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Abstract: Accurate identification of building structure frequencies forms the basis for damage
detection. The structural dynamic response signal, under ambient excitation, can be transformed
into a superposition of multiple single-frequency exponentially damped sinusoids combined with
random white noise. However, the peak power spectrum of the response signal tends to exhibit line
splitting, compromising the precision of frequency identification. This study examines the accuracy
characteristics of the single-frequency free damping vibration signal (SFFDVS) and derives the
Cramer–Rao lower bound for the frequency estimator. It thoroughly analyzes the factors influencing
the accuracy of SFFDVS frequency identification. The study reveals that the primary cause of spectral
line splitting is the random delay inherent in SFFDVS. Based on the maximum likelihood method
(MLM), this research introduces the MLM algorithm for SFFDVS and provides a simulation analysis.
The findings indicate that the MLM estimation algorithm for frequency parameters effectively
addresses spectral line splitting and offers robust noise resistance and recognition accuracy.

Keywords: single-frequency free damping vibration signal; frequency estimation; maximum likelihood
method; Cramer–Rao lower bound

1. Introduction

Modal parameters of building structures under environmental excitation for damage
detection are widely used in the fields of structural health monitoring (SHM) and post-
earthquake evaluation of buildings [1–3]. For example, B Bhowmik et al. [4,5] proposed
a novel approach of recursive canonical correlation analysis (RCCA) for robust damage
detection. Application of the RCCA to the combined ambient and earthquake responses
obtained from the UCLA Factor Building demonstrates the robustness of this methodology
as an ideal candidate for real-time SHM.

Frequency is the most fundamental parameter of structural modes. The primary step
in completing structural damage detection and SHM is to accurately identify the natural fre-
quency of the structure as much as possible. The traditional method for identifying structural
natural frequency requires both the measured input excitation and the responses [6,7]. Civil
structures invariably exist within specific vibrational environments, and ambient vibration
tests can determine modal parameters using only the output ambient response [8–10]. When
a structure is subjected to ambient excitation and this excitation is presumed to be white noise,
the system’s natural frequency can also be determined based on the structure’s response
signals. Frequency is a crucial parameter in safety monitoring and damage identification of
civil structures [11–13]. Numerous damage-identification methods that rely on frequency
parameters have been explored [14–19]. The related research especially sheds light on the
development of a new class of damage detection strategies that identify the damage in real
time, using the key principles of the first-order eigen perturbation (FOEP) technique [4,20].
Frequent parameter changes are a crucial indicator for assessing structural performance in
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practical engineering applications. The methods of damage identification demand high accu-
racy in recognizing frequency parameters [21]. When applied to environmental excitation, the
engineering community generally believes that the modal parameter method can precisely
determine the system frequency [22–24]. However, accuracy in recognizing frequency pa-
rameters is often intimately linked to response signals and recognition algorithms. There is
a dearth of comprehensive studies on accuracy in recognizing frequency parameters under
environmental excitation.

Yang and Cao [25,26] extensively examined the frequency parameter identification
algorithm for noisy complex (and real) sinusoidal signals. They introduced a high-precision
frequency algorithm for such signals and conducted an error analysis. Theoretical deriva-
tions confirmed that the mean square error (MSE) of frequency parameter identification
for a sinusoidal signal can approach the Cramer–Rao lower bound (CRLB) [27]. The struc-
tural response signal under environmental excitation differs significantly from the noisy
sinusoidal signal model used in the communications industry. The accuracy of frequency
parameter identification is influenced by noise and the response phase difference resulting
from the randomness of environmental excitation, damping parameters, and spectral leak-
age. Aboutanios and Bernard [28] performed a Fourier analysis on complex periodic signals
to estimate rough frequency. Subsequently, the identified frequency error approached the
CRLB through binary interpolation of Fourier coefficients. Umesh and Tufts [29] introduced
a fast maximum likelihood (FML) estimation for the parameters of multiple exponentially
damped sinusoids. They proposed an iterative procedure that separates the data into its
constituent components and estimates the parameters of each component individually.
YU [30] suggested a state-space model method to estimate the damping factor and fre-
quency of multi-component exponentially damped sinusoids. Simulations demonstrated
that the state-space model algorithm outperformed the ESPRIT algorithm, especially at low
signal-to-noise ratios (SNR).

In light of the characteristics of the structural response signal under ambient excitation,
this study develops a model for the structural response signal under such excitation. The
structural response can be divided into a free-damping vibration signal and a random
response signal. This research deduces the CRLB for frequency parameter identification of
free damping vibration signals (FDVS) and analyzes the error factors involved in frequency
parameter identification. A maximum likelihood estimation algorithm for identifying
frequency parameters of freely attenuated vibration signals is introduced, followed by a
simulation analysis.

2. Materials and Methods
2.1. Target Model and Its Problems

During the experiment on modal testing using ambient excitation, the input for civil
structures, resulting from foundation vibrations or wind, was approximated as either white
noise or an ergodic process [31–33]. The structure’s natural frequency can be identified
based on its responses. Generally, the structural response to random excitation comprises a
deterministic part (pulse or step) and a random part (assumed to have a zero mean). The
dynamic equation for a single-degree-of-freedom system can be mathematically expressed
as follows:

m
..
x + c

.
x + kx = f(t) (1)

where f(t) is a sample of the excitation random process; m is the system’s mass; k is the
system’s stiffness; and c is the system’s damping coefficient.

Applying the Laplace transform to the equation above yields:(
ms2 + cs + k

)
X(s) = F(s) + m

.
x0 + (ms + c)x0 (2)

X(s) =
F(s)

(ms2 + cs + k)
+

m
(ms2 + cs + k)

.
x0 +

ms + c
(ms2 + cs + k)

x0 (3)
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Applying the inverse Laplace transformation to the previous equation results in:

x(t) =
∫ t

0

F(τ)
m

h(t − τ)dτ+
.
x0h(t) + x0g(t) = x1(t) + x2(t) + x3(t) (4)

where h(t) = 1
ω0

e−ξω0t sin
(√

1 − ξ2ω0t
)

g(t) =
1√

1 − ξ2
e−ξω0t cos

(√
1 − ξ2ω0t −φ

)

φ = tg−1 ξ√
1 − ξ2

The mathematical model for frequency identification is described as the combination
of a free-damping vibration signal and a random white noise signal, defined as follows:

s(t) = ∑l
i=1 Aie−β(t−ti) cos(ω0t + φi) + z(t)t ≥ 0 (5)

where z(t) is a white noise signal; l is the pulse or step excitation times in random excitation;
Ai is the maximum amplitude caused by pulse or step excitation; ti is the time of pulse or
step excitation; φi is the phase of a response signal; and Ai, ti are both random signals.

Equation (5) is sampled discretely. If the sampling frequency is fs, the sampling time
length is T, the sampling length is N, and T = N/fs, then

s(n) = ∑l
i=1 Aie

−β( n
fs
−ti) cos

(
ω0

n
fs
+ φi

)
+ z(n)n = 0, 1, · · ·N (6)

Based on Equation (6), the random excitation response signal for a single-degree-of-
freedom system over 10 s was simulated, as depicted in Figure 1.
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random white noise signals. The random decrement method can isolate the system’s free 
attenuation vibration signals through averaging and mathematical statistics. Wavelet 
packet decomposition technology can divide each order of free attenuation vibration sig-
nals into single-frequency free attenuation vibration signals. Consequently, identifying 
the frequency of response signals under environmental excitation can be transformed into 
identifying the frequency parameter of single-frequency free attenuation vibration sig-
nals. However, due to the unpredictability of actual structural environmental excitations 
and environmental noise, there are challenges in accurately identifying the frequency of 
the response signal spectrum. The CRLB of the frequency parameter identification error’s 

Figure 1. The random excitation response signal of single−degree−of−freedom system: (a) time
domain signal; (b) power spectral density(psd) and the frequency.

The derivations above indicate that the structural response signal under environmental
excitation combines multiple single−frequency free attenuation vibration signals with
random white noise signals. The random decrement method can isolate the system’s free
attenuation vibration signals through averaging and mathematical statistics. Wavelet packet
decomposition technology can divide each order of free attenuation vibration signals into
single-frequency free attenuation vibration signals. Consequently, identifying the frequency
of response signals under environmental excitation can be transformed into identifying the
frequency parameter of single-frequency free attenuation vibration signals. However, due
to the unpredictability of actual structural environmental excitations and environmental
noise, there are challenges in accurately identifying the frequency of the response signal
spectrum. The CRLB of the frequency parameter identification error’s mean square value
for the response signal model will be derived in the subsequent sections to examine the
factors leading to frequency parameter identification errors.
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2.2. Theoretical Analysis and Its Causes
2.2.1. Single-Frequency Free Damping Vibration Signal

SFFDVS is described as follows:

s(t) = ae−ξω0t cos
(√

1 − ξ2ω
0
t + φ

)
(0 ≤ t ≤ T) (7)

where a, ξ, ω0, and φ are the amplitude, damping ratio, frequency, and phase of the signal,
respectively.

When t < 0, s(t) = 0. Energy integration is performed on s(t), and the integration
formula is as follows:

E = lim
T→∞

∫ T

−T
|s(t)|2dt = lim

T→∞

∫ T

0
|s(t)|2dt =

a2(1 + ξ2)
4ξω0

(8)

Equation (8) indicates that the single-frequency free attenuation signal possesses
limited energy. When SFFDVS combines with the white noise signal, the SNR across the
entire domain becomes zero due to the infinite energy of the white noise signal. The
genuine free attenuation signal is a finite sequence signal. Its SNR is the free attenuation
signal energy ratio to the noise signal energy over the observation time, T.

Equation (7) is discretely sampled, and N sample values are obtained, forming the
discrete sequence.

s(n) = ae−ξω0
n
fs cos

(√
1 − ξ2ω0

n
fs
+ φ

)
(n = 0, 1, 2, · · · , N − 1) (9)

where fs is the sampling frequency.
It is assumed that Gaussian white noise z(n) is mixed into the signal s(n); if x(n) = s(n)

+ z(n), the signal sequence is

x(n) = s(n) + z(n) (n = 0, 1, 2, · · · , N − 1) (10)

where z(n) is a Gaussian noise sample with zero mean and variance σ2.
The energy integration of s(n) is

En = ∑N−1
n=0

(
ae−ξω0

n
fs cos

(√
1 − ξ2ω

0

n
fs

))2

(n = 0, 1, 2, · · · , N − 1) (11)

Expanding the above formula yields

En = ∑N−1
n=0

(
ae−ξω0

n
fs cos

(√
1 − ξ2ω

0

n
fs

))2
≈ a2

2 ∑N−1
n=0 e−2ξω0

n
fs ≈ a2

2
1 − e−2ξω0

N
fs

1 − e−2ξω0
1
fs

(12)

When the sampling length is long enough, then e−2ξω0
N
fs ≈ 0. When the system is

a small damping system, based on the sampling theorem fs ≥ 2.56ω0
2π , 2ξω0

1
fs
→ 0 . If it

defines 2ξω0
1
fs
= x, then

En ≈ a2

2
1

1 − e−x (13)

Based on Taylor’s expansion, e−x = 1 − x + 1
2! x

2 − 1
3! x

3 + o
(
x3) ≈ 1 − x, and by

substituting into Equation (13), it can be derived that

En ≈ a2

2x
=

a2 fs

4ξω0
(14)
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The SNR of a noisy single-degree-of-freedom free attenuation signal can be obtained
as follows:

ς =
a2 fs

4Nξω0σ
2 (15)

If the sampling time is T = N/fs, then

ς =
a2

4Tξω0σ
2 (16)

Based on the analysis, the free attenuation vibration signal exhibits the following
characteristics:

The free attenuation vibration signal is energy-limited; as t approaches infinity,
∼
a

approaches zero. As the sampling time extends, the SNR decreases; when the sample time,
T, approaches infinity, the SNR,

∼
ς , approaches zero.

The SNR of the free attenuation signal is directly proportional to the sampling fre-
quency and the square of the initial amplitude. It is inversely proportional to the damping
ratio, signal frequency, and sampling length.

The primary parameters of a single-frequency free attenuation signal encompass the
initial amplitude, damping coefficient, frequency, and phase angle. The frequency and
damping coefficient are the main parameters of interest in practical engineering applications.

2.2.2. CRLB of Single-Frequency Free Damping Vibration Signal

The parameter estimation model of SFFDVS is given by Equation (9). For conve-
nience of calculation, normalization is conducted. This study considers β = ξω0/ fs and
ω1 =

√
1 − ξ2ω0/ fs; thus,

x(n) = ae−βn cos(ω1n + φ)+z(n) (17)

where a,ω1,β, and φ are unknown, and θ = [a,ω1,β,φ]T.
From the parameter estimation model, the following can be derived:

z(n) = x(n)− s(n) (n = 0, 1, 2, · · · , N − 1) (18)

The probability density function is presented as follows:

f (z(n), θ) =
1√
2πσ

e−
(x(n)−s(n))

2σ2
2

(19)

The joint probability density function is described as follows:

f(x, θ) = ∏N−1
i=0 f (z(i), θ) =

1

(2πσ2)
N
2

exp
{
− 1

2σ2 ∑N−1
n=0 [x(n)− s(n)]2

}
(20)

and
L(x, θ) = lnf(x, θ) = −N

2
ln
(

2πσ2
)
− 1

2σ2 ∑N−1
n=0 [x(n)− s(n)]2 (21)

The unbiased CR bounds consist of the diagonal elements of the inverse of the Fisher
information matrix, J. When z(n) represents a Gaussian noise sample with a zero mean and
a variance of σ2, the Fisher information matrix is as follows [34]:

[J]i,j =
1
σ2 ∑N−1

n=0
∂s(n)

∂θi
·∂s(n)

∂θj
(22)
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The following can be derived based on Equation (22):

[J]1,1 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ1

·∂s(n)
∂θ1

=
1

4σ2

(
ei2φ

1 − xa
+

e−i2φ

1 − xb
+

2
1 − e−2β

)
(23)

where xa = e−2β+i2ω1 , xb = e−2β−i2ω1

[J]1,2 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ1

·∂s(n)
∂θ2

≈ ia
4σ2

(
ei2φxa

(1 − xa)
2 − e−i2φxb

(1 − xb)
2

)
(24)

[J]1,3 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ1

·∂s(n)
∂θ3

≈ −ae−i2φxb

4σ2(1 − xb)
2 − aei2φxa

4σ2(1 − xa)
2 − a(1 + 2β)

8σ2β2
(25)

[J]1,4 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ1

·∂s(n)
∂θ4

=
−a
2σ2 ∑N−1

n=0

{
e−2βn sin(2ω1n + 2φ)

}
≈ −ai

4σ2

(
e−i2φ

1 − xb
− ei2φ

1 − xa

)
(26)

[J]2,2 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ2

·∂s(n)
∂θ2

≈
a2e2β

(
1 + e2β

)
2σ2
(
e2β − 1

)3 − a2

8σ2

(
ei2φxa(1 + xa)

(1 − xa)
3 +

e−i2φxb(1 + xb)

(1 − xb)
3

)
(27)

[J]2,3 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ2

·∂s(n)
∂θ3

≈ ia2

4σ2

(
e−i2φxb(1 + xb)

(1 − xb)
3 − ei2φxa(1 + xa)

(1 − xa)
3

)
(28)

[J]2,4 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ2

·∂s(n)
∂θ4

=≈ a2e2β

2σ2(e2β − 1)2 − a2e−i2φxb

4σ2(1 − xb)
2 − a2ei2φxa

4σ2(1 − xa)
2 (29)

[J]3,3 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ3

·∂s(n)
∂θ3

≈
a2e2β

(
1 + e2β

)
2σ2
(
e2β − 1

)3 +
a2

4σ2

(
ei2φxa(1 + xa)

(1 − xa)
3 +

e−i2φxb(1 + xb)

(1 − xb)
3

)
(30)

[J]3,4 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ3

·∂s(n)
∂θ4

≈ ia2

4σ2

(
ei2φxa

(1 − xa)
2 − e−i2φxb

(1 − xb)
2

)
(31)

[J]4,4 =
1
σ2 ∑N−1

n=0
∂s(n)
∂θ4

·∂s(n)
∂θ4

≈ a2

4σ2β
(32)

The Fisher information matrix is symmetric; thus:

[J] ≈


[J]1,1 [J]1,2
[J]1,2 [J]2,2

[J]1,3 [J]1,4
[J]2,3 [J]2,4

[J]1,3 [J]2,3
[J]1,4 [J]2,4

[J]3,3 [J]3,4
[J]3,4 [J]4,4

 (33)

Based on Fisher’s matrix, the CRLB of the parameters can be estimated.

E(ω̂1 −ω1)
2 = E

(
θ̂2 − θ2

)2 ≥
[
J−1(θ)

]
22

(34)

E
(

β̂ − β
)2

= E
(
θ̂3 − θ3

)2 ≥
[
J−1(θ)

]
33

(35)

After normalization processing with ω0 = ω1 × fs/
√

1 − ξ2, the following is derived:

E(ω̂0 −ω0)
2 = fs

2·E(ω̂1 −ω1)
2/
(

1 − ξ2
)
≥

fs
2
[
J−1(θ)

]
22

1 − ξ2 (36)

Hence, obtaining the analytic formula for the inverse matrix of the Fisher matrix
proved challenging. A simulation analysis was conducted to better understand the identifi-
cation accuracy of the parameters under consideration.



Buildings 2024, 14, 198 7 of 17

2.2.3. Characteristics of CRLB of Single-Frequency Free Damping Vibration Signal

Four simulation groups were established to examine the effects of sampling frequency,
phase angle, damping coefficient, and noise on recognition accuracy, each assessing the
impact of distinct parameters.

(1) Influence of sample frequency on frequency identification accuracy

Assuming that a = 1.0, β = 0.05ω1
fs

, ω1 = 62.8
fs
(f = 10 Hz), φ = 0, the noise signal

variance σ = 0.2, and the data sampling length N = 20, 001, then fs ∈ (30 Hz, 500 Hz).
The Fisher matrix was determined, and subsequently, the CRLB of the frequency was
estimated using Equation (36) by substituting these parameters into Equations (23)–(33).
The computed results are listed in Table 1, with a corresponding visual representation in
Figure 2.

Table 1. CRLB of frequency identification corresponding to different sampling frequencies.

fs(Hz) 30 50 100 150 200 250 300 400 500

CRLB 0.0174 0.0102 0.0051 0.0034 0.0025 0.0020 0.0017 0.0013 0.0010
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The CRLB of a real sinusoidal signal is

E(ω̂0 −ω0)
2 ≥ 12

ζN(N2 − 1)
(37)

where ζ is the SNR (ζ = a2

2σ2 ); N is the length of the data.
The CRLB is the result of normalized sampling frequency, which can be obtained by

considering the influence of sampling frequency in the same way as Equation (36).

E(ω̂01 −ω01)
2 ≥ 12 f 2

s
ζN(N2 − 1)

(38)

The free attenuation signal differs significantly from the sinusoidal signal. When the
data length of the sinusoidal signal remains constant, and the sampling theorem is met, a
lower sampling frequency results in a smaller frequency identification variance. However,
simulation results for free attenuation signals indicate that free fading signals’ frequency
and time domain resolutions align. As the time domain resolution is enhanced, so is the
frequency domain resolution. The simulation results reveal that:

(1) Elevating the sampling frequency can decrease the lower limit of frequency identifica-
tion variance. Enhancing the sampling frequency improves the frequency identifica-
tion accuracy at low sampling frequencies.
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(2) Continuously increasing the sampling frequency does not indefinitely enhance recog-
nition accuracy. When the sampling frequency is 40 times the recognition frequency,
further increases in the sampling frequency minimally impact recognition accuracy.

(3) Free-damping vibration signals differ markedly from sinusoidal signals. A lower
sampling frequency yields higher frequency identification accuracy with consistent
data length. A higher sampling frequency increases frequency identification accuracy
with a sufficiently long signal length. Thus, a higher sampling frequency can be
employed for signal acquisition to boost frequency identification accuracy in actual
modal tests.

(4) According to the influence of the sampling frequency of the free-damping vibration
signals on the accuracy of frequency identification, a real-time eigen perturbation
strategy can be further adopted to adaptively adjust the sampling frequency in real-
time modal testing, thereby improving the accuracy of frequency identification [5].

(2) Influence of damping coefficient on frequency identification accuracy

Assuming that a = 1.0, β = ξω1
fs

, ω1 = 62.8
fs
(f = 10 Hz), φ = 0, noise signal variance

σ = 0.2, data sampling length N = 20, 001, and fs = 500 Hz, then ξ ∈ (0.01, 0.1). The
Fisher matrix was computed, and subsequently, the CRLB of the frequency was determined
using Equation (36) by substituting these parameters into Equations (23)–(33). Table 2
details the outcomes, whereas Figure 3 represents them.

Table 2. Different damping coefficients correspond to the CRLB.

ξ 0.01 0.02 0.03 0.04 0.05 0.06 0.08 0.10

CRLB 8.0465 × 10−6 6.4468 × 10−6 2.1812 × 10−4 5.1882 × 10−4 0.0010 0.0018 0.0042 0.0084
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The simulation findings show that the frequency identification error also rises as the
signal damping coefficient increases. Hence, in systems with a larger damping coefficient,
the impact of this coefficient must be accounted for during system frequency identification.

(3) Influence of noise on frequency identification accuracy

If a = 1.0, β = 0.05ω1
fs

, ω1 = 62.8
fs
(f = 10 Hz), φ = 0, data sampling length N = 20, 001,

and fs = 500 Hz, then σ ∈ (0.01, 0.2). The Fisher matrix was determined, and then the
CRLB of the frequency was estimated using Equation (36) by substituting these parameters
into Equations (23)–(33). The calculation results are listed in Table 3, and the graph is shown
in Figure 4.
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Table 3. The CRLB of frequency identification at different SNRs.

σ 0.0100 0.0164 0.0270 0.0347 0.0446 0.0573 0.0736 0.1213 0.2000

σ2/a2 0.0001 0.0003 0.0007 0.0012 0.0020 0.0033 0.0054 0.0147 0.0400
SNRs (dB) 30 20 10 5 0 −5 −10 −20 −30

CRLB 2.545 × 10−6 6.844 × 10−6 1.855 × 10−5 3.064 × 10−5 5.062 × 10−5 8.355 × 10−5 1.378 × 10−4 3.744 × 10−4 1.018 × 10−3
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The simulation results indicate that the CRLB of frequency parameter identification is
proportional to a2

σ2 . As noise increases, the accuracy of frequency identification decreases.
Consequently, the initial step in frequency parameter identification should involve signal
denoising. Enhancing the SNR can notably enhance the frequency identification accuracy.

(4) Influence of the phase of the signal on frequency identification accuracy

Assuming that a = 1.0, β = 0.05ω1
fs

, ω1 = 62.8
fs
(f = 10 Hz), data sampling length

N = 20, 001, fs = 500 Hz, and σ = 0.2, then φ ∈ (0, 360). By substituting the above
parameters into Equations (23)–(33), the Fisher matrix was calculated, and then the CRLB
of the frequency was estimated from Equation (36). The calculation results are listed in
Table 4 and illustrated in Figure 5.

Table 4. The CRLB of frequency identification at different phases.

Phase (◦) 0 36 54 90 126 144 180 198 360

CRLB 0.00102 0.00096 0.00095 0.00099 0.00105 0.00105 0.00102 0.00099 0.00102

The simulation results indicate the following: (1) The phase angle significantly affects
the lower variance of frequency parameter identification. The variance is lowest when the
phase angle is approximately 54◦ and 234◦ and highest at approximately 144◦ and 324◦.
(2) The difference between the maximum and minimum values of the CRLB is 0.0001 for
various phase angles.

Since the phase angle’s influence is less pronounced than the noise, sampling frequency,
and damping coefficient, the randomness of excitation in actual sampled signals renders
the phase angle uncertain. Consequently, the superposition of free-damping signals with
identical frequencies but differing phase angles can lead to the spectral line-splitting
phenomenon. This uncertainty can adversely affect the accuracy of frequency identification.
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2.3. Algorithm Derivation and Its Methods

Maximum likelihood estimation seeks to estimate parameters based on known ob-
servations, without prior knowledge of the unknown quantity under consideration. In
applying the maximum likelihood estimation method, the parameters to be estimated are
considered constant, though they remain unknown, while the known observation data
are treated as random sequences. Let x = (x1, x2, · · · , xN) represent N observations of
random variables and let { f (x|θ), θ ∈ Θ} represent the joint conditional probability density
function of observed samples with specific parameters, where θ is the potential range of
values. The joint conditional probability density function is as follows:

f (θ) = f (x|θ )∏n
i=1 f (xi|θ) (39)

Assuming that the joint conditional probability density function exists and is con-
strained, the maximum likelihood estimation is the estimation value θ̂ that optimizes
the likelihood function {f(x|θ), θ ∈ Θ}. Given a sampling frequency of 1 Hz, the proba-
bility density function for a single-frequency free damping vibration signal is presented
as follows:

f(x, θ) =
1

(2πσ2)
N
2

exp
{
− 1

2σ2 ∑N−1
n=0

[
x(n)− ae−βncos(ω1n + φ)

]2
}

(40)

where β = ξω0, ω1 =
√

1 − ξ2ω0.
When the identification parameter θ̂ results in f(x, θ) achieving its maximum value,

this parameter represents the maximum likelihood estimation. Taking the logarithm of
f(x,θ) yields the following expression:

ln(f(x, θ)) = −N
2

ln
(

2πσ2
)
− 1

2σ2 ∑N−1
n=0

[
x(n)− ae−βncos(ω1n + φ)

]2
(41)

and
L(x, θ) = ∑N−1

n=0

[
x(n)− ae−βncos(ω1n + φ)

]2
(42)

Expanding Equation (42) yields

L(x, θ) = ∑N−1
n=0

[
x2(n) + a2e−2βncos2(ω1n + φ)− 2ax(n)e−βncos(ω1n + φ)

]
(43)

By ignoring the known time series, ∑N−1
n=0 x2(n), from Equation (43), we can derive

L0(x, θ) =
a2

4β
− 2a∑N−1

n=0 x(n)e−βncos(ω1n + φ) (44)
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When a and β are unknown values, then

L0(x,ω) = ∑N−1
n=0 x(n)e−βncos(ωn + φ) (45)

When the parameter ω̂ causes f(x,ω1) to achieve its maximum, ln(f(x, ω̂)) reaches
its maximum, whereas L(x, θ) and L0(x, θ) achieve their minima and L0(x,ω1) attains its
maximum. Maximum likelihood estimation is equivalent to the best square approxima-
tion estimation.

Based on Equation (45), L0(x,ω) has the greatest value when identifying the parameter
ω̂ → ω1 , where ω̂ is the maximum likelihood estimation parameter.

Taking the partial derivative of L0(x,ω), we can obtain

Lx(x,ω) =
∂L0(x, θ)

∂ω
= −2a∑N−1

n=0 x(n)ne−βnsin(ωn + φ) (46)

When Equation (40) attains the maximum value, Lx(x,ω) = 0. When ω̂ → ω1 , we
can obtain

∑N−1
n=0 x(n)ne−βnsin(ω̂n + φ) = 0 (47)

Likewise, if a,β, and φ in the parameter θ = [a,ω1,β,φ]T are deduced similarly to
the parameter ω1, then

Lx(x, a) =
∂L0(x, θ)

∂a
=

a
2β

− 2∑N−1
n=0 x(n)e−βncos(ω1n + φ) = 0 (48)

When â → a , then

â = 4β∑N−1
n=0 x(n)e−βncos(ω1n + φ) (49)

When β̂ → β , the following can be derived:

∑N−1
n=0 x(n)ne−β̂ncos(ω1n + φ) ≈ a

8β̂2
(50)

The following can be obtained from Equations (49) and (50):

β̂ =
∑N−1

n=0 x(n)e−βncos(ω̂n + φ)

2∑N−1
n=0 x(n)ne−βncos(ω̂n + φ)

(51)

When φ̂ → φ , then

φ̂ = − tan−1 ∑N−1
n=0 x(n)e−βnsin(ω̂n)

∑N−1
n=0 x(n)e−βncos(ω̂n)

(52)

Based on the above deduction, the frequency identification of a free-damping vibration
signal can be categorized into the following steps:

(1) The frequency and damping coefficient parameters are initially estimated using the
self-power spectrum;

(2) The initial estimated frequency and damping coefficient parameters are substituted
into Equation (52), and the corresponding calculations is performed to obtain phase
angle parameters;

(3) The initial estimated damping coefficient and phase angle estimation parameter are
substituted into Equation (45), and the new estimated frequency corresponds to its
maximum value;

(4) The iteration is repeated from the second to the third step to continuously improve
recognition accuracy.
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Figure 6 depicts the flowchart of frequency parameter identification using the maxi-
mum likelihood method.
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3. Results
3.1. Simulation Signal Model

For the simulation calculation model (Equation (10)), assuming that a = 1.0, β = 0.05ω1
fs

,

ω1 = 62.8
fs
(f = 10 Hz), φ = 0, data sampling length N = 20, 001, fs = 500 Hz, and

σ ∈ (0.01, 0.2), the SNR ranges between 30 and −30 dB. Figure 7 illustrates the time
domain curves at different SNRs.
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3.2. Error Analysis

A rough estimation of the damping coefficient and frequency is required during the
estimation process using the maximum likelihood algorithm. The rough estimation values
are simulated within a specific error range to evaluate the impact of the accuracy of these
rough estimates on frequency estimation. Assuming that the error in the rough estimate
of the frequency ranges from −20% to 20%, meaning the rough estimate frequency lies
between 8 and 12 Hz, the effect on recognition results is presented in Table 5. Based on the
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simulation findings, when the rough frequency estimate ranges from −20% to 20%, the
recognition error can be diminished to less than 0.26% after four iterations. Consequently,
the maximum likelihood frequency estimation algorithm is not significantly influenced
by the initial estimate and can rapidly converge to the actual frequency value through
numerous iterations.

Table 5. Identification results of the four iterations for initial estimation of different frequencies (Hz).

Initial Estimation 8.0 8.4 9.0 9.6 10.0 10.4 11.0 11.4 12.0

Results of one iteration 9.702 9.728 9.790 9.894 9.990 10.080 10.180 10.222 10.264
Second iteration result 9.848 9.862 9.892 9.944 9.992 10.040 10.080 10.104 10.124
Triple iteration result 9.920 9.926 9.940 9.964 9.988 10.010 10.030 10.044 10.054

Results of four iterations 9.974 9.976 9.978 9.986 9.990 9.994 10.000 10.002 10.006

Similarly, the impact of the initial estimate of the damping coefficient on frequency
identification accuracy is also simulated. Assuming that the initial error in estimating the
damping coefficient ranges from −50% to 50%, meaning the damping coefficient varies
between 0.025 and 0.075, the maximum likelihood method estimates the frequency for
different damping coefficients. These simulation results are documented in Table 6. When
the damping coefficient ranges from −50% to 50%, the most considerable discrepancy in
identification frequency is only 0.034 Hz, and the maximum error in frequency identification
is 0.34%. Hence, in the practical algorithm, the initial estimate of the damping coefficient is
determined using the power spectrum half-power bandwidth method, and the damping
coefficient does not require iterative calculations. The maximum likelihood frequency
estimation algorithm is not sensitive to changes in the damping coefficient.

Table 6. Frequency identification results of initial estimation of different damping coefficients.

Initial Estimation 0.025 0.035 0.040 0.045 0.050 0.055 0.060 0.070 0.075

Frequency
estimation (Hz) 10.007 10.008 9.999 9.997 9.993 9.989 9.987 9.977 9.973

The identification errors in the initial amplitude A and damping coefficient ξ of a free
damping signal exert minimal influence on frequency parameter identification. However,
the phase angle significantly impacts frequency parameter identification. Therefore, only
the phase angle requires iterative solutions when employing the maximum likelihood
method for iterative identification. The identification results for the initial amplitude and
damping coefficient within a specific range do not compromise the accuracy of frequency
parameter identification.

3.3. Comparative Analysis of Recognition Results of Different Methods

The frequency parameters of freely attenuated vibration signals at varying SNRs
were identified using the periodogram, dichotomy interpolation, and maximum likelihood
methods. One hundred groups of random simulation identifications were conducted for
signals with the same SNR. The frequency identification error is depicted in Figure 8.
The maximum likelihood method significantly enhanced the identification accuracy. This
improvement was particularly noticeable when the SNR is low, leading to a notable increase
in the frequency recognition correctness rate.

The variances in recognition results for the three algorithms were calculated based on
the recognition results for each group of signals with identical SNRs. The CRLB bounds for
these results were also computed under the respective conditions. Table 7 lists the findings,
whereas Figure 9 displays the relationship curves between frequency identification variance
and signal-to-noise ratio for the various identification methods.
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Table 7. Frequency parameter identification variance of different identification methods.

σ 0.0100 0.0164 0.0270 0.0347 0.0446 0.0573 0.0736 0.1213 0.2000

SNR dB 30 20 10 5 0 −5 −10 −20 −30

perodogram 0.0023 0.0033 0.0053 0.0060 0.0115 0.0126 0.0145 0.0301 0.1032
About 0.0014 0.0024 0.0045 0.0054 0.0101 0.0121 0.0139 0.0297 0.1013

ML 1.771 × 10−4 2.548 × 10−4 3.638 × 10−4 4.528 × 10−4 7.058 × 10−4 9.818 × 10−4 1.100 × 10−3 2.200 × 10−3 4.600 × 10−3

CRLB 2.545 × 10−6 6.844 × 10−6 1.855 × 10−5 3.064 × 10−5 5.062 × 10−5 8.355 × 10−5 1.378 × 10−4 3.744 × 10−4 1.018 × 10−3
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From the error analysis, several conclusions can be drawn:

1. The recognition accuracy of the dichotomy interpolation method marginally surpasses
that of the periodogram method.

2. The maximum likelihood method’s recognition accuracy is significantly superior to
the periodogram and the dichotomy interpolation methods across all SNR conditions.
Approximately an order of magnitude enhances its accuracy.

3. As the SNR decreases, the variance in the maximum likelihood recognition approaches
the lower bound of the CRLB variance, indicating that the maximum likelihood
recognition algorithm is highly noise-resistant.

4. Enhancing the frequency resolution and the number of data calculation bits of the
maximum likelihood method can further boost recognition accuracy.

5. The maximum likelihood method requires an iterative solution, making its computa-
tional demand considerably greater than that of the periodogram method.

4. Conclusions

The study focuses on the free-damping signal mixed with white noise to enhance
the frequency parameter identification accuracy of the structural response signal under
ambient excitation. The primary conclusions are:

1. The free-damping vibration signal possesses limited energy. As t approaches infinity,
∼
a approaches zero. With an extended sampling time, the SNR decreases; when the
sample time T approaches infinity, the SNR

∼
ς approaches zero.

2. Based on the CRBL for the free damping signal and the simulation results, the follow-
ing observations were made:

(a) An increase in the sampling frequency reduces the lower bound of frequency
identification variance. Specifically, when the sampling frequency is low,
raising it improves frequency identification accuracy. However, increasing
the sampling frequency does not always enhance recognition accuracy. After
the sampling frequency reaches 40 times the recognition frequency, further
increases in the sampling frequency minimally affect the recognition accuracy.

(b) A higher signal damping coefficient results in greater frequency identification
error. For systems with large damping coefficients, the effect of the damping
coefficient should be factored in during system frequency identification.

(c) The CRB for frequency parameter identification is proportional to a2

σ2 . Increased
noise leads to decreased frequency identification accuracy.

(d) The influence of the phase angle is less significant than the noise, sampling
frequency, and damping coefficient. However, phase angles can vary due to
the unpredictability of excitation in actual sampled signals. Consequently, the
superposition of free-damping signals with identical frequencies but differing
phase angles can split spectral lines. This variability can reduce the accuracy
of actual frequency identification.

3. Compared to the periodogram method and the dichotomy interpolation method, the
recognition accuracy of the maximum likelihood method is substantially superior
under various SNR conditions, improving accuracy by roughly an order of magnitude.
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