Assessment of CO2 Capture in FA/GGBS-Blended Cement Systems: From Cement Paste to Commercial Products
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Composition and Properties of Clinker and SCMs
2.2. Sample Preparation and CO2 Curing
2.3. Evaluation Methods
3. Experiment Results and Discussion
3.1. Carbonation Depth
3.2. Carbonates Content Profile
3.3. Life Cycle Assessment and Captured Carbon Estimation of FA/GGBS Block
4. Conclusions
- (1)
- GGBS-blended cement demonstrates reduced carbonation depth via densification, while higher FA content amplifies depth due to delayed reactions and increased porosity, emphasising material and additive impacts.
- (2)
- The UEA expansion agent accelerates early-age carbonation, highlighting the diverse influences of additives on carbonation depth, crucial for enhancing durability against carbonation-induced deterioration.
- (3)
- FA blends exhibit increased carbonation due to heightened porosity, contrasting with the GGBS blends’ decreased depth, attributed to refined pore structures from secondary reactions.
- (4)
- Thermal analysis confirms higher CO2 uptake in FA blends, highlighting the material composition’s crucial role in carbonation and emissions mitigation.
- (5)
- The addition of GGBS and FA significantly reduces binder emissions, comprising nearly half of PC-concrete emissions. While 60% GGBS initially shows lower emissions than 50% FA, considering CO2 capture alters this dynamic.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coffetti, D.; Crotti, E.; Gazzaniga, G.; Carrara, M.; Pastore, T.; Coppola, L. Pathways towards sustainable concrete. Cem. Concr. Res. 2022, 154, 106718. [Google Scholar] [CrossRef]
- Xie, H.Z.; Li, L.G.; Liu, F.; Kwan, A.K.H. Recycling old concrete as waste concrete powder for use in pervious concrete: Effects on permeability, strength and eco-friendliness. Buildings 2022, 12, 2172. [Google Scholar] [CrossRef]
- Li, J.; Xu, G. Circular economy towards zero waste and decarbonization. Circ. Econ. 2022, 1, 100002. [Google Scholar] [CrossRef]
- Zeng, X.; Ogunseitan, O.A.; Nakamura, S.; Suh, S.; Kral, U.; Li, J.; Geng, Y. Reshaping global policies for circular economy. Circ. Econ. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Ravikumar, D.; Zhang, D.; Keoleian, G.; Miller, S.; Sick, V.; Li, V. Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat. Commun. 2021, 12, 855. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Sui, T.; Feng, L.; Lin, L. The digitization work of cement plant in China. Cem. Concr. Res. 2023, 173, 107266. [Google Scholar] [CrossRef]
- Alahmari, T.S.; Abdalla, T.A.; Rihan, M.A.M. Review of Recent Developments Regarding the Durability Performance of Eco-Friendly Geopolymer Concrete. Buildings 2023, 13, 3033. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Dong, W.; Tam, V.W.; Yu, T. Durability deterioration of concrete under marine environment from material to structure: A critical review. J. Build. Eng. 2021, 35, 102074. [Google Scholar] [CrossRef]
- Kortmann, J.; Minar, S. Contribution of Carbon Concrete Construction to the Circular and Resource Economy. Buildings 2023, 13, 2851. [Google Scholar] [CrossRef]
- Zajac, M.; Skocek, J.; Ben Haha, M.; Deja, J. CO2 Mineralization Methods in Cement and Concrete Industry. Energies 2022, 15, 3597. [Google Scholar] [CrossRef]
- Lu, D.; Wang, D.; Wang, Y.; Zhong, J. Nano-engineering the interfacial transition zone between recycled concrete aggregates and fresh paste with graphene oxide. Constr. Build. Mater. 2023, 384, 131244. [Google Scholar] [CrossRef]
- Deng, Q.; Zou, S.; Xi, Y.; Singh, A. Development and Characteristic of 3D-Printable Mortar with Waste Glass Powder. Buildings 2023, 13, 1476. [Google Scholar] [CrossRef]
- Li, X.-S.; Li, L.; Zou, S. Developing Low-PH 3D Printing Concrete Using Solid Wastes. Buildings 2023, 13, 454. [Google Scholar] [CrossRef]
- Richardson, I.; Girão, A.; Taylor, R.; Jia, S. Hydration of water-and alkali-activated white Portland cement pastes and blends with low-calcium pulverized fuel ash. Cem. Concr. Res. 2016, 83, 1–18. [Google Scholar] [CrossRef]
- Herterich, J.; Richardson, I.; Moro, F.; Marchi, M.; Black, L. Microstructure and phase assemblage of low-clinker cements during the early stages of carbonation. Cem. Concr. Res. 2022, 152, 106643. [Google Scholar] [CrossRef]
- Zhu, X.; Richardson, I.G. Morphology-structural change of CASH gel in blended cements. Cem. Concr. Res. 2023, 168, 107156. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Z.; Chen, Y.; Huang, J.; Ma, Y.; Zhu, W.; Liu, J. Effect of Ca/Si and Al/Si on micromechanical properties of C (-A)-SH. Cem. Concr. Res. 2022, 157, 106811. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Tang, J.; Hu, Z.; Liu, J. The multi-scale mechanical properties of calcium-silicate-hydrate. Cem. Concr. Compos. 2023, 140, 105097. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Y.; Zhu, X.; Xu, W.; Poon, C.S.; Li, W.; Tsang, D.C. Roles of wood waste biochar for chloride immobilization in GGBS-blended cement composites. Constr. Build. Mater. 2024, 411, 134389. [Google Scholar] [CrossRef]
- Wu, H.; Hu, R.; Yang, D.; Ma, Z. Micro-macro characterizations of mortar containing construction waste fines as replacement of cement and sand: A comparative study. Constr. Build. Mater. 2023, 383, 131328. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, X.; Leng, Z.; Huo, Y.; Wang, D.; Zhong, J. Electrically conductive asphalt concrete for smart and sustainable pavement construction: A review. Constr. Build. Mater. 2023, 406, 133433. [Google Scholar] [CrossRef]
- Snellings, R. Assessing, understanding and unlocking supplementary cementitious materials. RILEM Tech. Lett. 2016, 1, 50–55. [Google Scholar] [CrossRef]
- Li, X.; Snellings, R.; Antoni, M.; Alderete, N.M.; Ben Haha, M.; Bishnoi, S.; Cizer, Ö.; Cyr, M.; De Weerdt, K.; Dhandapani, Y. Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1. Mater. Struct. 2018, 51, 151. [Google Scholar] [CrossRef]
- Juenger, M.C.; Snellings, R.; Bernal, S.A. Supplementary cementitious materials: New sources, characterization, and performance insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Qu, F.; Zhao, H.; Wu, K.; Liu, Y.; Zhao, X.; Li, W. Phase transformation and microstructure of in-situ concrete after 20-year exposure to harsh mining environment: A case study. Case Stud. Constr. Mater. 2023, 19, e02287. [Google Scholar] [CrossRef]
- Snellings, R.; Suraneni, P.; Skibsted, J. Future and emerging supplementary cementitious materials. Cem. Concr. Res. 2023, 171, 107199. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Guo, Y.; Zhang, S.; Zhou, J.L.; Wang, K. Chloride-binding capacity of cement-GGBFS-nanosilica composites under seawater chloride-rich environment. Constr. Build. Mater. 2022, 342, 127890. [Google Scholar] [CrossRef]
- Lu, D.; Jiang, X.; Leng, Z.; Zhang, S.; Wang, D.; Zhong, J. Dual responsive microwave heating-healing system in asphalt concrete incorporating coal gangue and functional aggregate. J. Clean. Prod. 2023, 422, 138648. [Google Scholar] [CrossRef]
- Khajuria, A.; Atienza, V.A.; Chavanich, S.; Henning, W.; Islam, I.; Kral, U.; Liu, M.; Liu, X.; Murthy, I.K.; Oyedotun, T.D.T. Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. Circ. Econ. 2022, 1, 100001. [Google Scholar] [CrossRef]
- He, H.; Gao, X.; Fei, X. Generation and management of municipal solid waste in top metropolitans of China: A comparison with Singapore. Circ. Econ. 2023, 2, 100041. [Google Scholar] [CrossRef]
- GB/T 1596-2017; Fly Ash Used for Cement and Concrete. Standards Press of China: Beijing, China, 2017.
- GB/T175; Common Portland Cement. Standards Press of China: Beijing, China, 2023.
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2010.
- Zajac, M.; Irbe, L.; Bullerjahn, F.; Hilbig, H.; Haha, M.B. Mechanisms of carbonation hydration hardening in Portland cements. Cem. Concr. Res. 2022, 152, 106687. [Google Scholar] [CrossRef]
- Ye, J.; Liu, S.; Zhao, Y.; Li, Y.; Fang, J.; Zhang, H.; Guan, X. Development of Ultrafine Mineral Admixture from Magnesium Slag and Sequestration of CO2. Buildings 2023, 13, 204. [Google Scholar] [CrossRef]
- Qu, F.; Li, W.; Zeng, X.; Luo, Z.; Wang, K.; Sheng, D. Effect of microlimestone on properties of self-consolidating concrete with manufactured sand and mineral admixture. Front. Struct. Civ. Eng. 2020, 14, 1545–1560. [Google Scholar] [CrossRef]
- Valera, E.H.; Cremades, R.; van Leeuwen, E.; van Timmeren, A. Additive manufacturing in cities: Closing circular resource loops. Circ. Econ. 2023, 2, 100049. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Cui, S.; Wang, J. Reactivity and hydration property of synthetic air quenched slag with different chemical compositions. Materials 2019, 12, 932. [Google Scholar] [CrossRef]
- Schöler, A.; Lothenbach, B.; Winnefeld, F.; Zajac, M. Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder. Cem. Concr. Compos. 2015, 55, 374–382. [Google Scholar] [CrossRef]
- Giergiczny, Z. Fly ash and slag. Cem. Concr. Res. 2019, 124, 105826. [Google Scholar] [CrossRef]
- Marple, M.A.; Koroglu, B.; Morrison, K.; Crowhurst, J.; Balachandra, A.; Soroushian, P.; Mason, H.E. Accelerated carbonation and structural transformation of blast furnace slag by mechanochemical alkali-activation. Cem. Concr. Res. 2022, 156, 106760. [Google Scholar] [CrossRef]
- Rathnarajan, S.; Dhanya, B.; Pillai, R.G.; Gettu, R.; Santhanam, M. Carbonation model for concretes with fly ash, slag, and limestone calcined clay-using accelerated and five-year natural exposure data. Cem. Concr. Compos. 2022, 126, 104329. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, F.; Long, Y.; Yu, L.; Yang, C.; Wen, M.; Yu, X.; Tian, Y.; Zhao, M. Improving the carbonation resistance of alkali-activated slag mortars by calcined Mg/Al layered double hydroxides. Appl. Clay Sci. 2022, 216, 106379. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, D.; Yang, K.; Zhang, Z.; Li, Q.; Pan, Q.; Yang, C. Effect of Ca(OH)2 on shrinkage characteristics and microstructures of alkali-activated slag concrete. Constr. Build. Mater. 2018, 175, 467–482. [Google Scholar] [CrossRef]
- Zhu, X.; Luan, M.; Yang, K.; Yang, C. Using GGBS: Clarification of the Importance of Relative Humidity at Storage on Reactivity of GGBS. J. Adv. Concr. Technol. 2022, 20, 663–675. [Google Scholar] [CrossRef]
- Wang, T.; Ishida, T.; Gu, R.; Luan, Y. Experimental investigation of pozzolanic reaction and curing temperature-dependence of low-calcium fly ash in cement system and Ca-Si-Al element distribution of fly ash-blended cement paste. Constr. Build. Mater. 2021, 267, 121012. [Google Scholar] [CrossRef]
- Yeo, S.H.; Mo, K.H.; Mahmud, H.B. Hybrid Nucleation Acceleration Method with Calcium Carbonate and Calcium Silicate Hydrate for Fast-Track Construction. Buildings 2023, 13, 2975. [Google Scholar] [CrossRef]
- Luke, K.; Lachowski, E. Internal composition of 20-year-old fly ash and slag-blended ordinary Portland cement pastes. J. Am. Ceram. Soc. 2008, 91, 4084–4092. [Google Scholar] [CrossRef]
- Justnes, H.; Skocek, J.; Østnor, T.A.; Engelsen, C.J.; Skjølsvold, O. Microstructural changes of hydrated cement blended with fly ash upon carbonation. Cem. Concr. Res. 2020, 137, 106192. [Google Scholar] [CrossRef]
- Georget, F.; Soja, W.; Scrivener, K.L. Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models. Cem. Concr. Res. 2020, 134, 106080. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Mejía-Arcila, J.; de Gutiérrez, R.M.; Martínez, E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 2018, 176, 103–111. [Google Scholar] [CrossRef]
- Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 emissions from China’s cement industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]
- van Deventer, J.S.; White, C.E.; Myers, R.J. A roadmap for production of cement and concrete with low-CO2 emissions. Waste Biomass Valorization 2021, 12, 4745–4775. [Google Scholar] [CrossRef]
- Liu, Z.; Meng, W. Fundamental understanding of carbonation curing and durability of carbonation-cured cement-based composites: A review. J. CO2 Util. 2021, 44, 101428. [Google Scholar] [CrossRef]
- Cao, Z.; Myers, R.J.; Lupton, R.C.; Duan, H.; Sacchi, R.; Zhou, N.; Reed Miller, T.; Cullen, J.M.; Ge, Q.; Liu, G. The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat. Commun. 2020, 11, 3777. [Google Scholar] [CrossRef]
- Yu, Z.; Qu, G.; Li, Z.; Wang, Y.; Ren, L. Carbon Emission Composition and Carbon Reduction Potential of Coastal Villages under Low-Carbon Background. Buildings 2023, 13, 2925. [Google Scholar] [CrossRef]
Raw Materials | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | SO3 | Others | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Clinker | 21.09 | 5.33 | 3.28 | 0.87 | 66.12 | 0.55 | 0.21 | 0.2 | 1.67 | 0.89 |
GGBS | 32.01 | 14.04 | 1.03 | 9.23 | 37.02 | 0.38 | 0.44 | 2.31 | 2.97 | 0.57 |
FA | 49.23 | 25.87 | 7.62 | 0.98 | 5.46 | 0.55 | 1.59 | 1.01 | 4.94 | 2.75 |
UEA | 25.57 | 15.30 | 0.80 | 1.01 | 24.12 | 0.09 | 1.38 | 28.90 | 0.98 | 1.85 |
Name | Clinker | GGBS | FA | UEA | Additional Gypsum |
---|---|---|---|---|---|
Ref | 100 | -- | -- | -- | 5% |
10FA-blends | 90 | -- | 10 | -- | 5% |
20FA-blends | 80 | -- | 20 | -- | 5% |
30FA-blends | 70 | -- | 30 | -- | 5% |
40FA-blends | 60 | -- | 40 | -- | 5% |
50FA-blends | 50 | -- | 50 | -- | 5% |
10GGBS-blends | 90 | 10 | -- | -- | 5% |
20GGBS-blends | 80 | 20 | -- | -- | 5% |
30GGBS-blends | 70 | 30 | -- | -- | 5% |
40GGBS-blends | 60 | 40 | -- | -- | 5% |
50GGBS-blends | 50 | 50 | -- | -- | 5% |
60GGBS-blends | 60 | 40 | -- | -- | 5% |
8UEA-blends | 92 | -- | -- | 8 | 5% |
Types | Clinker | GGBS | FA | Water | Coarse Aggregate | Fine Aggregate | Admixtures |
---|---|---|---|---|---|---|---|
PC-Concrete | 360 | 0 | 0 | 160 | 1600 | 1420 | 4 |
60GGBS350-Concrete | 144 | 216 (60%) | 0 | 160 | 1600 | 1420 | 5 |
50FA-Concrete | 180 | 0 | 180 (50%) | 160 | 1600 | 1420 | 4 |
Sample | Surface Area (m2/g) | Avg. Pore Diameter (nm) | Pore Size Distribution (%) | |||
---|---|---|---|---|---|---|
<20 nm | 20–50 nm | 50–200 nm | >200 nm | |||
Ref | 15.992 | 19.208 | 45.5 | 26.3 | 26.4 | 1.8 |
50FA | 14.677 | 24.332 | 32.1 | 27.6 | 33.8 | 6.5 |
60GGBS350 | 22.021 | 13.620 | 57.5 | 31.1 | 11.4 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wu, Y.; Qu, F.; Zhao, H.; Su, Y. Assessment of CO2 Capture in FA/GGBS-Blended Cement Systems: From Cement Paste to Commercial Products. Buildings 2024, 14, 154. https://doi.org/10.3390/buildings14010154
Liu J, Wu Y, Qu F, Zhao H, Su Y. Assessment of CO2 Capture in FA/GGBS-Blended Cement Systems: From Cement Paste to Commercial Products. Buildings. 2024; 14(1):154. https://doi.org/10.3390/buildings14010154
Chicago/Turabian StyleLiu, Jingxian, Yingyu Wu, Fulin Qu, Hanbing Zhao, and Yilin Su. 2024. "Assessment of CO2 Capture in FA/GGBS-Blended Cement Systems: From Cement Paste to Commercial Products" Buildings 14, no. 1: 154. https://doi.org/10.3390/buildings14010154
APA StyleLiu, J., Wu, Y., Qu, F., Zhao, H., & Su, Y. (2024). Assessment of CO2 Capture in FA/GGBS-Blended Cement Systems: From Cement Paste to Commercial Products. Buildings, 14(1), 154. https://doi.org/10.3390/buildings14010154