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Abstract: Machine learning (ML) algorithms have been widely used in big data prediction and
analysis in terms of their excellent data regression ability. However, the prediction accuracy of
different ML algorithms varies between different regression problems and data sets. In order to
construct a prediction model with optimal accuracy for fly ash concrete (FAC), ML algorithms
such as genetic programming (GP), support vector regression (SVR), random forest (RF), extremely
gradient boost (XGBoost), backpropagation artificial neural network (BP-ANN) and adaptive network-
based fuzzy inference system (ANFIS) were selected as regression and prediction algorithms in this
study; the particle swarm optimization (PSO) algorithm was also used to optimize the structure
and hyperparameters of each algorithm. The statistical results show that the performance of the
assembled algorithms is better than that of an NN-based algorithm. In addition, PSO can effectively
improve the prediction accuracy of the ML algorithms. The comprehensive performance of each
model is analyzed using a Taylor diagram, and the PSO-XGBoost model has the best comprehensive
performance, with R2 and MSE equal to 0.9072 and 11.4546, respectively.

Keywords: fly ash concrete; machine learning; optimization algorithm; compressive strength

1. Introduction

With the advantages of high strength, low cost and easy construction, concrete has
become the most widely used material in the construction of infrastructure and civil
buildings. At the same time, the construction of high-difficulty projects such as large-
span buildings, docks and cross-sea bridges has led to rising requirements for concrete
performance, prompting concrete to develop in the direction of high strength, high flow and
high durability. The research shows that fly ash partially replacing cement can effectively
improve the durability and mechanical properties of concrete [1–3]. In addition, compared
with recycled materials such as silica fume, rice husk ash, fly ash and recycled fiber [4] have
a wide range of sources, so they have been widely used in the preparation of concrete as a
second cementitious material.

It is well known that concrete is a multiphase composite material composed of sand,
stone, water, cement and other additives. The complexity of material composition leads
to the discrete performance of concrete [5]. In addition, under a variety of physical and
chemical actions, the complex mechanism between the above parameters and performance
indexes makes the prediction of concrete performance very difficult [6,7]. Therefore, empiri-
cal or semi-quantitative methods have been used for a long time to explore the composition
and mechanical properties of concrete; when the performance index of concrete reaches
a certain value, it is considered that the concrete mixing scheme meets the application
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requirements, which often leads to the excess performance of concrete, and poor design-
ing efficiency.

With the addition of various additives, it is more and more difficult to accurately
predict the performance of concrete using traditional concrete design methods. However,
benefiting from the powerful global data analysis and mining capabilities of machine
learning algorithms, it is possible to dig deep and discover the inherent laws between
input and output parameters regardless of any physical or mechanical model, and then
establish a solid and operable accurate relationship [8–10]. Based on this, researchers
believe that the optimal concrete mixing scheme or structural design can be obtained to
meet the performance requirements, thus achieving the purpose of saving construction
costs and improving design efficiency [11–14]. Therefore, there are many advantages to
predicting the performance of concrete.

1.1. Literature Review

The performance prediction of concrete has become a research hot spot recently; vari-
ous ML algorithms have been successfully applied by many studies. Dantas et al. used
an ANN algorithm to predict the compressive strength (CS) of concrete by taking the
water–cement ratio, fly ash replacement rate and recycled aggregate content as input pa-
rameters, and the results showed that ANN had excellent prediction accuracy [15]. Huang
et al. combined particle swarm optimization and genetic optimization algorithms with
ANN to build a performance prediction model of recycled concrete. The results show that
both the hybrid and standalone models have excellent prediction accuracy, but the hybrid
model’s is higher [16]. Ahmadi et al. also used a PSO-ANN model to predict the elastic
modulus of high-strength and normal concrete, and the conclusion was draw that the
proposed model performed excellently [17]. Kim et al. used a genetic algorithm to predict
the compressive strength of recycled concrete [18]. Zheng et al. used decision tree, SVR
and ANN to construct the performance prediction model of silica fume concrete, and they
also used the bagging and boosting methods to assemble the above ML algorithms [19].
After reviewing the recent literature, it was found that the ANN-based modulus is the
most wildly used machine learning algorithm for the performance prediction of concrete re-
garding recycled aggregate concrete [20,21], high-performance concrete [17,22,23], foamed
concrete [24–26], metakaolin-based concrete materials [27], self-compacted concrete [28],
rubberized concrete [29], concrete slabs [30] and other concrete accessories such as steel
tubes [31,32], FRP bars [33–37], steel bars [38] and concrete blocks [39].

Although the above machine learning algorithms show a remarkable performance
in terms of the specific database, the same ML algorithm may have a poor prediction
performance in another database due to the specificity of material composition and regres-
sion problems [36]. At the same time, the experimental conditions vary between different
research papers, which has a certain negative impact on the accuracy and generalization of
ML algorithm prediction [40]. Secondly, there are many factors affecting the performance
of concrete, and the regression process of the output and input parameters is very complex,
which leads to the fact that an ML algorithm may have excellent prediction accuracy under
certain input parameters, while it may be poor under others. Therefore, the model topogra-
phy and hyperparameters of the existing studies should not be simply applied to specific
regression problems. Moreover, the other types of machine learning algorithms are rarely
discussed and synthetically compared.

1.2. Objecitves

In view of this, the database of the Gansu provincial transportation research institute
Co., Ltd., China (Lanzhou, China), was adopted; 200 data sets were randomly selected,
including the mix ratio and CS of FAC in 2023; two ANN algorithms (BP-ANN and ANFIS),
two assembled algorithms (RF and XGBoost) and SVR and GP were used to construct the
prediction models of the compressive strength of FAC; and a PSO algorithm was used to
further optimize the hyperparameters or structures of each model. Finally, the applicability
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of each model to the constructed database was evaluated using statistical indexes such as R2

and MSE. The highlight of the research was the comparison of the prediction performance
of various machine learning algorithms and the synthesizing of the PSO algorithm with
each predicting model. The objectives of this research were as follows:

• Constructing the predicting model for the compressive strength of concrete containing
coal fly ash using six different ML algorithms.

• Synthesizing the standalone models with a PSO algorithm, so as to optimize the
hyperparameters of each model automatically.

• Evaluating the applicability of each hybrid ML model using comprehensive statistic
indicators.

2. Data Collection

In this study, water (W), cement (C), fly ash (FA), coarse aggregate (A), sand (S) and
water-reducing agent (WR) were selected as the influencing factors, which are important
components of concrete and have a significant impact on its compressive strength. However,
the distribution and accuracy of the data sets greatly affect the prediction accuracy of the
algorithm [40–42]. Therefore, the collected data were preprocessed as follows:

(1) The box chart was used to highlight outliers in the data of each input parameter, and
then 23 data sets with abnormal distribution were excluded from the 200 data sets;
the statistical characteristics of the remaining 177 data sets are shown in Table 1.

(2) In order to reduce the influence of data scales on the prediction performance and
efficiency of the ML algorithm, the data of input parameters were normalized based
on Equation (1).

Table 1. Statistical indexes of the data set.

Statistic
Index

W
(kg/m3)

C
(kg/m3)

FA
(kg/m3)

A
(kg/m3)

S
(kg/m3)

WR
(kg/m3)

fc
(MPa)

Count 177 177 177 177 177 177 177
Mean 157.39 380.71 45.93 1110.27 737.49 5.55 45.54

Std 10.88 69.52 36.66 44.60 61.20 2.37 11.29
Minimum 145.00 189.30 0 999.70 572.90 0 16.30
Maximum 210.00 527.60 129.00 1214.50 920.60 14.10 69.80
Skewness 3.84 −0.12 −0.06 −0.26 −0.06 1.09 −0.14

Mode 153. 442. 0 1136.79 726.80 5.20 36.90
Kurtosis 16.33 −0.42 −1.19 −0.53 −0.53 2.96 −0.61

SEM 0.82 5.23 2.76 3.35 4.60 0.18 0.85

To construct the models with appropriate predicting performance and high general-
ization, all data sets were randomly divided into a testing set (25%) and training set (75%).
The training set was used to fit the features and the target, to endow the models with
preliminary predicting performance. The testing set was used to prevent overfitting and
ensure the models have excellent generalization.

x′i =
xi −min(x)

max(x)−min(x)
(1)

where xi is the data in one input parameter, and max(x) and min(x) are the maximum and
minimum value in the corresponding input parameter.

(3) Subsequently, the database was randomly divided into a training set and testing set
through the split function in scikit-learn library, and the proportion of division was
75% for training and 25% for testing.

Figure 1 shows the correlation between all factors (nephogram). Figure 2 shows the
correlation between each factor and CS, and the curves on the top and left of the figure
show the distribution of the data.
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The correlation coefficients between input parameters and CS were calculated, as
shown in Figure 3. The correlation between water and water reducer is higher comparing
with the others and shows an obvious negative trend; then, the correlation between cement
and sand is the second highest. The reason is that sand and coarse aggregate show a
negative correlation. Therefore, the more sand, the less coarse aggregate, and the less
cement is used in general; the fly ash was added to concrete in a way that partially replaces
cement, so the correlation between them is relatively higher.
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As for the correlation between the compressive strength and each input parameter,
the water, cement and sand are much higher than the others; among them, the influence
of water and sand on compressive strength is negative, while the influence of cement on
compressive strength is positive. However, the hardening effect of fly ash occurs late [43],
so the effect of fly ash on the CS of concrete is small.

3. Machine Learning Algorithms

Machine learning (ML) algorithms have advantages in big data processing, regression
and image recognition, and many researchers have applied ML algorithms to scientific
research [44–46]. In this study, a variety of regression algorithms based on ML technology,
including two NN-based algorithms, two assembled algorithms, SVR and GP were used to
predict the 7-day CS of concrete containing FA. The accuracy of each model is discussed
comprehensively based on various statistical indicators. Figure 4 shows the flowchart of
this study.
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3.1. PSO Algorithm

PSO is a metaheuristic algorithm. In this algorithm, the potential solution to the
problem is to be regarded as a bird (particle) in the flock; each bird has its own speed and
position. It is characterized by the ability to update the speed and position of the particle
based on the particle’s memory of its own historical optimal solution (extreme value) and
the experience shared by the entire population (global extreme value); the characteristic is
formulaic, as shown in Equations (2) and (3).

v′iD = ω× viD + c1r1(piD − xiD) + c2r2
(

pgD − xiD
)

(2)

x′iD = xiD + v′iD (3)

where the subscript D indicates that there is a D-dimensional search space that is the
number of indicators to be searched; viD represents the velocity of the i particle in the D;
xiD represents the position of the particle; piD and pgD represent the individual extremum
and global extremum, respectively; ω is the inertia weight, and the value usually takes 1; c1
and c2 are the acceleration constant, which usually take c1 = c2 = 2; and r1 and r2 are the
random numbers generated from the interval [0, 1].

The hyperparameters of an ML algorithm have a significant impact on its prediction
accuracy, while manual adjustment is cumbersome and time-consuming, thus significantly
reducing the efficiency of an ML algorithm. Therefore, in this study, a PSO optimization
algorithm is used to automatically find the best value of hyperparameters that have an
important influence in each ML algorithm.

However, ANFIS requires huge random access memory on the part of the computer
in the operation process, so it is not suitable for PSO to optimize its hyperparameters
across a wide range. Moreover, the most influential hyperparameters of ANFIS are the
type and number of membership functions and membership grade, so the hyperparameter
optimization of ANFIS used trial and error. In addition, the hyperparameters of the others
standalone ML algorithms adopted their default values or the literature recommendations.
The specific hyperparameters of each hybrid and standalone ML model are shown in
Tables 2 and 3.

Table 2. Hyperparameters setting of the standalone models.

ML Model Value of Hyperparameters

BPNN Two hidden layers, and the first layer has 18 neurons, the second layer has 12 neurons.
RF n_estimate = 15, random state = 45, max_depth = 3

SVR kernel = rbf
XGBoost default

GP
population_size = 5000, generations = 20, stopping_criteria = 0.01, p_crossover = 0.7,

p_subtree_mutation = 0.1, p_hoist_mutation = 0.1, p_point_mutation = 0.1, max_samples = 0.9,
verbose = 1, parsimony_coefficient = 0.01, random_state = 0

ANFIS membership type = graussf, membership grade = (2, 2, 2, 2, 2, 2, 2, 2)

Table 3. Searched hyperparameters of each predicting model.

PSO Hyperparameters Setting Predicting Model Searching Hyperparameters

population size = 20
generation = 20

BPNN Neurons number of each hidden layer
RF n_estimators, random state, max_depth

XGBoost max_depth, learning_rate, n_estimators
SVR C, epsilon, gamma

GP population_size, generations stopping_criteria,
max_samples, verbose, parsimony_coefficient, random_state
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3.2. BP-ANN

BP-ANN is a computational system built by imitating the operation mode of neu-
rons [47]. It is usually composed of an input layer, hidden layer and output layer, and its
operation mode is mainly composed of forward propagation and backpropagation.

In forward propagation, the data of each input parameter are first input into the
neurons of the “input layer”, and then the input data are transmitted to the next neuron
through a certain logical relationship, as shown in Equation (4), and finally to the neurons
of the “output layer”.

yj = f
(
vj
)
= f

(
n

∑
i=1

wijxi + bj

)
(4)

This logical relationship includes the weight wij of the I neuron of the k layer to the
j neuron of the k + 1 layer (k is the number of the layers, including the input layer and
the hidden layers), and the bias bi of the k layer neuron. The received data of the k + 1
layer will be processed by the activation function; then, the data will be transformed to the
k + 2 layer.

In backpropagation, the predicted value y, obtained through the aforementioned
logical relationship, is compared with the experimental value y, and the loss function
is obtained, so the gradient function of the loss function can be obtained. Finally, the
weight and bias are constantly transformed through the gradient descent algorithm, and
the optimal weight vector and the bias of each layer are finally obtained.

3.3. ANFIS

This method combines a neural network with fuzzy logic to classify the data. This
fuzzy classification ability enables the computer to understand the input data, and then it
has a higher ability to resist data error and excellent prediction performance [36].

ANFIS models are usually divided into five layers:

(1) The first layer is the fuzzy layer, which undertakes fuzzy processing of input data by
membership function. The selection of the type and number of membership function
is usually subjective. When there are more membership functions of each input
parameter, there will also be more membership degrees, so more if–then rules will
be generated, which may improve the prediction accuracy to a certain level but also
significantly increase the requirement of computer performance.

(2) The second layer is to calculate the firing strength of each if–then rule.
(3) The third layer normalizes the firing strength and obtains the trigger intensity of the

if–then rule relative to the others.
(4) The fourth layer calculates the output value of each if–then rule by multiplying the

original input data and the relative trigger intensity obtained in the third layer.
(5) The fifth layer is the output layer, which weights and sums the output values obtained

in the fourth layer and defuzzies them.

Since the final output result is weighted and summed, it also means that the predicted
target can only be a single variable, and it is impossible to achieve a multi-variable output.

3.4. SVR

The support vector machine (SVM) is proposed by Vapnik et al. [48]; the algorithm
used for regression is support vector regression (SVR), whose main idea is to construct an
interval band that can accommodate as many data points as possible, while minimizing the
loss of data points that are not in the interval band.

Data points in the interval band are not counted for their loss, and SVR maps the data
to the feature space by kernel function, which makes the nonlinear regression problem
become a linear regression problem approximately. Therefore, the advantages of SVR
include high generalization, being iterative fast, global optimization and avoidance of local
minimization [19,49]. In addition, SVR has an excellent fitting performance in nonlinear
regression problems with multiple variables and small data.
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3.5. XGBoost

XGBoost is an algorithm based on a boosting framework. Boosting is an addition
model that includes multiple estimators, each of which gives a set of predicted values, and
the latter estimator will learn the deviation between the previous estimator’s predicted
value and experimental value, and then continuously reduces the deviation.

3.6. RF

Random forest is an assembled machine learning algorithm based on a bagging
framework, which combines multiple decision trees. Bagging is to randomly extract n
samples from the database and form a new training set. According to the above method,
M new training sets are generated according to the assembled M decision trees; each
decision tree gives a set of prediction values base on its training set, and then M prediction
results are obtained. Finally, the average of these M prediction results is used as the final
prediction result.

3.7. GP

Genetic programming is an evolutionary algorithm designed to fit data sets by giv-
ing a mathematical expression that approximates the relationship between features and
target. Unlike others regression ML algorithms, GP can construct a mathematical expres-
sion by searching and combining basic mathematical operators, features and constants.
Therefore, GP is also one of the few interpretable ML algorithms, that is, one giving exact
mathematical expressions.

4. Results and Discussions
4.1. Prediction Performance of Standalone Models

R2, MSE, MAE and explanatory variance were used to evaluate the prediction accuracy
of the constructed algorithms. The statistic indexes were calculated using the r2_score,
mean_absolute_error, mean_squared_error and sm.taylor functions in the sklearn.metrics
library.

The prediction results of each standalone model are shown in Figures 5–10. MSE
represents the degree of error between the predicted and experimental value. At the same
time, the weight of large error will be highlighted after the squared, so it is more sensitive
to the error than other statistical indexes. Although the prediction error of the testing set
was slightly higher than that of the training set, the standalone model still had acceptable
MSE values except GP and ANFIS.
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The R2 indicates the fitness of prediction of the model. As can be seen from the figure,
the R2 of the predicted and experimental values is generally around 0.8, indicating the
selected ML algorithms have a good predicting performance. However, the R2 of AFNIS
and GP are only 0.7015 and 0.7154, respectively. The prediction ability of the GP model is
dependent on variability, just like genetic variation [26]. Therefore, the variation direction
of branches is highly controlled by the hyperparameter settings. In contrast, SVR has the
highest R2 by virtue of its excellent generalization. As for RF and XGBoost models, their
fitting goodness showed a certain fluctuation, and this is because of their random splitting
of tree branches and the formation of data subsets of each sub-tree integrated in them, and
all of this results in a decisive dependency on the hyperparameter setting. As a contrast,
the SVR model will map the lower dimension problem to the higher one and simplify the
calculation through kernel function, performing little randomness. Therefore, the SVR
model is outperformed. The ANFIS showed a worse R2; this may because the database
has six features, resulting in the requirement of many more membership degrees (MDs),
and the MDs only default at two for each feature, resulting in the poor performance of the
ANFIS model.
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4.2. Prediction Performance of Hybrid Models

The prediction value and performance of the hybrid models are shown in Figures 11–16.
After PSO optimization, the prediction accuracy of each model has been significantly
improved. MSE and R2 of PSO-RF are 11.9172 and 0.9035, respectively, which are 42.9%
lower and 8.7% higher than that of RF, respectively; while for PSO-SVR, the MSE and R2

are reduced 14.8% and increased 1.9% compared with its standalone model; for XGBoost,
the results are 44.1% and 8.9%; for GP, they are 56.2% and 22.4%; and for BP-ANN, they are
16% and 2.9%.

Among them, the GP model improved the most after PSO optimization, which indi-
cates that hyperparameters have a greater impact on the GP model to a certain extent. At
the same time, PSO has the smallest improvement on the SVR model, which is because the
SVR model has a high generalization, so the impact of data quality and model setting on its
prediction accuracy is relatively low. The PSO-XGBoost model has the lowest error and the
highest fitness, with an MSE of 11.4594 and R2 of 0.9072. In addition, the assembled and
SVR algorithms have better prediction performance than the NN-based algorithms.
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Figure 16. Prediction results of optimized ANFIS model for test set: (a) Error and (b) correlation
between predicted value and experimental value.

The optimization of the ANFIS model used trial and error due to its high requirements
on computer performance. Under the condition that there are no more than three member-
ship grades for each input parameter, the membership grade combination of 2-3-2-3-1 with
Gaussian function was finally determined. After the optimization, the MSE was reduced by
34.3%, and the R2 was increased by 18.4%. As aforementioned, the predicting performance
of RF and XGBoost is highly dependent on the hyperparameter setting. Therefore, the
predicting accuracy is significantly increased.

4.3. Analysis of Error Distribution

The absolute error distribution of each model is shown in Figures 17–22. After PSO op-
timization, the maximum absolute error of each model is reduced to some extent. However,
the distribution of red noise in the RF, XGBoost, ANFIS and BP-ANN models is relatively
scattered, indicating that there are many large error points in the range of predicted data.
In contrast, the error distribution of SVR and PSO-GP is more uniform in the predicted
data range, so there are fewer large error points.
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Although RF and XGBoost have a higher R2 and lower MSE after PSO optimization,
they have more large error points, which may lead to larger prediction errors in practical
applications. Therefore, SVR and PSO-GP are more suitable for regression prediction of
this data set.
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It is worth noting that the prediction accuracy of the GP model is relatively lower, but
the absolute error distribution is more uniform, indicating that there are fewer relatively
large error points in its prediction results, which indicates that the GP model has good
prediction potential for this data set.

Buildings 2024, 14, x FOR PEER REVIEW 14 of 20 
 

However, the distribution of red noise in the RF, XGBoost, ANFIS and BP-ANN models 
is relatively scattered, indicating that there are many large error points in the range of 
predicted data. In contrast, the error distribution of SVR and PSO-GP is more uniform in 
the predicted data range, so there are fewer large error points. 

  
(a) (b) 

Figure 17. Error distribution of RF algorithm (a) RF; (b) PSO-RF. 

  
(a) (b) 

Figure 18. Error distribution of SVR algorithm (a) SVR; (b) PSO-SVR. 

  

(a) (b) 

Figure 19. Error distribution of XGBoost algorithm (a) XGBoost; (b) PSO-XGBoost. 

Figure 18. Error distribution of SVR algorithm (a) SVR; (b) PSO-SVR.

Buildings 2024, 14, x FOR PEER REVIEW 14 of 20 
 

However, the distribution of red noise in the RF, XGBoost, ANFIS and BP-ANN models 
is relatively scattered, indicating that there are many large error points in the range of 
predicted data. In contrast, the error distribution of SVR and PSO-GP is more uniform in 
the predicted data range, so there are fewer large error points. 

  
(a) (b) 

Figure 17. Error distribution of RF algorithm (a) RF; (b) PSO-RF. 

  
(a) (b) 

Figure 18. Error distribution of SVR algorithm (a) SVR; (b) PSO-SVR. 

  

(a) (b) 

Figure 19. Error distribution of XGBoost algorithm (a) XGBoost; (b) PSO-XGBoost. Figure 19. Error distribution of XGBoost algorithm (a) XGBoost; (b) PSO-XGBoost.

Buildings 2024, 14, x FOR PEER REVIEW 15 of 20 
 

  
(a) (b) 

Figure 20. Error distribution of GP algorithm (a) GP; (b) PSO-GP. 

 
(a) (b) 

Figure 21. Error distribution of BP-ANN algorithm (a) BP-ANN; (b) PSO-BP-ANN. 

  
(a) (b) 

Figure 22. Error distribution of ANFIS algorithm (a) ANFIS; (b) optimized ANFIS. 

Although RF and XGBoost have a higher R2 and lower MSE after PSO optimization, 
they have more large error points, which may lead to larger prediction errors in practical 
applications. Therefore, SVR and PSO-GP are more suitable for regression prediction of 
this data set. 

It is worth noting that the prediction accuracy of the GP model is relatively lower, 
but the absolute error distribution is more uniform, indicating that there are fewer rela-
tively large error points in its prediction results, which indicates that the GP model has 
good prediction potential for this data set. 

  

Figure 20. Error distribution of GP algorithm (a) GP; (b) PSO-GP.



Buildings 2024, 14, 190 15 of 19

Buildings 2024, 14, x FOR PEER REVIEW 15 of 20 
 

  
(a) (b) 

Figure 20. Error distribution of GP algorithm (a) GP; (b) PSO-GP. 

 
(a) (b) 

Figure 21. Error distribution of BP-ANN algorithm (a) BP-ANN; (b) PSO-BP-ANN. 

  
(a) (b) 

Figure 22. Error distribution of ANFIS algorithm (a) ANFIS; (b) optimized ANFIS. 

Although RF and XGBoost have a higher R2 and lower MSE after PSO optimization, 
they have more large error points, which may lead to larger prediction errors in practical 
applications. Therefore, SVR and PSO-GP are more suitable for regression prediction of 
this data set. 

It is worth noting that the prediction accuracy of the GP model is relatively lower, 
but the absolute error distribution is more uniform, indicating that there are fewer rela-
tively large error points in its prediction results, which indicates that the GP model has 
good prediction potential for this data set. 

  

Figure 21. Error distribution of BP-ANN algorithm (a) BP-ANN; (b) PSO-BP-ANN.

Buildings 2024, 14, x FOR PEER REVIEW 15 of 20 
 

  
(a) (b) 

Figure 20. Error distribution of GP algorithm (a) GP; (b) PSO-GP. 

 
(a) (b) 

Figure 21. Error distribution of BP-ANN algorithm (a) BP-ANN; (b) PSO-BP-ANN. 

  
(a) (b) 

Figure 22. Error distribution of ANFIS algorithm (a) ANFIS; (b) optimized ANFIS. 

Although RF and XGBoost have a higher R2 and lower MSE after PSO optimization, 
they have more large error points, which may lead to larger prediction errors in practical 
applications. Therefore, SVR and PSO-GP are more suitable for regression prediction of 
this data set. 

It is worth noting that the prediction accuracy of the GP model is relatively lower, 
but the absolute error distribution is more uniform, indicating that there are fewer rela-
tively large error points in its prediction results, which indicates that the GP model has 
good prediction potential for this data set. 

  

Figure 22. Error distribution of ANFIS algorithm (a) ANFIS; (b) optimized ANFIS.

4.4. Accuracy Analysis

The statistical indicators of the predicted and experimental values of each model are
summarized in Table 4. The R2 of the optimized ANFIS is only 4.5% and 0.7% lower than
XGBoost and RF, respectively, but the MSE is 29.6% and 27.7% higher. In addition, the
change rates of R2 and MSE of each model are significantly different after PSO optimization.
The reason is that different statistic indicators have different sensitivity to the errors.
Therefore, it is difficult to fully reflect the prediction accuracy of the model through a single
statistical indicator.

Table 4. Statistic indexes of each model.

ML Model
Evaluating Index

R2 MSE STD MAE

RF 0.8309 20.885 8.8893 3.6563
PSO-RF 0.9035 11.9172 9.8887 2.6271

SVR 0.8872 13.9315 10.7003 2.7257
PSO-SVR 0.9038 11.8761 10.5086 2.5996
XGBoost 0.8340 20.5032 10.3703 3.4999

PSO-XGBoost 0.9072 11.4594 10.6130 2.3637
GP 0.7154 35.1627 11.0829 4.6226

PSO-GP 0.8753 15.4052 10.5057 2.9886
BP-ANN 0.8368 20.1649 11.5004 3.6589

PSO-BP-ANN 0.8630 16.9292 10.7190 3.2411
Optimized ANFIS 0.8303 26.4208 12.3607 3.3869

ANFIS 0.7015 40.2328 11.0996 4.1215
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In view of this, a Taylor diagram was used to combine several statistical indica-
tors to comprehensively evaluate the prediction accuracy of each model. According to
Equation (5), the R, RMSE and standard deviation (STD) of the predicted value and ex-
perimental value are combined in the two-dimensional plane graph. The comprehensive
evaluation of each model is shown in Figure 23.
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The blue dot–dash line represents the R, the green dash line represents the RMSE and
the black dotted line represents the standard deviation. The distance between each point
to Ref represents the comprehensive performance of each ML model; a shorter distance
means a higher comprehensive performance. As can be seen from the figure, PSO-XBGoost
has the best comprehensive performance.

RMSE2 = STD2
exprimental + STD2

predicted − 2STD2
exprimentalSTD2

predictedR (5)

5. Conclusions

To build a compressive strength prediction model for fly ash concrete, this study
selected two assembled algorithms, two NN-based algorithms and machine learning
algorithms. The PSO algorithm was also used to optimize the structure or hyperparameters
of the above ML algorithms. Finally, the predicting performance of each model was
evaluated using statistical indicators. The main conclusions of this study are as follows:

(1) As a standalone model, the SVR algorithm has the highest R2 of 0.8837 and lowest
MSE of 13.9315 with good generalization. In addition, the assembled algorithm
outperforms the NN-based algorithm.

(2) The PSO algorithm can effectively improve the prediction accuracy of all the ML
models. Among them, the improvement in prediction accuracy of GP is the highest;
its MSE decreased by 56.2% and R2 increased by 22.4% after cooperating with PSO.
In addition, the R2 of the PSO-RF, PSO-XGBoost and PSO-SVR models are all greater
than 0.9.

(3) The absolute error distribution of the PSO-GP and SVR algorithms is relatively uni-
form, which means that there are fewer large error points in their prediction results, so
it is not easy to have a large prediction error under a certain set of features. According
to the statistical indicators of each standalone and hybrid algorithm, PSO-XGBoost
has the best comprehensive performance.

(4) Given the specificity of each predicting scenario, the same predicting models which
have an appropriate accuracy in the fc prediction may not have performed excellently
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in the other scenarios such as anti-chloride diffusion, carbonization and so forth.
Therefore, the applicability of each model should be carefully discussed in the others’
predicting scenarios.

(5) Although six different machine learning algorithms were used to predict the fc of the
concrete containing coal fly ash, the kinds of machine learning algorithms are still
limited. Future research could discuss the applicability of other machine learning
algorithms, even constructing a synthesizing operational interface to improve usability
in the field.
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