study
4.4.1. Wind Speed

The finite particle method is used to calculate the wind vibration response of the cable
under different wind speed conditions. The following, Figure 10, shows the maximum
vertical vibration displacement response of a mid-span particle, 1/4 span particle, and 3/4
span particle under a wind speed of 2.5~15 m/s.
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It can be seen that, with the increase in wind speed, the displacement of the cable
under gentle wind vibration gradually increases; with the maximum displacement in the
mid-span vibration of the cable and with the increase of wind speed, the vertical vibration
displacement of the mid-span particle increases the fastest. When the wind speed increases
from 2.5 m/s to 10 m/s, the vertical vibration response of the wire increases rapidly. When
the wind speed is 10 m/s, the maximum vibration displacement of the mid-span node
of the cable is 25.8 mm, and the vibration amplitude is about twice the diameter of the
cable. This indicates that, at 10 m/s wind speed, the cable enters the aeolian vibration state.
When the wind speed increases from 10 m/s to 15 m/s, the increase rate of the vertical
vibration displacement response of the cable slightly slows down, and the maximum
vertical vibration displacement is 32.1 mm. The vibration amplitude is still close to one
times the cable diameter.
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4.4.2. Distribution of Vibration along Cable Span

The following, Figure 11, shows the finite particle method calculation results of the
vertical vibration response of particles on the cable along the span direction under different
wind speeds.
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It can be seen that, under the action of gentle wind vibration load, the vibration
displacement response of the cable does not show a uniform gradient. Under wind loads
of different wind speeds, the maximum vibration response of the cable is located at the
midspan. The vibration response of particles in the range of 0~0.2 span and 0.8~1.0 span of
the cable is relatively large. At the same time, the distribution of the amplified vibration
response of the cable along the span varies under different wind speeds; that is, at lower
wind speeds range of 2.5 m/s to 5 m/s, the lower range of vertical vibration of the breeze
vibration is mainly distributed near the mid span. As the wind speed increases, the breeze
vibration response of particles in the 0–0.2 span range and 0.8–1.0 span range on the
conductor gradually increases when the wind speed is greater than 5 m/s. This indicates
that, when the wind speed is low, due to the self-damping effect of the cable, the wind-
induced vibration of the cable is mainly controlled by the first order vibration mode. When
the wind speed increases, the wind-induced vibration response of the wire is affected by
both the low-order and high-order vibration modes.

5. Conclusions

In this study, the finite particle method (FPM) was used for the analysis of aeolian
vibration of a large-span, low stress-tensioned antenna cable net, and the mechanical
properties and vibration characteristics of a large-span, low stress-tensioned antenna cable
net were studied using the FPM. The main conclusions are as follows:

(1) By applying the FPM to the calculation and analysis of the wind-induced vibration
of an antenna cable net, the mass and geometric nonlinearity of the cables were
considered, and the calculated results were compared with the ANSYS finite element
method, indicating the correctness of the finite particle method in the calculation of
the wind-induced vibration of a cable net.

(2) Compared with the FEM, using the FPM for the calculation and analysis of the
wind-induced vibration of wires does not require the formation of complex nonlin-
ear element stiffness or repeated iterative solutions. Therefore, the computational
efficiency and convergence of the FPM are greatly improved.

(3) The scheme proposed in this paper, which introduces the FPM into the analysis of
the wind-induced vibration response of wires, is efficient and feasible and has great
potential for application in subsequent research fields, such as the wind-induced
vibration prevention of large-span antenna cables.

(4) With the increase in the wind speed, the displacement of the cable under a gentle
wind vibration gradually increases; with the maximum displacement in the mid-span
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vibration of the cable and with the increase in wind speed, the vertical vibration
displacement of the mid-span particle increases the fastest.

(5) When the wind speed is low, due to the self-damping effect of the cable, the wind-
induced vibration of the cable is mainly controlled by the first-order vibration mode.
When the wind speed is high, the wind-induced vibration response of the wire is
affected by both the low-order and high-order vibration modes.

Author Contributions: Conceptualization, Y.L. and K.Q.; methodology, Y.L., K.Q. and F.Z.; software,
F.Z., S.C. and B.F.; validation, K.Q. and F.Z.; formal analysis, F.Z., S.C. and B.F.; writing—original
draft preparation, F.Z.; writing—review and editing, K.Q.; supervision, Y.L. and K.Q.; project admin-
istration, K.Q. All authors have read and agreed to the published version of the manuscript.

Funding: This study received no external funding.

Data Availability Statement: The analysis data used to support the findings in this study are included
within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Liang, T.J. Development of VLF communication technology. In Proceedings of the 18th China Aerospace Measurement and

Control Technology Annual Conference, Dali, China, 18–20 June 2021; pp. 476–479.
2. Williamson, R.A.; Stevenson, H.F.; Van der Pas, P.W. Computer design of a tower and cable system. J. Struct. Div. 1966, 92,

341–360. [CrossRef]
3. Pen, T.; Xie, Q.; Zhang, J.; Xie, W.P. Response of wires to aeolian vibration and anti-vibration treatment. J. Guangdong Electr. Power

2017, 30, 104–108.
4. Foti, F.; Martinelli, L. A unified analytical model for the self-damping of stranded cables under aeolian vibrations. J. Wind Eng.

Ind. Aerod. 2018, 176, 225–238. [CrossRef]
5. Zhang, J.G.; Liu, J.J.; Li, C.G.; Zhang, Y. Breeze vibration characteristics of large section conductors in UHV transmission lines.

J. He Hai Univ. 2017, 45, 53–58.
6. Vecchiarelli, J.; Currieg, I.G.; Havard, D.G. Computational analysis of aeolian conductor vibration with a stockbridge-type damper.

J. Fluid Struct. 2000, 2000, 489–509. [CrossRef]
7. Barry, O.; Zu, J.W.; Oguamanam, D.C.D. Forced Vibration of Overhead Transmission Line: Analytical and Experimental

Investigation. J. Vib. Acoust. 2014, 136, 32–37. [CrossRef]
8. Kong, D.Y.; Li, L.; Long, X.H.; Liang, Z.P. Analysis of aeolian vibration of UHV transmission conductor by finite element method.

J. Vib. Shock. 2007, 26, 64–68.
9. Ahmadizadeh, M. Three-dimensional geometrically nonlinear analysis of slack cable structures. Comput. Struct. 2013, 128,

160–169. [CrossRef]
10. Li, X.; Xue, S.; Li, X.; Liu, G.; Liu, R. A numerical method to solve structural dynamic response caused by cable failure. Eng.

Comput. 2023, 40, 2049–2067. [CrossRef]
11. Lynn, K.M.; Isobe, D. Structural collapse analysis of framed structures under impact loads using ASI-Gauss finite element method.

Int. J. Impact Eng. 2007, 34, 1500–1516. [CrossRef]
12. Wu, T.; Lee, J.; Ting, E.C. Motion analysis of structures (MAS) for flexible multibody systems: Planar motion of solids. Multibody

Syst. Dyn. 2008, 20, 197–221. [CrossRef]
13. Bui, T.T.; Limam, A.; Sarhosis, V.; Hjiaj, M. Discrete element modelling of the in-plane and out-of-plane behaviour of dry-joint

masonry wall constructions. Eng. Struct. 2017, 36, 277–294. [CrossRef]
14. Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. Meshless methods:An overview and recent developments. Comput.

Method Appl. Mach. Eng. 1996, 139, 3–47. [CrossRef]
15. Luo, Y.Z.; Zheng, Y.F.; Yang, C.; Yu, Y.; Yu, F.; Zhang, P.F. Review of the finite particle method for complex behaviors of structures.

J. Eng. Mech. 2014, 31, 1–7+23. [CrossRef]
16. Yu, Y.; Xu, Y.; Luo, Y.Z. Dynamic nonlinear analysis of structures based on the finite particle method. J. Eng. Mech. 2012, 6,

63–69+84.
17. Yu, Y.; Luo, Y.Z. Structural collapse analysis based on finite particle method I: Basic approach. J. Build. Struct. 2011, 11, 17–26.
18. Yu, Y.; Luo, Y.Z. Structural collapse analysis based on finite particle method II: Key problems and numerical examples. J. Build.

Struct. 2011, 32, 27–35.
19. Yu, Y.; Luo, Y. Finite particle method for kinematically indeterminate bar assemblies. J. Zhejiang Univ. A Sci. 2009, 10, 669–676.

[CrossRef]
20. Yu, Y.; Luo, Y.Z. Motion analysis of deployable structures based on the rod hinge element by the finite particle method. Proc. Inst.

Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 955–964. [CrossRef]

https://doi.org/10.1061/JSDEAG.0001559
https://doi.org/10.1016/j.jweia.2018.03.028
https://doi.org/10.1006/jfls.1999.0279
https://doi.org/10.1115/1.4027578
https://doi.org/10.1016/j.compstruc.2013.06.005
https://doi.org/10.1108/EC-04-2023-0156
https://doi.org/10.1016/j.ijimpeng.2006.10.011
https://doi.org/10.1007/s11044-008-9108-4
https://doi.org/10.1016/j.engstruct.2017.01.020
https://doi.org/10.1016/S0045-7825(96)01078-X
https://doi.org/10.3901/JME.2014.07.001
https://doi.org/10.1631/jzus.A0820494
https://doi.org/10.1243/09544100JAERO498


Buildings 2024, 14, 105 18 of 18

21. Luo, Y.; Yang, C. A vector-form hybrid particle-element method for modeling and nonlinear shell analysis of thin membranes
exhibiting wrinkling. J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 2014, 15, 331–350. [CrossRef]

22. Yang, C.; Shen, Y.; Luo, Y. An efficient numerical shape analysis for light weight membrane structures. J. Zhejiang Univ. A Sci.
2014, 15, 255–271. [CrossRef]

23. Zhang, P.F.; Luo, Y.Z.; Yang, C. Elastic-plastic analysis of 3d solids using the finite particle method. J. Eng. Mech. 2017, 34, 5–12.
24. Lin, S.; Liang, Z.; Zhao, S.; Dong, M.; Guo, H.; Zheng, H. A comprehensive evaluation of ensemble machine learning in

geotechnical stability analysis and explainability. Int. J. Mech. Mater. Des. 2023, 19, 1–22. [CrossRef]
25. Yu, Y.; Liu, F.H.; Wang, Q.H.; Luo, Y.Z.; Li, Y. Study on damping in finite particle method. J. Eng. Mech. 2019, 36, 34–40.
26. Xie, W.P.; Xu, N.B.; Li, L.; Wang, Z. Research on form finding of power transmission conductors based on finite particle method.

J. Guangdong Electr. Power 2016, 2, 101–106.
27. Xie, W.P.; Xu, N.B.; Luo, X.Y.; Wang, Z.; Luo, X. Aeolian vibration of power transmission conductors based on finite particle

method. J. Guangdong Electr. Power 2016, 29, 127–132.
28. Diana, G.; Falco, M.; Cigada, A.; Manenti, A. On the Measurement of Over Head Transmission Lines Conductor Self-Damping.

IEEE Trans. Power Deliv. 2000, 15, 285–292. [CrossRef]
29. Campos, D.; Löser, E.; Piovan, M. Self-damping of Optical Ground Wire Cables: A Bayesian Approach. J. Appl. Comput. Mech.

2023, 9, 205–216.
30. Zanelli, F.; Mauri, M.; Castelli-Dezza, F.; Tarsitano, D.; Manenti, A.; Diana, G. Analysis of Wind-Induced Vibrations on HVTL

Conductors Using Wireless Sensors. Sensors 2022, 22, 8165. [CrossRef]
31. Wang, F.; Wang, F.; Huang, Y.C.; Cheng, C.; Zhao, Q.J.; Bai, X.L. Analysis and experimental study on self-damping characteristics

of long-span transmission lines. J. Proc. CSEE 2018, 38, 98–105.
32. Tang, X.; Hou, W.; Zheng, Q.; Fang, L.; Zhu, R.; Zheng, L. Self-powered wind sensor based on triboelectric nanogenerator for

detecting breeze vibration on electric transmission lines. Nano Energy 2022, 99, 107412. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1631/jzus.A1300248
https://doi.org/10.1631/jzus.A1300245
https://doi.org/10.1007/s10999-023-09679-0
https://doi.org/10.1109/61.847264
https://doi.org/10.3390/s22218165
https://doi.org/10.1016/j.nanoen.2022.107412

	Introduction 
	Basic Theory of FPM for Analysis of Cable Aeolian Vibration 
	Point Value Description 
	Path Unit 
	Equation of Motion for Particle 
	Solutions to Geometric Nonlinear Problems 

	Analysis Model of Antenna Cable Net 
	Antenna Cable Net Structure Information 
	Initial State Analysis of Antenna Network 

	Analysis of Aeolian Vibration of Antenna Cable Net 
	Aeolian Excitation Force 
	Cable Self-Damping 
	Vibration Response 
	Parameter Study 
	Wind Speed 
	Distribution of Vibration along Cable Span 


	Conclusions 
	References

