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Abstract: The construction process is a dynamic one, and the complexity of the working conditions
and the high level of uncertainty make the construction industry the third most dangerous industry
after mining and agriculture. And since the construction industry is vital to the development of a
country, safety during construction is of particular importance. A great deal of research, studies
and practices have been conducted to reduce potential risks and improve worker efficiency during
the construction process. In recent years, with the rapid development of cognitive neuroscience
and the integration of medical technology, various wearable monitoring devices have been widely
used in the field of building construction for real-time monitoring of workers’ physical and mental
conditions. Among them, the application of EEG (electroencephalogram) in the building construction
process enables researchers to gain insight into the physical and mental state of construction workers
while performing construction tasks. This paper introduces EEG technology and portable EEG
monitoring equipment and summarizes its application in monitoring workers’ adverse reactions
(emotion, fatigue, psychological burden, and vigilance) and construction hazard identification during
the process of construction in recent years, which provides future EEG research in the field of building
construction and construction site safety management.
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1. Introduction
1.1. Research Background

The construction industry plays a critical role in the development of nations and soci-
eties. Over 350 million people work in frontline building construction around the world [1].
However, the complexity and high level of uncertainty of working conditions during the
construction phase make it the third most hazardous industry after mining and agriculture.
Construction accounts for approximately 7% of the total labor force in the United States,
but construction workers account for approximately 20% of all industrial fatalities. Based
on data published in 2010 by the National Institute for Occupational Safety and Health, the
mortality rate among construction workers is 15.2 per 100,000 [2]. Building construction
mainly includes work under confined conditions, work at height, physical handling, lifting,
and demolition operations. The main potential hazards include hypoxia, falls from height,
object strikes, lifting injuries, collapse accidents, and mechanical injuries [1]. According
to the statistical results of national housing and municipal engineering safety accidents in
2018 issued by China’s Ministry of Housing and Urban–Rural Development, there were a
total of 734 construction production safety accidents nationwide, with a total of 840 deaths,
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and according to the type of accidents, there were 383 accidents of falling from height,
which accounted for the largest proportion, accounting for 52.2% of the total number;
112 accidents of object strikes, accounting for 15.2% of the total number; 55 accidents of
lifting and demolition accounting for 7.5% of the total; 54 collapse accidents, accounting for
7.3% of the total; 43 mechanical accidents, accounting for 5.9% of the total; and 87 other
types of accidents, accounting for 11.9% of the total. Construction is a dynamic process with
complex and changing working conditions as well as the possibility of unforeseen circum-
stances at any time [3,4], necessitating a great deal of effort from frontline workers to ensure
that safety incidents do not occur [5]. It is also distinguished by a heavy workload, long
continuous working hours, unhealthy working postures, an unsuitable temperature and
humidity of the working environment, and easy fatigue [6]. Furthermore, due to a lack of
sleep or mood swings [7,8], construction workers may already be fatigued when they begin
working [9]. Typically, 20–40% of construction workers exceed recognized physiological
thresholds for physical labor [10]. As a result of being unable to concentrate for extended
periods of time or frequently experiencing mental fatigue, workers are frequently unable
to respond appropriately to potential safety hazards, which can lead to accidents [11]. It
has been discovered that adverse reactions such as increased mental fatigue and cognitive
decline in construction workers can result in hazards [12]. Recognizing and predicting
the occurrence of construction hazards can be accomplished through methods such as the
creation of scene graphs with interaction-level scene descriptions [13]. As a result, we can
effectively reduce the occurrence of hazards during construction by monitoring both the
subjective situation of construction workers and objective identification and prediction of
hazards in the construction environment.

However, our research on the impact of environmental personnel is still dominated by
subjective evaluation, which is the main technical tool used to study the impact of indoor
environmental quality on occupants’ indoor comfort [14]. Typically, people assess indoor
comfort by completing various evaluation questionnaires, such as thermal comfort [15],
visual comfort [16], acoustic comfort [17–19], and perception of indoor air quality [20,21].
The same is true for outdoor building construction environments [22], where we obtain
current physiological conditions of construction workers primarily through subjective
questionnaires [12], and construction hazard identification primarily through personal
inspections by the project manager [23,24], which are overly subjective [25] and closely
related to the project manager’s personal work status. Subjective evaluation allows us to
obtain a large amount of data for research in a short period of time more conveniently,
but it also has drawbacks, such as limited topics that can be designed; a wide range of
investigations but insufficient depth; variable quality of survey results; and susceptibility to
the subjective thoughts of the subjects [9]. As a result, there is an urgent need for effective
probes that can monitor the real-time status of building construction personnel in complex
building construction environments. EEG, as a noninvasive and noninvasive neuroimaging
technique, can provide accurate measurements of brain activity directly [26,27]. The brain
can plan and execute autonomous movements, and many purposeful actions and behaviors
are accomplished through various computational sequences within the brain [28], and
EEG signals can also directly respond to nervous system activity [29]. Currently, physio-
logical monitoring, such as EEG, is widely used in indoor environmental research [30,31].
Hu et al. [30] investigated the effects of various indoor lighting conditions on work ef-
ficiency by monitoring subjects’ EEG signals. EEG has a variety of applications in the
field of sleep monitoring. PSG (polysomnography), for example, is used to determine
sleep staging [32,33] and the presence of sleep-related disorders (e.g., OSA (obstructive
sleep apnea) [34,35], CSA30 (central sleep apnea) [36], RBD (rapid eye movement sleep
behavioral disorder) [37], and so on) in personnel [38].

With the extensive development of cognitive neuroscience technology in recent years,
EEG technology can now be used not only for rational monitoring of indoor people, but
also for outdoor environments, such as monitoring outdoor people’s movement [39,40],
observing pedestrians’ avoidance behaviors in dangerous situations [41], and exploring
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outdoor thermal comfort and optimal outdoor environment [42]. People who work outside
for long periods of time are exposed to more complex scenarios that consume more energy
than those who work indoors, making them more susceptible to physical and psychological
fatigue, as is the case in the construction industry. The physical and mental health of
construction workers is a source of concern due to their long hours of outdoor work [6].
Many studies have been conducted in recent years on the application of EEG technology to
the identification of hazardous behaviors and the monitoring of workers’ adverse reactions
on construction sites, and the application of EEG in the field of construction is conducive to
the in-depth understanding of the physical and mental state of construction workers during
construction tasks, as well as the prediction and identification of hazards on construction
sites. In order to elucidate, in this paper, we first provide an overview of the EEG technology,
then summarize recent applications and research on the monitoring of workers’ adverse
reactions and the identification of construction hazards in the field of construction, and
finally, we look forward to the future development of this field.

1.2. EEG Technology
1.2.1. Four Functional Areas of the Brain

The human brain is the most complex structure known to man, with trillions of
organized cells. The human brain is divided into two hemispheres, left and right, each
of which controls the response body and receives information from it. Each hemisphere’s
cerebral cortex is divided into four distinct lobes—frontal, parietal, temporal, and occipital—
that are separated by deep sulcal fissures and have distinct functions. We’ve described
the function and location of each lobe in Figure 1. Understanding these will aid us later in
understanding the EEG technique.
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1.2.2. Five Brain Wave Frequencies

Hans Berger discovered EEG activity in 1929 and invented a technique for measuring
EEG with the goal of providing “a window to the brain.” There are five main brain waves
in the human brain, as shown in Table 1, ranging in frequency from low to high. These
waves are closely related to states such as sleep, thought, cognition, arousal, and increased
coordination when the brain is processing tasks. A typical EEG is made up of different
frequency bands, and depending on the state of consciousness in which it is located, a
specific brain wave will dominate, implying that different frequencies of brain waves
correspond to different brain activities [43]. Different EEG frequency bands correspond
to different subjective feelings and tasks, and the energy or work power spectral density
(PSD) of the EEG waves in each frequency band can indicate that different parts of the
brain are activated, reflecting different physiological states [44].
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Table 1. The subjective feelings and tasks corresponding to the five brain waves.

Band Name Frequency Band (Hz) Subjective Feeling State Relevant Mandates and Behaviors

Delta (δ) 0.5 Hz–4 Hz dreamless sleep, non-REM sleep, asleep Drowsiness, immobility, difficulty
concentrating

Theta (θ) 4 Hz–8 Hz Intuition, recollection, deeply relaxed Be creative and intuitive; Distraction, lack
of concentration

Alpha (α) 8 Hz–13 Hz relaxed, not irritable, not sleepy Meditative, no movement
Beta (β) 13 Hz–30 Hz Alert, excited, focused Conduct mental activities

Gamma (γ) 30 Hz–Up High performance Advanced information processing and
information-rich task processing

1.2.3. The International 10–20 Electrode Placement System

The International 10–20 system electrode placement method, as shown in Figure 2, is
a standard electrode placement method prescribed by the AASM (American Academy of
Sleep Medicine) that is designed to maintain a standardized EEG testing methodology to
ensure that the results of a subject’s study can be compiled, replicated, and validly analyzed
and compared using the scientific method.
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Figure 2. Labels for points according to the International 10–20 electrode placement system.

Electrode placement is primarily cranial in reference and does not differ based on
individual differences in head circumference or head shape. The sagittal line is the anterior–
posterior line from the root of the nose to the external occipital ridge, and the coronal line
is the left–right line between the anterior recesses of the ears. The focal point of the two
lines is at the top of the head, where the Cz electrode is located. The sagittal lines were
Fpz, Fz, Cz, Pz, and Oz from anterior to posterior, and the spacing between the points was
20% of the sagittal line length except for the distances between Fpz and the root of the
nose and Oz and the extra-occipital ramus, which were 10% of the sagittal line length; and
along the coronal line, from 10% of the left anterior recess of the left ear, T3, C3 and Cz.
The other points’ locations are shown above. Arabic numerals were used to represent the
electrodes, with the left hemisphere being odd and the right hemisphere being even, A1
and A2 representing the right and left earlobes, respectively, and the numbers decreasing
from the lateral to the midline.
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1.2.4. Portable EEG Monitoring Devices

Portable monitoring devices, such as smartwatches, have grown in popularity in
recent years and can be directly connected to a person’s cell phone, making it simple for
the user to view various data and understand his or her current physiological state (e.g.,
heart rate, blood pressure, skin temperature, sleep quality, etc.), to better understand his or
her health [45].

In the field of construction, the commonly used portable monitoring equipment
is shown in Figure 3. It mainly includes electroencephalogram, eye movement meter,
accelerometer, skin temperature sensor, heart rate monitor, inertial measurement unit,
and so on. People’s physiological signals can be monitored by various portable devices.
Electroencephalograms (EEGs) can be used to monitor EEG signals, which are critical
for judging construction unsafe behaviors and workers’ adverse reactions; construction
workers can also wear portable eye-tracking devices to determine risks during the work
process [46]; and skin temperature sensors can monitor the skin temperature of construction
workers in the moment to obtain the thermal sensation situation at the moment. Millions
of people in various industries, including construction workers, use personal portable
devices on a daily basis to monitor their heart rate and other health-related physiological
parameters to ensure their well-being [47,48]. Nnaji et al. [48] demonstrate, using data from
the National Institute for Occupational Safety and Health (NIOSH) fatality data, that the
likelihood of accidents can be greatly reduced by the prudent use of intelligent portable
monitoring devices.
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The use of intelligent portable monitoring devices has the potential to improve con-
struction safety and efficiency. Because the healthcare industry has been at the forefront of
implementing this type of technology, there are now an increasing number of cases of it
being combined with the construction field [49]. Portable EEG monitoring devices that can
monitor construction workers’ physiological states in real time without causing discomfort
to their physiology are novel ideas in current research. Through application examples, this
section introduces the portable EEG monitoring device from two perspectives: traditional
scalp EEG and ear-EEG.
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Traditional Scalp EEG

Wang et al. [50] created a scalp EEG with a set of electrodes and a microprocessor
installed in a standard helmet to collect EEG data from eight different parts of the wearer’s
brain. The mental fatigue of construction workers was objectively monitored using elec-
troencephalography (EEG) signals, and the EEG signals of 16 construction workers were
recorded while performing their tasks, and the time-frequency-energy data of the acquired
EEG signals were processed using WPT (wavelet packet transform) and CNN (convolu-
tional neural networks) to recognize their current mental fatigue state. The framework
provides a cognitive fatigue state classification that matches the self-reported fatigue state
with an accuracy of 88.85%, which can be useful in reducing construction risky behaviors
and providing assistance in fatigue management for workers.

Chen et al. [51] proposed and tested an EEG-based method for quantifying the mental
load of construction workers. PSD (power spectral density) was used to calculate the
subjects’ post-experimental mental load. The results were consistent with the NASA-TLX
(NASA Task Load Index) mental load score. A portable EEG helmet based on the Neurosky
ThinkGear module (NeuroSky, San Jose, CA, USA) was also developed to collect four
sensing channels at different sensor locations, Fp1, Fp2, Tp9, and Tp10. The location
of Fp1 was associated with logical attention; the location of Fp2 was associated with
emotional attention. The two frontal EEG channels are compared to Tp9 and Tp10, which
can be used as cross-channel references. In addition, an accelerometer was installed on the
microcontroller to capture the three-axis motion of the helmet, as shown in Figure 4. In this
experiment, each subject was asked to (1) sit in a chair and relax for 5 s; (2) climb a ladder
(1 m high, requiring 3–4 s to reach the top); (3) select the appropriate bolt (2–3 s); (4) install
the bolt (4–5 min); and (5) climb down the ladder and then rest. The installation task
required each subject to select the appropriate nut and then tighten the bolt with a wrench.
This task had to be completed three times by each subject. At the end of the experiment, all
subjects were asked to complete a questionnaire to assess task load. Subjects wore helmets
fitted with instruments which were wirelessly connected to a laptop via Bluetooth during
the experiment. Figure 4 depicts a schematic diagram of the experimental subjects and
equipment. Figure 4a depicts the subjects with the experimental equipment, Figure 4b
depicts the EEG monitoring chip, Figure 4c depicts the nuts and bolts used in the mounting
activity, and Figure 4d depicts the ladder that the subjects had to climb.
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Aryal et al. [52] created a sensing system that used infrared sensors attached to a
helmet to monitor skin temperature at four different locations on the face, as well as heart
rate and EEG signals. Physiological data from 12 construction workers were collected, and
analysis revealed that the combination of skin temperature, heart rate, and EEG signals
predicted worker fatigue with an accuracy of up to 82%. Li et al. [53] created a quantitative
method for assessing the level of mental fatigue in subjects based on traditional scalp-based
EEG measurements by examining and analyzing EEG spectra, such as gravity frequency.
By collecting EEG signals from relevant brain regions of the subjects using traditional scalp-
type EEG, Xing et al. [54] determined the positive effects of Progressive muscle relaxation
and Trigeminal nerve stimulation sessions on the adverse emotions of construction workers
at high altitudes.

Ear-EEG

The traditional scalp EEG example was discussed above. Workers are bound to
feel uncomfortable when wearing the helmet for an extended period of time due to the
extremely limited space inside the helmet and the need to place the electrodes inside the
helmet. Furthermore, workers will secrete a lot of sweat when working continuously
outdoors, which will affect the electrode impedance and lead to inaccurate monitoring,
making continuous EEG monitoring of workers inconvenient. As a result, we summarize
another emerging and more popular EEG monitoring device, ear-EEG [55,56].

As shown in Figure 5, Looney et al. [57] developed the world’s first ear-EEG in 2012,
which drew widespread attention at the time. In general, the benefits of using ear-EEG for
monitoring include the fact that it does not obstruct the field of view and that the ear-EEG is
usually fixed in the ear canal for measurement, making it securely positioned and less likely
to fall off. The ear is also less likely to sweat, avoiding the effects of electrode impedance
caused by excessive sweating. While scalp EEG may require the assistance of experienced
assistants, the ear-EEG device can be simply placed in the subject’s ear, saving labor and
improving the stability of continuous monitoring and monitoring efficiency.
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Ear-EEG can be used to monitor facial expressions and body movements, and this
research can aid in emotional recognition and determining the physical and mental states of
construction workers. Matthies et al. [55] created an in-ear headset based on Neurosky EEG
sensors that can control various cell phone functions using human blinking motions and
ear wiggling. In a later study, Matthies et al. [58] used multiple electrodes on a foam earbud
to detect 25 facial expressions and gestures using four different sensing techniques. The
results showed that five gestures had an accuracy of more than 90% and 14 gestures had an
accuracy of more than 50%. Athavipach et al. [56] designed and used an ear-EEG to achieve
basic emotion categorization and demonstrated a high level of accuracy. The studies above
have shown that ear-EEG has a good performance in monitoring and acquiring EEG signals,
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which, combined with its headphone-like convenience, confirms that it can be widely used
in fields such as medical monitoring [59,60] and sleep monitoring [61].

1.3. EEG Monitoring of Worker Adverse Reactions and Construction Hazard Identification

According to the Occupational Safety and Health Administration, more than 6000 fa-
talities or injuries of varying severity related to construction projects occur each year,
accounting for approximately 20% of all fatalities in the United States. In just one year,
773 housing and municipal safety accidents occurred, resulting in 904 deaths [62]. Approxi-
mately 65% of these accidents are caused by falls from great heights, which are frequently
caused by non-compliant interactions between workers and other building components.
Aside from the enormous loss of life and the impact on injured people, there is also a
massive economic loss. To avoid such losses, we must monitor construction workers’
adverse reactions and identify construction job site hazards so that they can be reduced
or eliminated.

Current researchers have shown a link between brain waves of different frequencies
and mental fatigue. Jap et al. [63] found that the energies of EEG signals (α + β)/θ, α/β,
(θ + α)/(α + β), and θ/β can indicate driver fatigue. The (α + θ)/β energy of EEG signals,
in particular, can indicate different degrees of mental fatigue [63–65]. Li et al. [66] used a
two-channel EEG model with 92.3% accuracy to monitor driver fatigue.

1.4. Contributions of the Review

Based on the research background presented above, we know that in recent years,
EEG research and application have played an important role in the aforementioned fields.
With the comprehensive development of cognitive neuroscience technology, it has a greater
potential for future development, providing broader ideas for research in various fields
both indoors and outdoors, and promoting the advancement of times. This paper ex-
amines recent EEG applications in the monitoring of adverse reactions in workers and
hazard identification in building construction, providing directions for future research
and development.

2. Review Methodology
2.1. Literature Research

The study employed a content-based literature review methodology based on content
analysis was used. The exact process of searching for and selecting literature is shown
below. Google Scholar, Science Network, and Science Direct were among the databases
searched during the review exercise. Journal articles, conference papers, and relevant books
were among the target paper types. Finally, a collection of EEG-based literature or books
on the monitoring of risky behaviors and workers’ adverse reactions in construction was
gathered by examining the titles, abstracts, and keywords for human source identification.

To search the literature, Google Scholar, Web of Science, Science Direct, PubMed, and
keywords were used. To ensure the relevance and high quality of the selected literature,
keywords were used in conjunction with the Boolean operators “AND” and “OR” to
conduct a comprehensive search of the literature on EEG in the identification of construction
hazards, the use of EEG in adverse reactions in workers, and portable EEG. In addition,
the search results were examined, and references in the search results were scrutinized.
Although this percentage was small, the review also included highly relevant literature
where milestones appeared in the references, despite the fact that it was likely to be outside
the search time and English language constraints.

Keyword co-occurrence analysis is a text analysis method for determining co-occurrence
relationships between keywords in a given collection of text sets [67] The basic idea behind
keyword co-occurrence analysis is that if two keywords appear frequently together in a text,
they may be related in some way. This can be accomplished by calculating the co-occurrence
frequency of keywords, the co-occurrence matrix, the co-occurrence network, and other
factors. The co-occurrence frequency indicates the number of times two keywords appear
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together in the same text, whereas the co-occurrence matrix and co-occurrence network can
visualize the correlation between keywords. Researchers can use keyword co-occurrence
analysis to uncover patterns and associations hidden in textual data, which can help them
better understand textual content, discover related topics, create concept maps, and so on.
This analysis method is useful for processing large amounts of text data, discovering domain
knowledge, and assisting decision-making.

In this paper, we also use VOSviewer [68] to analyze the related keywords; the core
idea of VOSviewer1.6.18 software is “co-occurrence clustering,” which means that two
things appearing at the same time are related to each other; there are many types of such
correlations, and their strengths and directions differ; different types of groups can be found
based on the clustering of measures of the strengths and directions of the relationships.
Clustering based on measures of the strength and direction of the relationship can be used
to identify different types of groups. The co-occurrence visualization graph, shown in
Figure 6, displays scientific terms that appear at least three times in all titles and abstracts.
The size of the nodes indicates the frequency of a phrase in the entire literature, the thickness
of the line indicates the strength of the association between the phrases, and the color of
the same line indicates the proximity between the phrases.
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Using these two approaches, this paper reviews a total of 22 articles, primarily focusing
on the period between 2019 and 2023, with a small selection of important papers with
representative studies prior to 2019.

2.2. Selection Criteria

The process was as follows, as illustrated in Figure 7, which describes the screening
and adoption criteria of the literature for this review:

• Consider combining EEG monitoring with subjective monitoring during the monitor-
ing process;

• In terms of monitoring adverse reactions in construction workers through EEG, con-
sider mood monitoring, fatigue monitoring, distraction monitoring, and vigilance
monitoring of workers;
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• Aspects of the identification of hazardous behavior in construction through EEG
include monitoring at the construction site and simulation of the construction site
environment in the laboratory through VR technology.
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3. Worker’s Adverse Reaction Monitoring and Construction Hazard Identification

In the process of construction, safety accidents are often caused by the hidden dangers
and risks of the construction process itself and the subjective adverse reactions of the
construction personnel. The risks in the construction process mainly come from hypoxia
caused by long-term operation under closed conditions, accidental falling caused by high-
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altitude operation, object strike caused by physical handling, lifting injury caused by lifting
and dismantling operations, etc. [1]. However, the traditional state recognition is often
used to judge the subjective adverse reactions of construction workers. Traditional state
identification is heavily reliant on subjective ratings derived from subjects’ responses to a
series of body and mind-related questions [69,70]. As a result, respondents’ assessments of
their actual state are frequently biased, and a large sample size is required to compensate
for inter-subject variability and difference, preventing real-time state assessment and
identification [52]. As a result, a real-time state monitoring method is required to accurately
capture the subject’s true state in the moment. The recent boom in EEG technology has
aided in the realization of such an approach, and EEG technology is increasingly being
used to identify construction hazards and monitor construction workers’ adverse reactions
on the job, providing new ideas for improving construction safety.

3.1. Workers Adverse Effects

EEG-acquired EEG signals have been widely studied in the construction field to an-
alyze construction workers’ cognitive state and work status. This includes monitoring
workers’ moods, fatigue, distraction and mental load, and vigilance in the face of con-
struction hazards. For your convenience, I will describe these aspects in the sections
that follow.

3.1.1. Emotional Aspect of Workers

EEG has been shown to monitor and recognize different emotional states in people [71].
Workers’ emotional states are especially important during the construction process. The
emotional state of construction workers is recognized as a significant factor influencing their
performance. Measuring their emotional state should be prioritized to better understand
the changes in workers’ moods while on the job in order to prevent negative effects on job
performance. Among the many methods for measuring mood states, EEG has the greatest
potential for quantitative measurement by overcoming the potential bias of subjective
mood assessments based on surveys.

Athavipach et al. [56] used ear-EEG to classify basic emotions based on the modeling
of valence and arousal emotions. Mir et al. [72] discovered that different types and levels of
noise had a significant effect on the amplitude of the EEG signal, which in turn affected the
emotional state. The negative emotional impact of noise generated by a saw, lift hammer,
and a jackhammer was greatest in the frontal lobe, and the temporal lobe responded
differently to noise types with different acoustic characteristics.

Ensuring the safety of construction workers at high altitudes is particularly impor-
tant because of the year-round characteristics of thin air, low oxygen content and cold
climate [54]. Xing et al. [54] proposed a two-time intervention and a neurophysiological
intervention in the work gap using on-site scaffolding workers as the research subjects. A
sample of 10 subjects was randomly assigned to either the intervention group or the control
group. Emotional and psychological inductions were preformed to simulate the status
of the stenters under normal work conditions. A 13-min intervention consisting of PMR
(progressive muscle relaxation) and TNS (Trigeminal Nerve Stimulation) was then adminis-
tered to the experimental group in a lounge setting, with the control group using normal
resting patterns (i.e., sedentary). During the experiment, wearable EEG sensors were used
to collect EEG signals from the relevant brain regions of the subjects, and the collected EEG
signals were used to indicate the mood and mental state of the subjects. Through statistical
analysis, it was determined that the poor mood and mental state of construction workers
at high altitude can be adjusted by combining PMR and TNS, which provide an effective
guide to address the poor mood of construction workers at high altitude.

3.1.2. Work Fatigue Monitoring

In terms of monitoring worker fatigue, Aryal et al. [52] used a portable EEG to simulate
construction site conditions and concluded that classification accuracy based on features
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extracted from average skin temperature data was 9% higher than that based on heart rate
data, and that combining the two resulted in an optimal accuracy of up to 82%, and also
demonstrated that monitoring thermoregulation from the temples was more effective than
other methods.

Li et al. [53] developed and experimentally validated a quantitative method to assess
the level of mental fatigue of subjects by analyzing and comparing EEG spectral parameters
such as gravity frequency and power spectral entropy for the pre-work fatigue of con-
struction workers, and effectively screened the pre-work fatigue of workers by comparing
experimental performance and workers’ reaction time. Xing et al. [73] designed a variety of
manual processing tasks to stimulate the physical fatigue state, arranged the cognitively
required risk identification task to induce mental fatigue, and tested this using the EEG
integrated analysis method of rhythmic changes, a pilot method for experiments, so that the
results of this study provide a reference basis for the management of fatigue in construction
workers. Tehrani et al. [74] investigated the effect of working at height on the development
of mental fatigue in the context of preventing the risk of falling. Using wavelet transform
and sample entropy two methods, the mental fatigue in the VR environment is evaluated,
and the conclusion that the high intensity work group reflects a higher level of mental
fatigue is reached, and the conclusion can also provide reference for the actual construction
environment is reached.

3.1.3. Distraction and Psychological Burden of Workers

Ke et al. [75,76] investigated worker distraction in noise environments in terms of
monitoring workers’ distraction and mental load. The cognitive performance and ability of
workers in various noise environments were studied by having them wear portable EEGs
in order to identify the hazards of different noise exposure conditions. The experimental
results revealed that the degree of noise exposure had a negative correlation with subject
performance, and intrinsic cognitive states such as attention, stress, and mental load were
recovered with varying degrees of negative impact on the Big O. Evaluating the effects
of noise on cognitive functioning aids in explaining the psychological impact of poor
mental performance, whereas neurocognitive monitoring of EEG lays the groundwork for
predicting task performance under various noise conditions. Ke et al. [75] used sustained
concentration on a response task and a dual-task paradigm to induce distraction and noise
interference in workers and discovered that, using feature calculations, the beta frequency of
the left temporal lobe and right prefrontal cortex, as well as the frequencies, can distinguish
these two states, and that these metrics can be used as an objective evaluation of an
individual’s sustained focus and inability to sustain focus.

Chen et al. [77] assessed the construction process using mental load in order to develop
a hazard assessment measure using neural time and frequency domain analysis. The
experimental results demonstrated that EEG signals, particularly those in the low frequency
band, were effective in assessing the mental load of construction workers. Then, for the
problem of task allocation in construction, an EEG method for task mental load assessment
based on the main frequency band PSD was introduced. Experiments were designed and
carried out in order to validate the proposed assessment method, and the final statistical
results and frequency box model revealed that the assessment results were consistent with
the NASA-TLX scale scores and had a high reference value [51].

3.1.4. Vigilance Aspect of Workers

Building construction is a process in which emergencies can happen at any time, and
in the face of these emergencies, workers must remain alert at all times to avoid safety
accidents, so it is especially important for workers to be alert at work. In an attempt to
identify fatigue indicators, Jap et al. [63] studied driving in 52 subjects and evaluated four
brain waves (δ, θ, α, β). The results showed that δ and θ activities were stable, α activity
decreased slightly, and β activity decreased significantly over time. By further using the
four algorithms, (I) (θ + α)/β, (II)α/β, (III) (θ + α)/(α + β), and (IV)θ/β, it is found that all
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four algorithms show that the ratio of slow-wave EEG to fast-wave EEG activity increases
with time, i.e., the larger the ratio of slow-wave EEG to fast-wave EEG, The less alert the
subjects were to danger. The results of this study are particularly important for monitoring
the vigilance of workers in the face of hazards during construction.

Chen et al. [78] used some vigilance metrics to quantify construction workers’ ability
to perceive risk and proposed using wavelet decomposition to study and validate the
proposed metrics, as well as field experiments to analyze EEG signal patterns and bench-
marking with the results of other existing vigilance assessment methods. Wang et al. [79]
proposed a hybrid motor-EEG data type using WPT to calculate vigilance measures, and
the agriculture indicators with the highest correlation coefficients were derived from vali-
dation experiments and can be used for vigilance detection. These quantitative vigilance
indicators can help to improve the safety management capability of construction sites by
providing a new perspective on understanding the risk perception process of workers.

3.2. Construction Hazard Identification

The significance of identifying occupational hazards in the building construction in-
dustry cannot be overstated; it is the primary component that determines overall safety
management [80,81]. In current practice, hazard identification is based only on the in-
spection of safety managers; their manual inspection of larger building spaces based on
relevant legal texts and established risk analysis methods (e.g., job hazard analysis) [23,24]
is clearly inadequate. Furthermore, such a solitary hazard identification process is overly
subjective and prone to errors and mistakes. Different inspectors frequently perform
different tasks and have different standards of judgment, resulting in subjective inconsis-
tency [81,82]. To summarize, we introduced EEG technology to develop a new direction
and provide new ideas for hazard identification in the construction field through objective
monitoring of physiological information such as EEG in order to effectively reduce human
judgment errors.

Because the aforementioned EEG signals have the ability to recognize various adverse
reactions of workers during construction work, it is also used to monitor and improve
worker safety at work and are particularly useful in the field of hazard recognition in con-
struction to make predictions and judgments about potential hazards during construction
and effectively reduce the occurrence of hazardous accidents.

To improve workers’ hazard recognition skills, Noghabaei et al. [83] conducted safety
training in a virtual reality environment. By wearing VR, the subjects were able to almost
recognize the hazards in the building construction environment. Workers in a subsequent
study [84] wore both EEG and eye-tracking to navigate a simulated virtual construction
site and identify safety hazards, and the 13 best features were chosen from 306 features
acquired by EEG and eye-tracking to train a machine learning model. The findings show
that EEG and eye tracking can be used to identify construction safety hazards.

Wang et al. [85] used a real-world construction site as a stimulus. Sixty-one construc-
tion workers were selected and shown 120 images, and their EEG signals were recorded as
they viewed the images. ERP (event-related potential) evoked by safety and dangerous
images is extracted from EEG signals, which is a special brain-evoked potential that can
reflect the neuroelectrophysiological changes of the brain during the cognitive process [86].
The correlation between EEG prediction and self-reported work experience was calculated
by using a nested cross-validation algorithm to train the prediction model to evaluate
the performance of the prediction model. Subsequently, predictive values were used to
predict participants’ behavioral outcomes and casualty experiences to assess the external
validity of the model. Finally, the predictive model is tested on an independent data lockbox
for out-of-sample validation. The model demonstrates comparable predictive accuracy
for workers with different risk propensities and educational backgrounds, eliminates the
interference of specific risk types on model performance, and highlights the feasibility of
identifying individual characteristics of hazard recognition based on physiological signals.
Jeon et al. [87] discovered that the presence of hazards in the built environment could be
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identified by mood changes using portable EEG sensors in hazardous areas. In a subsequent
study, Jeon et al. [88] combined a portable EEG device with immersive virtual reality (VR)
to develop an EEG classifier to detect the presence of hazards in building construction. Ac-
cording to the study’s findings, the CatBoost classifier performed the best, with an accuracy
of 95.1%. Furthermore, three critical channel locations (AF3, F3, and F4) and two frequency
bands (Beta and Gamma) were found to be closely related to hazard perception. In 2022,
Jeon’s team [89] correlated EEG signals with the types of hazards that are likely to occur in
construction, as well as conducted experiments in the VR environment, to develop another
EEG classifier that simulated construction in the VR environment with different hazardous
situations, such as worker falls and circuit tripping. During the experiment, EEG signals
from subjects wearing EEG and VR devices were recorded at the same time. For training
and testing, two types of EEG features (time/frequency domain features and cognitive
features) were extracted, and the EEG classifier was built using 18 advanced machine
learning algorithms. Based on a 7-class categorized set of cognitive features, the LightGBM
classifier achieves 70.1% accuracy. Jeon et al. [89] relabeled the input data and designed
and tested three strategies to improve performance even further. The two-step integrated
classification method achieved 82.3% accuracy, according to the results. As a result of the
preceding research, we can recognize and distinguish the hazards present in buildings by
combining EEG, VR, and ML (machine learning) methods. In the same year, Jeon et al. [90]
synthesized previous research and proposed an EEG-based framework for universal hazard
identification and active safety management. The framework, as shown in Figure 8, is made
up of three parts: (a) the creation of an immersive EEG hazard classifier; (b) multi-sensor,
real-time hazard mapping; and (c) behavioral intervention. The framework’s feasibility is
validated by focusing on the first component (immersive EEG hazard classifier), which is
based on an indoor laboratory experiment. The overall framework is depicted in Figure 8.
The binary classifier was found to be capable of classifying hazard-related EEG signals
with an accuracy of 93.7%, while the multi-class classifier was capable of classifying EEG
signals into five different hazard types with an accuracy of 79.3%. It greatly advances the
process and development of construction safety management by providing a toolbox that
can better identify construction hazards and helps to reduce the occurrence of hazardous
events on construction sites.
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Liao et al. [91] investigated the directional and time-varying information flow of
observed brain activity in a recent study by collecting validated EEG data from 71 construc-
tion workers while performing 120-image-based hazard recognition and simulating the
directional and time-varying information flow of observed brain activity using adaptive
directional transfer functions based on the Granger causal relation test. During hazard
recognition, brain connectivity is observed. The findings of this groundbreaking study show
that behavioral targets from the dorsal attentional network play a top-down moderating
role in hazard localization. The sensory cortex, which primarily serves as an information
egress center, collaborates with the frontal lobes and visual cortex to provide an attentional
redirection mechanism for the top-down processing of potentially dangerous stimuli.

Efferent information flow was the strongest in the central parietal area (Cz, CP1, CP2,
and Pz electrodes) in more than 70% of the subjects, while efferent information flow in
the prefrontal lobe was weak. The areas around the Cz, CP1, CP2, and Pz electrodes in
the parietal lobe are thought to be “sources” of brain activity related to hazard recogni-
tion. Table 2 depicts the information exchange in various brain regions at various times
following stimulation.

Table 2. Information exchange in different regions at different times after stimulation.

The Time after Being Stimulated Information Exchange in Different Regions

200 ms The parietal lobe has a relatively active exchange of
information with the whole brain.

240–300 ms There is relatively active information outflow from the
lateral parietal region.

200–500 ms Strong information outflow was observed in the left
temporal lobe region.

400–600 ms Strong information outflow was observed in the right
parietal lobe region.

From the standpoint of cognitive psychology, the study extends the modules of brain
regions to effective brain connections. This is consistent with current research trends in psy-
chophysiology, specifically exploring the relationship between brain neurological indicators
and psychological factors while incorporating hazard recognition scenarios during building
construction, and is an effective contribution to medical-industrial integration research.

4. Discussion and Limitations

EEG is a method of recording the electrical activity of the brain that can effectively
capture how active the brain is at any given time [92]. In recent years, EEG technology
has been used in a variety of fields, including medicine, psychology, education, recreation,
and sleep health. EEG technology has also begun to be used in the construction field
to monitor workers’ physical and mental states and to predict potential hazards, which
is critical for improving safety in the construction field. Workers’ safety and physical
and mental health are of utmost importance in a construction environment, and EEG
technology can be used to assess their current emotional state, cognitive ability, and fatigue
level by monitoring their EEG activity in real-time. To prevent occupational accidents,
if a worker’s EEG signal shows signs of exertion or cognitive decline, timely measures
can be taken to halt the work and allow the worker to take a break. EEG technology
can also be used to anticipate potential hazards on construction sites. For example, by
monitoring worker EEG activity and combining it with VR equipment [85,86], the working
environment of a construction site can be simulated to identify potential safety hazards.
It is also possible to predict whether a worker’s error or negligence will occur in the next
few seconds or over a period of time, allowing for timely measures to be taken to prevent
occupational accidents. In recent years, the use of eye trackers to track the eye movements
of construction workers at work to identify potential safety hazards in construction is also
gradually rising [93]. In future research, we can also consider the combination of EEG
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monitoring and eye movement monitoring to further improve the identification of potential
safety hazards. Furthermore, EEG classifiers can be developed in conjunction with machine
learning algorithms to identify and classify hazards on construction sites [89,90].

Since the application of cognitive neuroscience to outdoor building construction has
only recently emerged, the primary limitation of this review is the small number of referable
articles and the small number of research directions categorized, with only two directions
reviewed: monitoring of adverse reactions in workers and hazard identification during
building site construction. Three studies focused on workers’ emotional state, four studies
focused on workers’ fatigue, four studies investigated workers’ distraction and mental
load, and three studies focused on workers’ vigilance. Eight studies focused on hazard
identification on construction sites. These studies provide a wide range of perspectives
on the use of EEG in the field of building construction, but there are more directions
to be explored in future research. The second issue is that there is no categorization of
the causes of workers’ adverse reactions and building construction hazards, and future
work can further analyze the causes of construction hazardous behaviors and workers’
adverse reactions, such as the effects of light environment, sound environment, extreme
temperature, and extreme dryness or humidity during the construction process. The third
flaw is that it does not address the numerous consequences of wearable devices, such as
privacy concerns. The application of EEG technology is still in its early stages, and more
research and development are needed to improve its accuracy and usefulness. Because of
the limitations described above, relevant researchers should proceed with caution when
referring to the review’s findings.

5. Conclusions and Future Perspectives

EEG is an emerging method for monitoring workers’ personal status during build-
ing construction, as well as a new way to improve the ability of safety management on
construction sites, and has a broad development prospect that merits further research
and exploration in the future. Existing studies included in this review have preliminarily
confirmed that the use of EEG technology can not only measure the emotional highs and
lows, fatigue, distraction, mental load, and vigilance of construction workers but can also
be used to identify and judge construction hazards, greatly reducing the dangers in the
construction process. Building safety engineers can use current research to develop and
refine EEG-based experiments that can help improve safety management in the construc-
tion industry. Neuroscientists, on the other hand, can use techniques such as filtering,
artifact removal, and signal processing to obtain more high-quality EEG waveform data
and improve the accuracy of EEG analysis.

Future research can improve the combination of EEG with other physiological signal
monitoring (e.g., EOG (electrooculogram), EMG (electromyogram), ECG (electrocardio-
gram), and so on) to respond more accurately to the workers’ real-time status and under-
stand their health conditions. Simultaneously, we investigated additional machine learning
methods for combining physiological monitoring with machine learning to optimize the
working environment and improve worker efficiency while preventing and reducing the
occurrence of hazards. Meanwhile, as research and technological progress continue, EEG
technology is expected to be applied in an increasing number of fields, bringing greater
convenience to human life.
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EDA Electrodermal Activity
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SVF Sky View Factor
BCI Brain-Machine Interface
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