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Abstract: Based on the engineering background of weakly cemented roadways and adjacent cham-
bers in Western China, a numerical simulation method was used to examine the changes in stress
distribution and increment in the surrounding rock of weakly cemented roadways adjacent to cham-
bers. The results show that the surrounding rock stress of the weakly cemented roadway adjacent to
the chambers increases by approximately 30%. The vertical stress of the surrounding rock mainly
expands along the vertical direction, and the expansion range is 7–12 times that of the chamber
height. The horizontal stress of the surrounding rock mainly expands along the horizontal direction,
and the expansion range is 3–6 times that of the chamber width. Based on the support idea of
“allowable deformation” + “relief pressure” + “maintaining roadway shape”, the support technology
of weakly cemented roadways adjacent to chambers is established with “full section U-shaped steel
shed + filling flexible materials between the steel shed and surrounding rock + patching the roof
bolt + laying concrete on floor”. An engineering test based on the above support technology was
carried out, and it was found that the deformation of the weakly cemented roadway adjacent to the
chambers was 0 in 20 days.

Keywords: weakly cemented roadway; adjacent chambers; surrounding rock stress; surrounding
rock deformation; U-shaped steel shed

1. Introduction

The coal resources with good storage conditions in Central and Eastern China have
been greatly reduced, leading to the gradual development of mining in the western region.
Consequently, the effective exploitation of coal resources in the western region has become
a significant concern influencing energy security [1–4]. Given the unique diagenetic climate
and sedimentary procedures in this part of China, a particular type of soft rock, identified
as weakly cemented soft rock, is prevalent in the coal measures. Soft rock that is weakly
cemented possesses traits such as poor strength and inadequate cementation, making it
prone to becoming muddy upon water exposure. This can potentially lead to bolts losing
their anchoring ability. Roadways built with weakly cemented material are typically vulner-
able to significant issues like rapid decrease in anchoring force, substantial deformation of
the neighboring rock, and a brief self-stabilization period. Although the traditional active
support methods such as anchor bolt, anchor cable, and combined support with an anchor
cable net can effectively control the deformation of the surrounding rock of coal roadways,
such methods cannot limit the deformation of the surrounding rock of soft rock roadways
and cannot meet the requirements of the support of soft rock roadways under the current
coal mining conditions, and the stability of the roadway is difficult to be guaranteed [5–9].

In recent years, many scholars have performed considerable research on weakly
cemented rock roadways and control theory and technology of surrounding rock adjacent
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to chambers. Some scholars have studied the characteristics of weakly cemented roadways
from the perspective of laboratory tests and theoretical analysis. Liu et al. [10] combined
laboratory tests and theoretical analysis methods; the relation between the permeability
and micropore structures was studied, and the permeability evolution mechanism of the
weakly cemented sandstones was eventually clarified. By exploring the composition of
weakly cemented siltstone. Yu et al. [11] analyzed the unstable factors affecting the weak
cemented siltstone roadway and studied the support scheme of this kind of roadway
reinforced by grouting. Ru et al. [12] investigated the creep characteristics of weakly
cemented soft rock under different initial confining pressures and the influence parameters
on the creep characteristics of weakly cemented soft rock. Other scholars used numerical
simulation to explore the stress distribution characteristics of weakly cemented roadways
and put forward support schemes. Meng et al. [13] used a variety of research methods to
analyze the stress distribution characteristics of weakly cemented roadways and proposed a
comprehensive reinforcement technology combining high-prestressed strong anchor cables
and high-pressure grouting. Through the usage of numerical simulation methods, the
distribution characteristics of the deviatoric stress and plastic zone of the encircling rock
in a deep mine’s goaf were examined by Huang et al. [14]. Zhang et al. [15] suggested
that to effectively regulate weakly cemented roadways and enhance the stress state and
mechanical properties of the surrounding rock, careful consideration should be given to
the roadway’s support structure, support resistance should be increased, and the roadway
section should be optimized. Yang et al. [16] proposed a “strong column and solid bottom”
reinforcement design plan for the surrounding rock of a roadway and adjacent chambers
within 20 m. Zhou et al. [17] discussed and gave the failure mechanism of weakly cemented
roadways and corresponding supporting principles. After testing various support schemes,
it was concluded that the passive support of “single prop + top beam” plays an important
role in controlling roof subsidence.

The aforementioned research studies serve as valuable resources for managing the
rocky surroundings of weakly cemented soft roadways and neighboring chambers [18–23].
However, there is little research on the support of weakly consolidated roadways disturbed
by the excavation of the surrounding chamber. In field engineering, support parameters
are usually designed according to experience, which cannot effectively ensure the stability
of the roadway.

Therefore, further analysis is still needed to understand the stress distribution in the
rocks surrounding such roadways near chambers and to explore the intrinsic connection
between the stress distribution in rocks and the structural stability support of the road-
way [24–27]. This study utilizes the numerical simulation technique to investigate the stress
distribution patterns and increase in stress over time in the weakly cemented passageways
of a coal mine in Western China. Its aim is to ascertain the stress distribution and stability
support mechanism of the adjoining weakly cemented soft roadways near cavities.

2. Research Background
2.1. General Situation of Roadway Geology and Support

This research focuses on conducting research on the 2-2 medium-coal roadway in a
coal mine located in Western China. Figure 1 displays the position of the 2-2 medium-coal
roadway. The 2-2 medium-coal roadway is excavated horizontally from the 3-1# coal to the
2-2# coal from east to west, with a total length of 572 m, buried depth of 400 m, and the
length to the uphill point is 460 m. The 2-2 medium-coal roadway is 27–45 m above the
chambers of 3-1# coal. The 2-2 medium-coal roadway is about 48.6 m away from the main
inclined shaft on the north side, and its width increases from 21 m to 25 m from west to east
to the south side of the intake airflow roadway. The west opening of the 2-2 medium-coal
roadway is connected with the transportation roadway.
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Figure 1. 2-2 medium-coal roadway location. 
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Figure 3. Schematic diagram of roadway support. 

Table 1. Statistical table of support parameters. 

Position Anchor Size (mm) Row/Line Space 
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Anchor Cable Size 
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(mm) Shotcrete 

Figure 1. 2-2 medium-coal roadway location.

The 2-2 medium-coal roadway is designed with a cross-section that features a straight
wall and a semi-circular arch. It measures 5.4 m wide and 4.1 m high. Figure 2 illustrates that
the roof comprises mainly sandy mudstone and siltstone, with the floor also predominantly
made up of sandy mudstone. Figure 3 displays the support section of the 2-2 medium-coal
roadway with detailed support parameters enumerated in Table 1.
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Table 1. Statistical table of support parameters.

Position Anchor Size (mm) Row/Line Space (mm) Anchor Cable Size (mm) Row/Line Space (mm) Shotcrete

Roof Φ20 × 2400 800 × 1000 Φ17.8 × 7300 1500 × 3000 Depth: 150 mm
Strength: C25Sides Φ20 × 2400 1000 × 1000 — —

2.2. Reasons for Deformation of Weakly Cemented Soft Roadways

Once the digging process of the 2-2 medium-coal pathway was finalized, the nearby rock
situated 150 m away from the transporting roadway showed significant deformity, causing
damage to the support structure. Over the span of two weeks, the total dimensional change of
the 2-2 medium-coal pathway’s roof and floor surpassed 1500 mm. The distortion in the adjacent
rock exhibited both asymmetrical and varying traits. The overall deformation is large, and the
anchors fall off in some areas. Figure 4 shows the roadway deformation. The deformation of the
roadway side gradually increases within 15 days after roadway excavation, the roof subsidence
is small in amplitude, and the bottom floor has a slime phenomenon.
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2.2.1. Stress Concentration from Adjacent Chambers

Utilizing the engineering analogy method, this synopsis determines that given identi-
cal coal and rock conditions, as well as the same original rock stress and support methods,
the roadway incurs damage due to variations in the chamber distribution range. Combined
with Figure 1, it can be seen that the instability observed in the 2-2 transportation-inclined
roadway is primarily influenced by the stress concentration from neighboring chambers.
Table 2 provides a statistical breakdown of the results garnered from the comparison analy-
sis of the engineering project.

Table 2. Analysis results of engineering analogy.

Category
Comparison of 2-2 Medium-Coal Roadway

Damage Section Safe Section

Deformation Severe deformation No damage

Conditions of rock The roof is mainly sandy mudstone and siltstone, the floor is mainly sandy mudstone

Initial stress Same basically

Distribution of chambers Above the chambers At the edge of chambers

Support method Anchor (cable) support

An engineering analogy reveals that the degree of damage in weakly cemented soft
roadways is directly proportional to the distribution distance from the neighboring cham-
bers, providing the rock conditions, initial rock stress, and support method remain con-
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sistent. Therefore, it is speculated that the main cause of damage in the 2-2 medium-coal
roadway is affected by the stress concentration of adjacent chambers, and the specific im-
pact characteristics will be analyzed in detail later. Table 2 shows the analysis results of the
engineering analogy. According to the actual situation on site, parts of roadway deforma-
tion exceeding 100 mm are divided into damaged sections, and the roadway deformation
parts below this value are divided into safety sections.

2.2.2. Physical and Mechanical Properties of Surrounding Rock

For the weakly cemented soft rock surrounding the 2-2 medium-coal roadway, a combi-
nation of sampling and various property tests was performed which tested attributes such as
density, elastic modulus, compressive strength, tensile strength, cohesion, and internal friction
angle. The results of these tests are depicted in Figure 5 and summarized in Table 3. The bearing
capacity of surrounding rock is negatively impacted by the reduced compressive strength and
cohesion found in weakly cemented rock compared to ordinary soft rock.
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Table 3. Physical and mechanical parameters of weakly cemented soft rock.

Rock Position Density
(kg·m−3)

Elastic
Modulus

(GPa)

Compressive
Strength

(MPa)

Cohesion
(MPa)

Internal
Friction

Angle (◦)

Poisson’s
Ratio

Sandy
mudstone Roof

2.33 1.46 12.9 2.42 24 0.26

Siltstone 2.28 1.01 7.6 1.88 22 0.24

Sandy
mudstone Floor 2.22 1.82 10.8 3.41 25 0.29

The surrounding rock of the 2-2 medium-coal roadway was microscopically analyzed,
and the physical components of the roadway roof and floor were obtained, as listed in
Table 4. The mineral composition is mainly clay minerals such as chlorite, indicating that
there are many voids in the rock mass and good connectivity, resulting in a weak overall
structure and easy swelling and disintegration in contact with water.

Table 4. Physical component of surrounding rock.

Rock Position Skeletal Minerals Skeleton Mineral
Content (%)

Cementitious
Minerals

Cemented Mineral
Content (%) Judgment

Sandy
mudstone

Roof
Quartz and biotite 60–75 Illite and chlorite 25–40

Swelling
soft rockSiltstone Plagioclase and albite 45–50 Montmorillonite and

chlorite 50–55

Sandy
mudstone Floor Quartz and biotite 40–50 Illite and chlorite 50–55
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3. Stress Distribution Characteristics of Surrounding Rock
3.1. Numerical Model Construction
3.1.1. Numerical Model Size

FLAC3D 5.0 software was used for numerical simulation, and the actual model was
simplified to establish a three-dimensional model. The boundary effect’s impact was
lessened by enlarging the boundary of the engineering model suitably. The model extends
600 m along the X-axis, 450 m along the Y-axis, and 150 m along the Z-axis. The numerical
model is shown in Figure 6.
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3.1.2. Unit Parameters of Numerical Model

The numerical model’s rock stratum’s dip angle was set to 5◦, accounting for the coal
mine’s engineering geological conditions. It was homogeneous with a uniform thickness.
Fine sandstone from the 2# coal formed the upper boundary of the numerical model, while
the lower boundary comprised fine sandstone from the coal 3#. The numerical model’s
constitutive relation is defined by the elastic–plastic M-C model. The numerical model
necessitates the calculation of certain physical and mechanical parameters of the rock
stratum, which are presented in Table 5.

Table 5. Physical and mechanical parameters of rock.

Strata Thickness
(m)

Density
(g·cm−3)

Bulk Modulus
(GPa)

Shear Modulus
(GPa)

Internal Friction
Angle (◦)

Cohesion
(MPa)

Tensile Strength
(MPa)

1# Fine sandstone 14.00 2.10 0.50 0.24 35 2.42 0.25

2-1# coal 2.60 1.87 0.40 0.23 29 0.34 0.20

Sandy mudstone 4.00 2.15 0.40 0.68 31 6.53 0.86

2-2# coal 3.00 1.56 0.45 0.25 26 0.34 0.29

Siltstone 2.00 1.90 0.72 0.48 40 4.84 0.96

2# Fine sandstone 4.00 2.20 0.38 0.25 41 2.42 0.25

2-3# coal 2.60 1.68 0.41 0.22 29 0.34 0.24

Conglomerate 15.00 2.60 0.58 0.19 36 2.13 0.33

3# Fine sandstone 6.00 2.18 0.36 0.21 39 2.42 0.32

Coal line 2.50 1.46 0.38 0.20 29 0.34 0.26

4# Fine sandstone 10.00 1.95 0.42 0.26 40 2.42 0.31

3-1# coal 7.00 1.50 0.45 0.27 27 0.34 0.29

5# Fine sandstone 3.00 1.87 0.40 0.24 38 2.42 0.35

3.1.3. Calculation Scheme of Numerical Model

The numerical model’s front, back, left, right, and top parameters were determined
with stress control according to the in-situ stress test outcomes, while displacement control
was applied to the bottom parameter. This is demonstrated in Figure 7. A horizontal
pressure of 25 MPa was applied to the model’s left and right limits, 7 MPa horizontal
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stress to the front and rear limits, and 10 MPa vertical stress to the top parameter, while
the bottom limit restricted the model’s displacement. The yellow dotted line in Figure 5
indicates the excavation scope of the chambers. The protocol for the simulation is as follows:
1⃝ establishing the initial in situ stress balance state, 2⃝ excavation of unsupported chambers

of 3-1# coal, 3⃝ excavation of supported 3-1# coal, and 4⃝ the excavation step is 20 m.
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3.2. Stress Distribution Characteristics of Surrounding Rock

The numerical calculations indicate that Figure 8 depicts the vertical stress distribution
of the 2-2 medium-coal roadway, while Figure 9 presents the spatial distribution curve of
the vertical stress.
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Figure 9. Gradient distribution curve of vertical stress and stress increment: (a) vertical stress
distribution curve above chamber 1 of 3-1# coal; (b) vertical stress increment gradient distribution
curve above chamber 1 of 3-1# coal; (c) vertical stress distribution curve above chamber 2 of 3-1# coal;
(d) vertical stress increment gradient distribution curve above chamber 2 of 3-1# coal.

As shown in Figure 8, when the initial in situ stress is balanced, the 2-2 medium-coal
roadway’s vertical stress on the rock layer is 11.4 MPa. This is less than the 13.6 MPa
recorded in chamber 1 of the 3-1# coal and the 12.4 MPa found in chamber 2 of the 3-1# coal.
Once the 3-1# coal chambers are excavated, the nearby rock strata of both chamber 1 and
chamber 2 are impacted by the mining operation, resulting in the vertical stress dropping
to 0.3 MPa and 0.4 MPa, respectively. In the 2-2 medium-coal roadway above chamber
1 and chamber 2 of 3-1# coal, the vertical pressures exerted by the neighboring rock are,
respectively, 13.9 MPa and 13.4 MPa.

The above description illustrates that the excavation of the chambers in 3-1# coal
releases a certain vertical stress to the position of the 2-2 medium-coal roadway. Once
the 3-1# coal chambers are fortified, the mid-point of the release zone for the stress of the
surrounding rock extends upwards by 4 m for both chamber 1 and chamber 2. The vertical
pressure of the adjacent rock in the 2-2 intermediate-coal roadway subsequently intensifies
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to 14.8 MPa and 14.3 MPa, which is a respective increase of 3.4 MPa and 2.9 MPa compared
to the original in situ stress equilibrium.

As the vertical distance increases, the gradient of the vertical stress increment for
the rock layer above the 3-1# coal chambers initially declines, then increases, and finally
decreases again. The stress increment gradient reaches its peak of 0.82–0.86 MPa·m−1

when the distribution stress of the rock layer exceeds the original in situ stress. The stress
increment gradient subsequently declines as the vertical distance grows. The increase
in stress gradient drops to 0 in the stress release zone of the adjacent rock. The stress
increment gradient changes from 0.42–0.44 MPa·m−1 to 0.12–0.16 MPa·m−1 as the vertical
distance continues to increase. The stress from the neighboring rock, as described above,
moves upwards to the location of the 2-2 medium coal passage after supporting the 3-1#
coal units. The digging and additional support of these 3-1# coal units intensify the stress
concentration in the 2-2 medium coal passage.

When the chambers of 3-1# coal are unearthed without any support, the vertical
stress on the medium-coal roadway 2-2 resting above chamber 2 of 3-1# coal escalates
from 11.4 MPa to 13.9 MPa. The pressure on the 2-2 medium-coal roadway over chamber
1 of 3-1# coal also elevates from 12.4 MPa to 14.4 MPa. When the 3-1# coal chambers
receive support during the excavation process, the vertical stress on the 2-2 medium-coal
roadway above chamber 2 of 3-1# coal further increases from 13.9 MPa to 14.8 MPa. The
vertical stress of the 2-2 medium-coal roadway above chamber 1 of 3-1# coal increased from
14.4 MPa to 15.3 MPa. Following the excavation of the chambers, there is a notable increase
in the degree of stress concentration and deformation of the rock surrounding the adjacent
weakly cemented soft roadway.

4. Soft Rock Roadway Support Design
4.1. Analysis of Support Ideas

Following the excavation of the chambers, the increased stress on the surrounding rock
combines with the existing rock stress. This total stress surpasses the critical stress point which
causes the deterioration of the surrounding rock. Consequently, the weakly cemented soft
roadway adjacent to the chambers crumbles. For the safe and normal operation of the roadway,
and to manage the deformation of the neighboring rock within acceptable parameters, the
support structure must possess significant support strength, be adaptable in form, and be
capable of sustaining extended periods of deformation and high resistance. Given the U-shaped
steel shed’s ability to uphold the structure of the roadway section and offer comprehensive
support, it is crucial to utilize this U-shaped steel shed as the primary means of support.

The contact between the U-shaped steel shed and nearby rock is challenging due to the
significant distance between them and the irregular surface of the rock. As a result, U-shaped
steel sheds are easily damaged to varying degrees under concentrated loads, reducing the
bearing capacity of U-shaped steel sheds and other supporting components. Therefore, on the
basis of the full section of the U-shaped steel shed supporting the roadway, it is necessary to
fill flexible materials between the U-shaped steel shed and surrounding rock and combine the
U-shaped steel shed and flexible materials to form a supporting structure. The above supporting
structure can not only realize the uniform and stable release of surrounding rock stress, but also
maintain the shape of the roadway section for a long time.

In order to minimize harm to the U-shaped steel shed from nearby rock extrusion, and
to maintain surrounding rock deformation under control, it is crucial to reinforce the sup-
port on significant components and raise the maximum load-bearing stress of the support
structure. When supporting a weakly cemented soft roadway, full consideration should
be given to “allowing deformation”, “releasing stress”, and “limiting shape”. “Allowing
deformation” refers to the capacity of the supporting structure to permit a certain level of
space for the deformation of nearby rocks. The term “releasing pressure” implies that the
surrounding rock can relieve a specific amount of stress. The term “limiting state” refers to
the restriction of the deformation of the adjacent rock to a manageable extent to maintain
the shape of the roadway section, as detailed in Table 6.
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Table 6. Support mode for key parts of roadway.

Support Position Support Form Effect Analysis

Roadway section

U-shaped steel shed Load evenly and ensure the shape of the
roadway section

Shotcrete Protect supporting structure and
surrounding rock

Sweep roof and floor + repair the anchor rod Clean up broken rock and restrain the
deformation of U-shaped steel

Between surrounding rock and
U-shaped steel shed Filling behind the cobblestone wall Releasing pressure

Legs of U-shaped steel shed Shed anchor Restrain the deformation of U-shaped steel

Floor Laying steel mesh + concrete floor Restrain the deformation of U-shaped steel

4.2. Determination of Support Parameter

Before executing the parameter design of the support scheme centered around “al-
lowing deformation”, “releasing stress”, and “limiting shape”, it is vital to first calculate
the size of the 2-2 medium-coal roadway support section and the thickness of the flexible
materials to be filled.

Figure 10 shows the need to maintain a section size of 4.6 m (width) by 4.1 m (height)
for the 2-2 medium-coal roadway in order to meet the functional requirements for transport-
ing employees and materials, and due to construction cost considerations. The roadway
features a 2.3 m radius semi-circular arch with a straight wall height of 1.8 m. Once debris
from the roof and floor are cleared, the rooftop, both sides, and the floor each provide space
measuring 1.6 m, 0.5 m, and 0.3 m, respectively. The roof is filled with pebbles to a thick-
ness of 1.5 m, accompanied by a 0.1 m thick U-shaped steel layer, with the sides filled to a
thickness between 0.3 and 0.5 m. There is also a 0.3 m thick layer of concrete on the floor.
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Figure 10. Schematic diagram of roadway size (unit: mm).

Following the determination of the roadway section size, a numerical calculation
model was established to examine the control effect of a full-section U-shaped steel shed
support, along with cobble fillings between the steel shed and the surrounding rock, on
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the deformation of the surrounding rock. As depicted in Figure 11, the model dimensions
are 50 m in height, 50 m in width, and 30 m in thickness. The constitutive relation chosen
for this study is the Mohr–Coulomb model. The model’s top was subjected to a vertical
stress of 10 MPa, while its left and right edges experienced a horizontal stress of 25 MPa.
The model’s front, rear, and bottom borders are displacement boundaries. U-shaped steel
adopted a beam unit.
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Figure 11. Schematic diagram of numerical calculation model.

Figure 12 lists the results before and after pebble filling. The effects of failure on the
surrounding rock remain unchanged pre and post cobble filling. The bottom showcases
tensile failure while the sides display shear failure, and the top reflects a combination of
tensile and shear failure. The disparity lies in the expansion of the plastic zone in the
surrounding rock post cobble filling. The extent of the plastic zone enlarges from covering
20% of the roadway’s width to covering 40% after cobble filling. The growth of the plastic
zone at the shoulder corner of the roadway is highly noticeable, reaching a maximum value
of 60% of the roadway’s width. The calculation results show that obvious deformation
occurs after cobble filling, which is beneficial for improving the interaction between the
surrounding rock and the U-shaped steel shed.

Figure 13 shows the distribution characteristics of stress and plastic zone of sur-
rounding rock under different shed spacing conditions. Cobble filling triggers a noticeable
alteration in the horizontal and vertical stress distribution characteristics of the surrounding
rock. Prior to cobble filling, the maximum vertical stress of the surrounding rock measures
1.24 MPa, while the maximum horizontal stress measures 0.12 MPa. The extension length
of an axial force greater than 170 kN on a U-shaped steel shed stands at 2.03 m. After cobble
filling, the highest vertical stress exerted on the surrounding rock is 3.48 MPa, and the most
significant horizontal stress is 1.12 MPa. The U-shaped steel shed axial force’s distribution
length exceeds 170 kN, measuring 5.35 m. Before the filling of cobbles, the edge of the
rock’s stress distribution range was 0.05 m from the U-shaped steel shed. However, after
the cobble filling, the stress distribution range edge was 0.3 m from the U-shaped steel shed.
The results from the previously mentioned calculations demonstrate that filling the gap
with pebbles between the U-shaped steel shed and the neighboring rock can significantly
hinder direct interaction between the two. Moreover, this can also decrease the stress that
the surrounding rock exerts on the U-shaped steel shed.
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Figure 12. Results of numerical simulation (a) without filling between surrounding rock and U-
shaped steel shed and (b) with filling between surrounding rock and U-shaped steel shed. 
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ezoid and a straight wall with a tangential arch, measuring 2.41 m and 2.35 m in width, 
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semicircular arch and a rectangle, the burdened rock area is minimal, with widths meas-
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Figure 13. Distribution characteristics of stress and plastic zone of surrounding rock under different
shed spacing conditions: (a) shed spacing = 0.8 m; (b) shed spacing = 1.0 m; (c) shed spacing = 1.2 m.

The distribution scope of the plastic zone in the 2-2 medium-coal roadway is dimin-
ished following the backing of the U-shaped steel shed. When the shed spacing is 0.8 m,
the plastic zone is concentrated at the edge of the U-shaped steel shed. The plastic zone
focuses on the roof when the shed spacing measures 1 m, with a plastic zone range of
0.2 m. Conversely, an increase in the shed spacing to 1.2 m leads to a notable expansion
of the plastic zone, with its range growing to 0.5 m, far larger than that of shed spacing of
0.8 m and 1 m. Moreover, the effect of this decrease on the plastic zone’s area is roughly
equivalent to shed spacings of 0.8 m and 1 m.

Figure 14 shows the amount of roadway deformation after adopting the new support
method. As can be seen from the figure, the deformation of the roof, floor, and left and
right sides of the roadway is always 0 within 20 days; that is, after the new support method
is adopted, the deformation of the weakly cemented roadway adjacent to chambers had no
deformation.
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Figure 14. Schematic diagram of roadway support effect. (a) Surface displacement monitoring;
(b) surface displacement monitoring.

5. Discussion

The summary of the plastic zone and horizontal displacement distribution traits of the
surrounding rock related to rectangular, trapezoidal, and straight wall roadway sections
with a semi-circle and tangent arch is outlined in Figure 15. The plastic zone of the surround-
ing rock becomes significantly broad when the roadway’s section shape is a trapezoid and
a straight wall with a tangential arch, measuring 2.41 m and 2.35 m in width, respectively.
When the shape of the roadway section is a straight wall combined with a semicircular
arch and a rectangle, the burdened rock area is minimal, with widths measuring 1.75 m
and 1.96 m, respectively. However, when the road’s section shape is a straight wall with
a semicircular arch only, the extent of the burdened area is at its slightest. The horizontal
displacement of the surrounding rock is minimal (108.66 mm and 124.93 mm, respectively)
when the roadway has a section shape of a straight wall combined with a semicircle arch
and a rectangle. The smallest horizontal displacement occurs when the roadway’s section
shape is a straight wall accompanied by a semicircular arch.
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For instance, when considering a trapezoid section shape and a straight-wall roadway
with a tangential arch, the horizontal displacement for the two sides increases to 2.38 and
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1.94 times that of the rectangular roadway, implying a rise of 138% and 94%, respectively.
When the road design features a rectangular form with a semi-circular arch, the horizontal
shift on both sides is 0.85 times the displacement of the straightforward rectangular road,
signifying a 15% reduction.

The analysis indicates that when the section shape is rectangular, it exhibits minimal
plastic zone range and horizontal displacement of its sides. This is particularly true for
straight walls with a semicircular arch, which yield the smallest range and displacement of
any section shape.

6. Conclusions

(1) Once the group of chambers has been excavated, the stress from the surrounding
rocks will be dispersed to the neighboring weakly bonded rock formations. The expansion
of the vertical stress predominantly occurs in the upward direction, with the expansion
distance amplifying as more roadways are excavated. This can impact the rock formation’s
position to a distance equivalent to 7–12 times the height of the chamber.

(2) Following the unearthing of the chamber group, horizontal pressure mainly widens
in a lateral direction. The magnitude of this expansion grows in proportion to the quantity
of roadways excavated. This can influence the location of the rock layer up to a scope
that is 3–6 times the width of the chamber itself. The concentration of stress in the weakly
cemented rock layer primarily originates from the vertical discharge of stress caused by the
chamber group.

(3) The roadway support technology with U-shaped steel as the core, cobblestone
wall filling, and key parts-reinforced support was adopted to form the weak cemented soft
rock roadway support technology for adjacent chamber groups. The consistent surface
displacement of the weakly cemented soft rock roadway guarantees that the surrounding
rock’s deformation and failure are within an acceptable limit, thus ensuring the safe and
regular operation of the roadway.
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