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Abstract: The traditional fixed boundary could not transmit the elastic-plastic stress waves in the
progressive collapse analysis of the truss structures, leading to discrepancies in understanding the true
response of structures. To solve the critical problem, a new dynamic artificial boundary is proposed
and integrated into the truss structure to transmit elastic-plastic stress waves. The new dynamic
artificial boundary is established through the integration of the elastic-plastic constitutive model into
the governing equation of the stress wave. This boundary is subsequently implemented within the
ABAQUES finite element software for the purpose of conducting progressive collapse analysis of the
truss structures. The progressive collapse simulation of the truss structures involves a comparative
analysis between the new dynamic artificial boundary and the traditional fixed boundary. Numerical
analysis demonstrates that the dynamic artificial boundary led to varied initial failure and collapse
compared to the fixed boundary. The failure typically occurs at the mid-span under the dynamic
boundary. In contrast, additional failures occur near the support columns under the fixed boundary
due to stress wave reflections. The dynamic artificial boundary more closely reflects the physical
reality and provides a new method for the progressive collapse analysis of the truss structures in
practical applications.

Keywords: progressive collapse; reflected waves at the boundary; dynamic artificial boundary
element; truss structure

1. Introduction

The progressive collapse of space structures is a process of dynamic instability [1]. In
this process, the impact of stress wave transmission on the elastoplastic members cannot
be ignored due to the extremely short time of structural instability [2]. It is customary in
the computational modeling of space structures to simplify the boundary conditions to
facilitate calculation. Generally, these structures are assumed to have fixed boundaries [3].
However, the assumption of a fixed boundary is inconsistent with the actual physical
situation. This assumption places a significant limitation on accurately simulating the real
physical reaction of the structure when stress wave propagation is taken into account [4].
When the stress waves within a structure encounter a fixed boundary, they are reflected back
into the structure [5]. The occurrence of wave reflection may lead to inaccurate predictions
of stress wave effects and potential collapse mechanisms [6]. Consequently, it is worthwhile
to explore this difference between simplified models and real physical conditions.

The propagation theory of elastic waves was formulated as early as the 19th cen-
tury [7]. Unlike the elastic wave, the propagation theory of the plastic wave was developed
relatively late [8]. When the material has non-elastic qualities, the stress-strain relationship
becomes significantly more complicated, and plastic wave propagation within the member
is a real possibility in such conditions. Thus, it is imperative to select a suitable constitutive
model for investigating the transmission of elastic-plastic waves. Initially, constitutive
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models predominantly employed linear elastic formulations predicated on Hooke’s Law.
These models apply to materials that have returned to their initial shape after removing
stress [9]. While these models are sufficient for standard elastic materials under normal
stress conditions, they were found to be inadequate when applied to elastoplastic materi-
als [10]. Recognizing the limitations of linear models, researchers developed elastoplastic
constitutive models based on Drucker-Prager, Von Mises, and Tresca criteria [11].

In recent years, with the development of materials and the improvements in measuring
instruments, more elastoplastic constitutive models have been proposed. Alessandro Zona
proposed an elastoplastic model following a consistent approach based on a rheological
scheme leading to a simple constitutive law involving only one internal variable. The
adopted formulation allows a straightforward physical interpretation and identification
of the constitutive parameters of the model as well as an explicit computation of the
response quantities related to failure and dissipated energy [12]. Omid Pourhosseini
proposed an elastoplastic constitutive model to describe the nonlinear behavior of intact
rocks under static loading [13]. Ly Xu developed an elastoplastic constitutive model
to simulate the cyclic hardening and softening of the low-yield-point steel BLY160 by
introducing a modified Chaboche kinematic hardening [14]. Changqing Wang presented a
constitutive model of FRAC to predict the unloading path, reloading path, residual strain
development, and damage evolution for the composite accounting for fiber content [15].
Changqing Wang proposed a modified constitutive model of FRAC. The effects of the fiber
reinforcing factors (RI) for peak stress and critical strains were quantified and coupled into
the modified [16].

To ensure that stress waves at a structural boundary propagate unimpeded from a
nearby location to an infinitely distant location, the most effective method is to impose the
absorbing boundary condition [17]. In recent years, various artificial boundary conditions
have been applied in the field of structural engineering, such as the viscous boundary,
paraxial boundary, transmitting boundary, and viscoelastic boundary. The viscous bound-
ary mitigates the impact of stress waves by employing a sequence of dampers along the
boundary to absorb their energy [18]. The paraxial boundary utilizes the paraxial approxi-
mation formula to differentiate between the waves outside and inside the computing zone,
efficiently eliminating the phenomenon of reflected waves [19]. Transmitting uses multiple
transmission boundaries to simulate the process of external waves passing through the
boundary to achieve the propagation of waves towards infinity [20]. The viscoelastic
boundary is equivalent to springs and dampers with universal physical significance [21].
However, the preceding artificial boundary conditions are mainly derived based on elastic
theory, which may become ineffective or inaccurate for nonlinear materials.

The prior computational models of space structures for progressive collapse analysis
often assume boundaries to fixed boundaries. This simplification fails to represent the
actual physical conditions accurately. It overlooks the stress wave propagation during
structural instability, which can lead to inaccurate predictions of stress wave effects and
collapse mechanisms. In addition, the current dynamic boundaries are established heav-
ily based on the constitutive model and are inadequate for elastoplastic materials where
the stress-strain relationship is more complex. The present methods cannot accurately
consider the propagation of elastic-plastic stress waves in the analysis of the progressive
collapse of space structures, which hinders our modeling and prediction of the response
of space structures. Therefore, it is necessary to develop new dynamic artificial bound-
aries to study the complexity of elastic-plastic wave propagation in space structures to
provide a more comprehensive and accurate representation of structural responses under
progressive collapse.

In this paper, an elastic-plastic dynamic artificial boundary condition suitable for nu-
merical calculation is provided. The mathematical form of the dynamic artificial boundary
equation is derived based on the elastic-plastic stress wave solution. An implementation of
the elastic-plastic dynamic artificial boundary in ABAQUS is presented, utilizing the finite
element method. Then, a typical numerical example for elastic-plastic stress wave propa-
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gation under pulse load is selected to verify the absorption performance of the proposed
dynamic artificial boundary. Finally, the progressive collapse of the truss structure under
the dynamic artificial boundary condition is analyzed and compared with the result of the
traditional fixed boundary condition.

The dynamic artificial boundary more closely reflects the physical reality. It provides
a novel and more effective method for the progressive collapse analysis of truss structures,
particularly in practical engineering applications. This alignment with real-world behavior
not only enhances the accuracy of collapse predictions, but also aids in developing more
robust design strategies and retrofitting techniques for truss structures, ensuring greater
safety and resilience in civil engineering constructions. Dynamic modeling is crucial in
regions prone to extreme events like earthquakes or blasts, where the understanding of
progressive collapse mechanisms can be the difference between catastrophic failure and
structural safety.

2. Research Significance

A new elastic-plastic dynamic artificial boundary is proposed by incorporating the
elastoplastic constitutive relationship into the element equilibrium equation. The proposed
elastic-plastic dynamic artificial boundary is integrated into progressive collapse analysis
to mitigate the adverse effects of wave reflections on the structure. This approach is
more closely related to physical reality. It enhances the realism and accuracy of collapse
simulations, bridging the gap between the numerical model and practical engineering
applications in structural collapse analysis. The proposed artificial boundary provides a
reference for structural engineers to calculate spatial structures in response to progressive
collapse scenarios.

3. Control Equation of the Elastic-Plastic Wave

When subjected to impact action, elastic-plastic members may display distinct regions
of deformation known as the elastic zone and the plastic zone, as dictated by their mo-
tion and deformation properties. The appearance of elastic waves resulting from elastic
deformation occurs earlier in comparison to plastic waves due to the comparatively high
modulus of elasticity.

When the dynamic impact is applied to the structural surface, the symmetrical radial
or circumferential disturbance may be induced in a cylindrical member with a uniform
cross-section. The disturbance will cause the compression or torsional wave to propagate
through the elastic-plastic cylindrical member. The microelement of the elastic-plastic
cylindrical member is extracted for analysis, as depicted in Figure 1.

o0 +(000/00)d6

- o0 + (0o /Or)dr
or +(0or/Or)dr

(4

Figure 1. The schematic diagram of the elastic-plastic cylindrical microelement.

3.1. Elastic-Plastic Compression Wave

In the compression deformation mode, the stress waves propagating in the elastoplas-
tic cylindrical member are axisymmetric compression waves. The cylindrical coordinates
can be used to calculate the motion of the microelement. The variables ¢t and r can represent
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all state parameters due to the non-zero displacement in radial orientation. Thus, the
corresponding motion equation in the radial direction can be expressed as follows.

*u, 9oy oy —o0p

ot? :§+ r M

where r and t represent the radial coordinate and time coordinate, respectively, ¢; and oy
represent radial and circumferential stress, respectively, u, represents radial displacement,
and p represents material density.

The strain components of the elastic-plastic cylindrical microelement are expressed
as follows. 5 5

Sr:_%/&@:_?/?re:_g (2)

where ¢, 7,9, and &g represent the radial, shear, and circumferential strain, respectively, u,
represents radial displacement, and uy represents circumferential displacement.

When the elastic wave reaches the position r of the cylindrical member, the microele-
ment undergoes elastic deformation. The constitutive law of material in the elastic stage
can be expressed using the generalized Hooke’s law.

oy K+4G0/3 K—2G0/3 0 &
Og | = K—ZG()/3 K+4G0/3 0 £p (3)
Tro 0 0 GO Yro

where 07, 0y, and T,¢ represent the radial, circumferential, and shear stress, respectively, K
represents bulk modulus, and G represents elastic shear modulus.

The motion expression of the elastic compression wave can be obtained through the
substitution of Equations (2) and (3) into Equation (1) as follows.

u,  ou, ur 1 Pu,

2 2~ 2 2
ar ror r €0 ot

(4)

where ¢, 0 = /(K +4Go/3)/p represents the velocity of the elastic shear wave.
If ¢, is a scalar function and u# = d¢, /dr represents the partial derivative d¢, to r, then
the above motion expression of the elastic compression wave can be expressed as follows.

2 2
¢, 09, _ 1 g, -

2 2 2
or ror 0 ot

When the plastic wave reaches the position r of the cylindrical member, the microele-
ment undergoes plastic deformation. For the plastic phase, the stress expression of o3, 0y,
and T,¢ differs from that in the elastic phase. The strain-stress relationship for the nonlinear
constitutive model can be obtained by introducing the plastic shear modulus G; as follows.

oy 070 K+4G1/3 K—-2G1/3 0 & — &0
og| = |ogo| + |K—2G1/3 K+4G;/3 0 €9 — €90 (6)
Tr Tr90 0 0 G1] Lrre — rre0

when the maximum stress reaches the initial yield strength, o9, 7,00, and oy represent the
radial, shear, and circumferential yield stress, respectively, and ¢y, ¥,90, and ey represent
the radial, shear and circumferential yield strain, respectively.

The motion expression of the plastic compression wave can be obtained through the
substitution of Equations (2) and (6) into Equation (1) as follows.

u,  Ouy Uy 1 0%u, 2(Go— Gy)(ero — €60)

o7 trar T2 o (K+4G,/3)r @
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If ¢r is a scalar function and u = d¢, / dr represents the partial derivative d¢, to r, then
the above motion expression of the plastic compression wave can be expressed as follows.

(P 9\ _ 1 939 2(Go—Gu)(ero —ea) ®
or\ oar2  ror cf) L Or of2 (K+4G1/3)r
where ¢, 1 = /(K +4G1/3)/p represents the velocity of the plastic compression wave.

Equation (9) can be obtained by performing integration with respect to the variable r on
both sides of Equation (8).

PPr oy 1 P, 2(Go— Gi1)(er0 — €a0)
87‘2 +1’871’ = Céil atz + (K+4G1/3) IT‘lT+L(t> (9)

The function t does not affect other state properties because the displacement, strain,
and stress are derived from the function ¢ with respect to r. Thus, L(t) = 0 could be
substituted into Equation (9).

Inr (10)

Py ¢y 1 3¢, 2(Go— Gi)(er0 — €q0)
=3

a2 " ror 2. o (K +4G,/3)

pl

3.2. Elastic-Plastic Shear Wave

In the torsional deformation mode, the stress waves propagating in the elastoplastic
cylindrical member are axisymmetric shear waves. The corresponding motion equation in
the circumferential direction can be expressed as follows.

821/{9 - aTrg 27}9
P = Tor r

(11)

where 1,9 and uy represent the shear stress and circumferential motion, respectively. The
mathematical representation for the strain component is as follows.

. aug U
Tre = T + - (12)

The motion expression of the elastic shear wave can be obtained through the substitu-
tion of Equations (3) and (12) into Equation (11) as follows.

azug 1au9 Ug 1 821/[9

— = -5 =5 =5 13
o2 ror rr 2, o 13)
where ¢5 ) = \/Go/p represents the velocity of the elastic shear wave.
If ¢ is a scalar function and uy = d¢pg/Jr represents the partial derivative d¢y to 7,
then the above motion expression of the elastic shear wave can be expressed as follows.

2 2
FPo  9pe — 1 s (14)
o2 ror (2, ot
The motion expression of the plastic shear wave can be obtained through the substitu-
tion of Equations (6) and (12) into Equation (11) as follows.

%upg  Oupg up 1 *up | 2(Go— G1)Yre0

a2 ror 2 z or2 Gyt (15)
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If 9¢y is a scalar function and u = d¢y/0r represents the partial derivative d¢py to r,
then the above motion expression of the plastic shear wave can be expressed as follows.

0 (0°Py | g 1 0 %9  2(Go— G1)7Vre0
8r( ) SZaar T Gu (16)

or2 ror

where ¢;; = \/G1/p represents the velocity of the plastic shear wave. Equation (17) can
be obtained by performing integration with respect to the variable r on both sides of
Equation (16).

gy Oy 1 ¢ n 2(Gp — G1)

Yr60
= 7
o2 ror 2 o Gyr Inr + L(t) (17)

The function f does not affect other state properties because the displacement, strain,
and stress are derived from the function i with respect to . Thus, L(t) = 0 could be
substituted into Equation (17).

Py  Opy _ 1 ¢ n 2(Go — G1)7¥r0 Inr
o2 ror (2, ot? Gyr

(18)

4. Dynamic Artificial Boundary Condition
4.1. The Elastic Deformation Stage
To solve the above motion expression of the elastic compression wave (5), we use the

method of the separation of variables, and assume that the solution can be expressed as the
product of two functions as follows.

¢p(r,t) ="¥(r)-T(t) (19)
Substitute Equation (19) into the wave Equation (5) to separate variables.
12T  Cho (0*F  10¥ )
Tatz_‘if<ar2 rar) = (20)

where —A? represents the separation constant. The following two equations can be obtained.

PT T
D™ 21
ot? A2 0 1)
XY oY
r 572 +rar + ¥roA 0 (22)

The solution of Equation (21) is a combination of sine and cosine functions as follows.
T(t) = Cy -sin(cyoAt) + Ca - cos(cpoAt) (23)

Equation (22) is the Bessel differential equation, and the solution is as follows.
Y¥(r) =Cs- Jo(Ar) + C3 - Yo(Ar) (24)

The general solution to the cylindrical wave equation is then a product of these two
solutions.

qb(?’, t) = (C1 . Sin(Cp,())\t) +Cy - COS(CP,O/\f)) (C3 . ]0(/\7’) +Cs- Y()()\T)) (25)

In practice, Bessel functions of the second kind (Yp(Ar)) often become infinite at the
origin (r = 0), which is usually physically unacceptable for problems involving cylindrical
symmetry around the origin. Therefore, C3 is often set to zero in such problems, depending
on the specific boundary conditions.
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The Bessel functions of Jy(Ar), the first kind, are defined by the series expansion.

(-1)F /Ar
(A 2k¢k+1><2) (26)

From the above equation, it can be seen that lacking an accurate equation for a
cylindrical waveform, the approximate solution of the cylindrical compression wave can be
expressed as follows when the elastic wave arrives at position 7 of the cylindrical member.

1 r
¢r(r,t) = ﬁH(CW - f) (27)

where H represents arbitrary functions.
The radial displacement u, can be expressed as follows.

1 11

The following equations can be obtained by seeking the second-order partial derivative
of u,(r,t) and ¢, (r, t) with respect to t, separately.

aZu,(r, t) a¢, B 1 9 1 1 ”
Tz T o ( or ) 5t T %mH (29)
Por 1,
= 30
at2 \ﬁH ( )

The internal load f; of the node at the dynamic artificial boundary in the radial

direction can be expressed as follows.
fr = A(K +4Go/3)er + A(K — 2Go/3)eq = A(K + 4Gy /3) (—aa— - 7,) +2AGy Y
— A(K+4Gy/3) (—"’24" — %) £ 24Go" = A(K+4Go/3)(— 3 5&) +24Go %

2
or ror 2

(81)

By substituting Equation (30) into Equation (31), the internal load f; can be expressed

as follows. L1
fo = A(K+4Go/3)(= 5~ —=H") + 2AGy (32)
€0 f r
The following equation can be obtained by seeking the partial derivative of f, in
respect to:

9f, 2AGy[ou, (K+4Go/3)r 1 1 .,
9r _ L BT Ly 33
ot ro| ot 2Gy o VT (33)

By integrating Equations (32) and (33), the following equation can be obtained.

2r ofr _ 2AGy 2r ou,  r* (K+4Go/3) d*u,
oot — 1 rogata 6 o) G4

fr+—

Similarly, the combined expression of shear node force f,9 and the corresponding
df 4/ 0r can be expressed as follows.

2r df,p  2AGo 2r dug 1% %uy

R P N

(35)
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4.2. The Plastic Deformation Stage

The motion equation of the plastic compressional wave is a nonhomogeneous equation.
According to the superposition principle, the solution of the motion Equation (10) can be
represented in the following manner.

(Pr = Er+Fr (36)

Thus, the motion expression of the plastic cylindrical compressional wave can be
divided into the following two equations.

0’E, 10E, 1 0%E,

a2 T ror  cpi? oR2

=0 (37)

9?F, 10F, 1 0°F  2(Go— Gi1)(e0 — €60)
_—— — prm— I
a2 i cp1? ot? (K+4G1/3) " 38)

The general solution for Equation (37) can be represented in a format analogous to
Equation (27), as seen below.
1
E = H<r —t) (39)

\/; Cp1

Assume that Equation (38) has a specific solution as follows.

F = 2(Go — G1) (&0 — €60) (PInr 17 (40)
(K +4G,/3) 4 4
Subsequently, ascertain whether this solution satisfies the specified criteria.
PE | 195 _ 2(Go—Gi)(er—tqo) (1 1) 4 2(Go—Gu)(ero—ea0) 1 (1l
T = M (1 ) CANEEeh (Y 1)

~ 2G0=GCy)(er e
= 0(1<+£1Gf/03)690 Inr

Thus, the solution of the plastic compressional wave can be derived from
Equations (39) and (40).

1 r 2(Go — G1)(&r0 — €90) (r2lnr r2>
= —H(— —t - 42
= (cm ) K461 /3) i1 42
The radial displacement u, can be expressed as follows.
1 1 1 2(Go — G1) (&0 — €go) (rlnr v
=—— H+——H =l 43
ur(r,t) = =33t + o (K+4G1/3) 2 1 (43)

The following equations can be obtained by seeking the second-order partial derivative
of u,(r,t) and ¢, (r, t) with respect to t, separately.

u,(r,t) 9% [9¢, 1 ., 1 1,
=2 —aela )T ———H 44
ot? o2 ( or > 2r3/2H t Cp1 1172 (44)
P _ 1
= 45
o2 \ﬁH ( )

The internal load f; of the node at the dynamic artificial boundary in the radial
direction can be expressed as follows.

fr = AO’rO + A(K+4G1/3)(Sr - 870) + A(K - 2G1 /3) (89 - 890)
= A(K+4G1/3) (—% — u—r) + ZAGl% + Ao,g — A(K+4G1 /3)870 — A(K - 2G1/3)€90 (46)

7

2
= A(K+4G0/3)( P %) +2AG1% + Aoy — A(K+4G1/3)8y0 - A(K — 2G1/3)890

T o2 ror
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By replacing a‘P’ (r oy a‘%;’t) ith 34” (x t) , the equation can be obtained as follows.

1 1 P

fr= AK+4G1/3)(~ 5=

)+ 2AG1% ¥ Y (47)
P/

where Y = A(O’ro — (K + 4Gy /3)870 — (K —2Gq1 /3)890).
By substituting Equation (45) into Equation (47), the internal load f, can be expressed

as follows. 11
fr = A(K+4G,/3)(— —TH”)+2AG1?+Y (48)
r1

The following equation can be derived by seeking the partial derivative of f, with

respect to ¢
ofr 2AGy |du, (K+4Gy/3)r 1 1 _,

o _ TG VL IR 49
ot ro| ot 2G; Gy VT )

By integrating Equations (48) and (49), it is feasible to eliminate any mention of the
unknown function H(r, t). The subsequent equation can be derived.

2r 3fy _ 2AGy 2r du, | r* (K+4Gy/3) o%u,
Gy ot?

f”L ot T cp1 Ot

- )+ Y (50)
Cp,l

Similarly, the expression of node shear force f,9 and the corresponding df,,/dr can be
expressed as follows.

2r df,p  2AGq 2r duy 2 9%,
fr9+c51 ot  r (e cs1 Of 2, ot?

) + A(Tr60 — G1Yre0) (51)

5. A Finite Element of the Proposed Dynamic Artificial Boundary

When subjected to sudden loading, the elastic waves and plastic waves may co-occur
at the impacted end of the member. Subsequently, the elastic and plastic waves propagate
through the member. Therefore, it is necessary to propose a dynamic boundary element so
that the absorption of the elastic waves and plastic waves can be considered simultaneously.

For the elastic-plastic wave, the changing relationship between node force f, node
velocity v, and node displacement u at the dynamic artificial boundary is illustrated in
Figure 2. During the stage of elastic deformation, the force, velocity, and displacement
relationship of the node at the dynamic artificial boundary satisfies f= Cv + Ku, where
constants C = pc; g and K = aGy/r, a represent the constant coefficient. During the stage
of plastic deformation, the force, velocity, and displacement relationship of the node at
the dynamic artificial boundary satisfies f = Cv + Ku + T, where constants C = pc; 1 and
K = bGq /7, brepresent the constant coefficient. T is the additional load applied on the nodes
at the dynamic artificial boundary, where T = A(cp — (K +4G1/3)ex0 — (K —2G1/3)eqp)
represents the additional load in the radial direction and T = A(T,90 — G17rg0) represents
the additional load in the circumferential direction.

The present study introduces a novel dynamic artificial boundary condition that
incorporates the temporal derivative of the boundary stress. Therefore, the incorporation of
the boundary condition within the finite element analysis could be achieved by numerically
integrating the boundary equations over time. In this paper, the proposed dynamic artificial
boundary element for elastic-plastic wave propagation is out in the ABAQUS software.
This element comprises a line connecting two nodes, and the relative motion of the element
node is defined by node force f, velocity v, and displacement u.
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f=CoviKou f=Civ+Kiu+T

uo

v

Figure 2. The relationship between node force f, velocity v, and displacement u.

The validity of the proposed dynamic artificial boundary element is examined through
a numerical model of the elastic-plastic member subjected to impact. The dynamic artificial
boundary elements are applied at the lower and lateral sides of the structure, and the
impact load is applied at point E, as seen in Figure 3. A time history of the impact load
is displayed in Figure 4. The peak load F;;4y includes two situations during the loading
process, and one is less than fy (yield force) to ensure that the medium does not enter
plastic deformation. The other one is greater than f; to ensure that the medium would
undergo plastic deformation.

& 00
Dynamic

 artificial )
boundary

Figure 3. Numerical calculation model.

F
F max

~Y

0 to
Figure 4. Time history of pulse load.

The size of the elastic-plastic member is 100 m x 100 m, and the material specifications
of the member are concluded as Poisson’s ratio = 0.3, material density = 7850 kg/m?,
Young’s modulus = 206 x 10° MPa, and yield strength = 345 MPa.

As illustrated in Figure 5, the time history curve of the vertical displacement at point E
under the dynamic artificial boundary condition is observed. The finite element calculation
result of the vertical displacement under the dynamic artificial boundary condition is
denoted by the solid line, and the dotted line corresponds to the exact solution of the
vertical displacement. Under the dynamic artificial boundary condition, it can be observed
that the calculated vertical displacement at point E shows a high level of concordance
with the exact solution. During the phase of elastic deformation, the calculated vertical
displacement at point E tends to zero with the increase in time, as illustrated in Figure 5a.
During the phase of the plastic deformation, the calculated vertical displacement at point E
tends to a non-zero value due to the residual plastic deformation, as illustrated in Figure 5b.



Buildings 2024, 14, 212 11 of 16

t (s) t(s)

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

— dynamic artificial boundary —— dynamic artificial boundary
---- Exact solution ---- Exact solution
(a) (b)

Figure 5. The vertical displacements of point E under the dynamic artificial boundary condition.
(a) During the phase of elastic deformation. (b) During the phase of plastic deformation.

6. Progressive Collapse Analysis of a Truss Structure Based on the Dynamic Artificial
Boundary Condition

6.1. The Truss Model
A truss model is constructed using the ABAQUS commercial program with a size of

30 m x 2.3 m, as shown in Figure 6. The main dimensions of the cross-section of the bars
are ¢186 x 12, 100 x 5, 86 x 4, and ¢80 x 3.5.

23 %
Ty

Figure 6. The truss model.

The truss model is constructed using Q345 steel, and the constitutive model of the
Q345 uses the bilinear elastic-plastic model, as illustrated in Figure 7. The material spec-
ifications of the Q345 are concluded as elastic modulus (Eg) =2 x 10° MPa, yield stress
(0p) = 345 MPa, ultimate stress (07) = 460 MPa, yield strain (gp) = 1.73 x 1073 mm, ultimate
strain (1) =8 x 1073 mm, and Poisson’s ratio = 0.3, according to CY Wan et al. [22] and F
Wang et al. [23].

o A

ol F—————————=

oo | ——

i /

Figure 7. The constitutive model.

The B31 (Timoshenko beam element) is used for the simulation of all the structural
members. To establish a suitable finite element size, we chose different mesh sizes for the
convergence analysis. The size of the B31 finite element mesh is 0.02 m, according to the
results of the convergence analysis. Rigid joints are used to connect the structural members,
and the plane truss is supported by columns on the two edges. The proposed dynamic
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boundary condition and fixed condition are used to connect the base of the structural
column, respectively. The parameters of the dynamic artificial boundary are determined
by applying the material parameters of the Q345 into the dynamic artificial boundary
expression in above Section 5.

The dynamic explicit method is utilized in the progressive collapse of a truss structure,
in which two stages with a total time of three seconds are defined, as illustrated in Figure 8.
Within a time horizon of one second, the linear loading method is utilized to apply the
gravity load with the purpose of making the structure enter a systemic equilibrium state
following the structural deformation. Subsequently, a step load is introduced at one second
to simulate the progressive collapse phenomenon in the truss structure when subjected
to sudden loading. In the first time step, the gravity load is evenly applied to the truss
structure. In the second time step, the external load is evenly applied to the all nodes of the
truss structure.

A
F external load

[ ]
| |
| |
| gravity load !

0 ! ! >

t
<_1 s 2s

Figure 8. The time history of gravity and step load.

6.2. The Progressive Collapse Analysis

When subjected to vertical loads, the truss structure initiates a downward deformation
as it begins to collapse. Consequently, it is possible to determine whether a full collapse has
occurred by the observation of the node vertical displacement. While structural vertical
displacement arrives at the limit state under two boundary conditions, the displacement
diagram of the overall structure along the vertical direction is shown in Figure 9.
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(a) (b)

Figure 9. The vertical displacement diagram of the overall structure under two boundary condi-
tions. (The unit of the vertical displacement U2 is meters (m)). (a) Under the dynamic artificial
boundary(unit = m). (b) Under the fixed boundary.

The limit vertical displacement of the truss is 1/50 of the span length, with considera-
tion of the Australian Standard AS 5100 [24]. It can be observed that the maximum vertical
displacements (U2) of the structural joints both occur at the mid-span position under two
boundary conditions.

The stress distribution of the members is depicted in Figure 10, considering different
boundary conditions. Within 1 s, the stress of the whole structural members is lower than
the plastic stress of 345 MPa, and none of the members have attained the state of plasticity.
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After 1 s, when external loads are imposed on the structure, the stress of the members
under the dynamic artificial boundary condition is higher than the numerical simulation
results obtained with a fixed boundary. Under the dynamic artificial boundary condition,
the upper chord of the truss located at the mid-span reaches a plastic state at 1.028 s, while
under the fixed boundary condition, the upper chord at the mid-span enters a plastic state
at 1.037 s.
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Figure 10. The stress distribution of the members under two boundary conditions (The stress unit
is Pa). (a) 1 s (dynamic artificial boundary). (b) 1 s (fixed boundary). (c) 1.017 s (dynamic artificial
boundary). (d) 1.022 s (fixed boundary). (e) 1.028 s (dynamic artificial boundary). (f) 1.037 s (fixed
boundary).

The comparison between the calculation results of the vertical displacement at the mid-
span under the dynamic artificial boundary condition and the fixed boundary condition is
illustrated in Figure 11. The dotted line in Figure 11 represents the vertical displacement
limit of structural joints at the mid-span.
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Figure 11. The mid-span vertical displacement of the structure over time.

The mid-span vertical displacements of the structural joints gradually increase after
one second under the combined influence of the gravity load and the step load. Subse-
quently, the internal force is redistributed in the truss as the number of failure members
increase. The rise in the internal forces sustained by the adjacent members is attributed
to the redistribution of the internal loads of the failure members among the neighboring
members. The process of load redistribution leads to an expansion on the extent of failure
members, and a swifter decline in mid-span vertical displacement over the structure. When
compared to the fixed boundary condition, the progressive collapse of the truss occurs
earlier under the dynamic boundary condition in the analytical process.

The observed variations in the structural collapse mechanism are attributed to imple-
menting different boundary conditions during the dynamic analysis.

In order to better understand the distinction between structural progressive collapse
processes under different boundary conditions, the distributions of failure members are
intercepted at the time point where the number of failure members grows, as illustrated in
Figure 12. The curved lines represent the position of the failure members in Figure 12.
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Figure 12. The plane truss model. (a) 1.030 s (dynamic artificial boundary). (b) 1.041 s (dynamic
artificial boundary). (c) 1.050 s (dynamic artificial boundary). (d) 1.058 s (dynamic artificial boundary).
(e) 1.040 s (fixed boundary). (f) 1.053 s (fixed boundary). (g) 1.062 s (fixed boundary). (h) 1.066 s
(fixed boundary).

For the dynamic artificial boundary condition, the upper compression members at
the mid-span are the initial failure members with an occurrence time of 1.03 s. Then, the
adjacent diagonal web members turn into failure, resulting in an additional escalation in
the quantity of failure members. Thereafter, the vertical web members at the mid-span
and the lower tension members near the mid-span also turn into failure. The region of
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failure members is primarily located at the mid-span of the plane truss structure, and no
failure members appear at both sides of the truss structure. During the analysis process, the
high-sensitivity upper compression members first turn into failure when subjected to the
upper load. Subsequently, the failure of other compression members and tensile members
also occurs due to structural deformation and the redistribution of internal forces. The
majority of the failure members are compression members.

For the fixed boundary condition, the emergence time of initial failure for the structural
member is 1.04 s. Specifically, the failure manifests initially in the upper compression
members located at the mid-span. The failure of the upper members near the mid-span
occurs subsequently in a short time. Next, the failure gradually expands to web members
at mid-span. Meanwhile, owing to the stress wave reflection at the fixed boundary, a
substantial strain develops in the web members near the support columns with the unstable
internal stress. This strain ultimately leads to the failure of the members near the support
columns. Finally, the failure region occurs at the lower members near the mid-span and the
upper members near the support. For the fixed boundary condition, it is noteworthy that
failure members would appear near the support columns on both sides, except the middle
of the structure.

When the dynamic boundary condition is applied, it is possible to draw the conclusion
that the progressive collapse process observed in the truss structure is more realistic. If the
effect of stress wave transmission at the boundary is disregarded, then the estimation of
the structure’s resistance to progressive collapse becomes imprecise.

7. Conclusions

The work aims to investigate the impact of wave reflection at the boundary on the
progressive collapse resistance of a truss structure. The primary conclusions can be sum-
marized as follows:

(1) The motion expression of the elastic-plastic stress waves is obtained through the
integration of the elastoplastic constitutive model into the governing equation of the
stress wave. The analytical solution for the elastic wave is obtained based on an
approximate expression of the cylindrical wave, and the analytical solution for the
plastic wave is obtained by applying the superposition principle.

(2) A new elastic-plastic dynamic artificial boundary condition is provided and the
corresponding finite element is achieved in the truss structure analysis. The validity
of the dynamic artificial boundary element is examined through a plane numerical
model subjected to impact load. Based on the obtained numerical results, the provided
dynamic boundary element is capable of absorbing both elastic waves and plastic
waves.

(3) Under the dynamic artificial boundary condition, the failure members appear in the
mid-span of the truss structure, contrasting with failure members near the support
columns under fixed conditions, which means that the reflection of stress waves has a
notable influence on the structural stability.

(4) Under the dynamic artificial boundary condition, the initial failure member and
the subsequent structural collapse occur at an varied time, as compared to the case
of the fixed boundary condition. This indicates that boundary conditions can af-
fect the structural stability, and reasonable boundary conditions need to be used in
the analysis.
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