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Abstract: To explore the performance evolution mechanism of SBS-modified bitumen (SMB)
during construction and service, the chemical structure, molecular weight and properties of
styrene–butadiene–styrene triblock copolymer (SBS) and SMB under multiple aging levels were
assessed via Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC)
and a dynamic shear rheometer (DSR). The results indicate that the polybutadiene segments in SBS
are susceptible to oxidative degradation, and the molecular weight of SBS decreases rapidly during
the aging process. The complex modulus and temperature sensitivity of SMB show relatively small
changes during the early aging stage, which is mainly attributed to the impact of SBS oxidative
degradation. While its temperature sensitivity decreases sharply after double PAV aging, it means
the influence of asphalt aging on its performance is dominant. And there is a significant difference
in the effect of aging on the creep recovery behavior of SMB under high and low shear stresses.
The percentage recovery (R) of SMB decreases and then increases under low shear stress as aging
progresses. While the value R of SMB increases gradually under high shear stress with the extension
of aging. Meanwhile, the viscoelastic properties of SMB have gradually transformed to those of aged
matrix asphalt after serious aging, which is also confirmed by the gradual destruction and degradation
of the SBS cross-linked network in the binder from a fluorescence micrograph. This research will help
to understand the performance failure mechanism of SMB during service, providing a theoretical
reference for the selection of maintenance and renovation opportunities during the service process of
SBS-modified asphalt pavement, as well as the avenue to achieve high-performance recycling.

Keywords: SBS-modified bitumen; aging behavior; molecular weight; creep and recovery rate;
entropy elasticity; stiffness elasticity

1. Introduction

The viscoelastic properties of asphalt are of paramount merit for its wide application in
pavement construction. In order to further improve the viscoelastic properties of asphalt to
enhance the driving comfort and road capacity of asphalt pavement, polymer modifiers are
widely used to modify asphalt [1], which include styrene–butadiene–styrene copolymer [2],
crumb rubber [3], ethylene–vinylacetate copolymer [4], polyethylene [5], etc.

Polymer modifiers have good improvement effects on the high- and low-temperature
properties and viscoelastic properties of asphalt. Ethylene–vinylacetate copolymer (EVA)
can enhance the high-temperature performance of bitumen and lower its non-recoverable
creep compliance [6], while EVA cannot form a networked structure in the bitumen [7],
and EVA-modified bitumen is highly susceptible to strain at intermediate temperatures [8].
Mashaan et al. [9] reported that waste polyethylene terephthalate (PET) plastic can signif-
icantly improve the rutting and aging resistance of asphalt binder, and the ideal content
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of waste plastic is 6–8%. Polyphosphate (PPA) could increase the m-value of bitumen and
make it less susceptible to non-load-related cracking [10], and it was found [11,12] that PPA
can promote the high-temperature deformation resistance and elastic recovery ability of
bitumen. Crumb rubber (CR) can improve the high- and low-temperature performance
of asphalt, and asphalt showed stiffer and greater elasticity after being modified using
CR [13]. Duan et al. [14] modified asphalt using CR treated by microwaves and CR rich in
deodorants and found that both of which can improve the high-temperature performance of
asphalt, and the latter had a greater positive impact on its elastic recovery and deformation
resistance. However, the most recommended polymer modifier is SBS. Zhang et al. [15]
found SBS could boost the low-temperature creep performance of asphalt, but its aging
resistance also had a large increase after modification. The rutting resistance and fatigue
performance of asphalt modified with SBS also showed a significant improvement [16].
Babagoli et al. [17] reported that a 3% SBS modifier could significantly improve the per-
centage recovery and internal stress sensitivity of asphalt. Some researchers have found
that there is a strong linear relationship between the percentage recovery of SBS-modified
bitumen (SMB) and its non-recoverable creep compliance; this relationship is not related to
the stress level but rather to the test temperature [18], although this point is controversial.
And sulfur can increase the crosslinking density of SBS in SMB, further enhancing its
elasticity, especially its ability to delay elastic recovery.

Obviously, SBS can improve the viscoelasticity of asphalt and significantly enhance its
service performance [19]. However, SMB is inevitably affected by aging during construction
and service. And the aging would change the composition and structure of both the SBS
modifier and asphalt in SMB, which would directly affect the viscoelastic properties of
SMB and cause its performance failure [20]. Xu et al. [21] studied the effect of aging on
the viscosity and tensile properties of SBS-modified asphalt through a viscosity test, a
force ductility test and a molecular dynamics simulation. It was found that the interface
adhesion energy of modified asphalt–silica increased with the aging of SBS and asphalt,
SBS and asphalt jointly affected the performance of modified asphalt during the aging
process, and the impact of SBS aging on the increase in viscosity and tensile yield stress was
far less than that of asphalt aging. And Yu et al. [22] found that aging would lead to the
transformation of colloidal structure and the deterioration of asphalt binder performance.
Meanwhile, the network structure formed in SMB would also be destroyed, which results
in a great change in its rheological properties. It means the structure change of asphalt and
SBS will affect the service behavior and life of SMB pavement in service [23]. Therefore,
it is also necessary to consider how to restore the role of aged SBS modifiers in modified
asphalt for achieving comprehensive performance recovery of aged SMBs. Eltwati et al. [24]
reported that the combination of fresh SBS and aromatic oil can comprehensively restore the
overall performance of mixtures and binders with high RAP content. And Wang et al. [25]
conducted more in-depth research. Wang et al. conducted direct aging and rejuvenation
treatments on SBS modifiers and then prepared MAAC (asphalt modified with aged SBS)
and MARC (asphalt modified with rejuvenated SBS). The testing results showed that the
aged SBS would deteriorate the physical properties of SMB with a higher possibility of
generating cracks at lower temperatures, while rejuvenated SBS could improve MAAC’s
viscoelasticity. Namely, the structure of the SBS modifier and its cross-linking network state
in asphalt directly affect the performance of SMB. However, there is still a lack of systematic
research on the structural evolution law of SBS and how it affects the performance of
modified asphalt during the aging process. This work will investigate the evolution of
the chemical structure and molecular weight of SBS, as well as the chemical structure and
performance degradation laws of SMB during construction and service through indoor
simulation aging, and analyze the correlation between them.

To investigate the aging behavior and performance evolution mechanism of SMB
during the aging process, samples of SBS modifier and SMB with multiple aging levels were
prepared. The chemical structure and molecular weight of SBS with different aging degrees
were characterized using FTIR and GPC tests. Meanwhile, the chemical structure, molecular
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weight, physical–rheological performances, creep-recovery properties and fluorescence
micrograph of SMB with multiple aging levels were also characterized and analyzed. The
research results are expected to contribute to an in-depth understanding of the performance
failure mechanism of SMB during service, which could provide a theoretical reference for
the selection of maintenance and renovation opportunities during the service process of
SBS-modified asphalt pavement, as well as how to achieve high-performance recycling of
waste SBS-modified asphalt mixture.

2. Materials and Methods
2.1. Materials

The properties of asphalt used in this research are listed in Table 1. SBS with a block
ratio (PS/PB) of 30/70 is used as a modifier in this work. Asphalt and SBS modifiers were
mixed using the melt blending method to prepare SBS-modified asphalt (SMB), and the
properties of SMB are also listed in Table 1. Compared to the matrix asphalt, the penetration
of SMB decreases, while the ductility, viscosity and softening point of SMB all have a
significant increase. It means the high-temperature performance and low-temperature
toughness of asphalt all have a significant improvement after the modification with SBS.

Table 1. The base properties of raw asphalt.

Penetration
25 ◦C/0.1 mm Ductility/cm Softening

Point/◦C
Viscosity

135 ◦C/Pa·s
Asphalt 71 13.5 (10 ◦C) 49.5 0.49

SMB 51 32.5 (5 ◦C) 69.5 2.68

2.2. Aging Method for SBS Modifier and SBS-Modified Bitumen

SMB and SBS modifiers were subjected to TFOT aging and multiple PAV aging succes-
sively. The specific aging methods and sample labels are shown in Table 2. The scheme of
the entire experiment is displayed in Figure 1.

Table 2. Specific aging method for SMB and SBS.

Sample Aging Method Sample Aging Method

SMB No aging SBS No aging
T-SMB TFOT T-SBS TFOT

TP-SMB TFOT + PAV TP-SBS TFOT + PAV
T2P-SMB TFOT + 2PAV T2P-SBS TFOT + 2PAV
T3P-SMB TFOT + 3PAV T3P-SBS TFOT + 3PAV
T4P-SMB TFOT + 4PAV T4P-SBS TFOT + 4PAV

2.3. FTIR Test

The chemical structure of SMB and SBS modifiers was characterized using a Spectrum
II Fourier transform infrared spectrometer in this work. This test was performed in ATR
mode with a scanning frequency of 16 and a wavenumber range of 4000~500 cm−1 at a
resolution of 4 cm−1.

2.4. Mass Change Measurement

The mass change rate (MR) of SBS can be measured and calculated using Equation (1).

MR(%) =
Ma − M0

M0
× 100% (1)

where M0 and Ma refer to the mass of samples before and after aging, respectively.
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Figure 1. The scheme of the entire experiment.

2.5. GPC Test

The gel permeation chromatography test can be divided into the following steps:
(1) Weigh samples and dissolve them into tetrahydrofuran in a bottle with a concentration
of 2.5%. (2) Keep 3 days’ standing of the solution to ensure that the asphalt and SBS
modifier dissolve into tetrahydrofuran completely. (3) Inject 2 mL of the solution into the
sample bottle through a 0.45 um filter to remove impurity particles. (4) Inject 0.5 mL of the
filtered solution into the gel permeation chromatograph. (5) Finally, carry out this test at a
temperature of 25 ◦C with a flow rate of 1.0 mL/min.

2.6. Conventional Physical Properties Test

Conventional physical properties of SMB before and after aging, including softening
point, ductility (5 ◦C), penetration (25 ◦C) and Brookfield rotational viscosity (135 ◦C),
were tested according to the ASTM standard [26–29]. Softening point increment (SPI),
penetration retention rate (PRR) and ductility retention rate (DRR) were used to evaluate
the aging degree of SMB, which were calculated using the following equation.

SPI = softening point of SMB after aging − softening point of SMB before aging

PRR = (penetration of SMB after aging − penetration of SMB before aging)/penetration of SMB before aging

DRR = (ductility of SMB after aging − ductility of SMB before aging)/ductility of SMB before aging
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2.7. Rheological Properties Test

The rheological properties of all binders were also tested. More test parameters are
listed in Table 3.

Table 3. Rheological testing parameters of binders.

Temperature/◦C Plates Gap/mm Plates Diameter/mm Scanning Frequency/rad/s Heating Rate/◦C/min

−10~30 2 8 10 2
30~80 1 25 10 2

2.8. Multi-Stress Creep and Recovery Property Test

This MSCR test includes 20 cycles at 0.1 kPa and 10 cycles at 3.2 kPa; each cycle includes
the loading for 1 s and the rest for 9 s and was conducted under different temperatures from
46 ◦C to 70 ◦C. The strain versus time curve was recorded in each cycle, and its schematic
diagram is displayed in Figure 2. The percentage recovery (R) [30] and non-recovered creep
compliance (J) are calculated using Equations (2) and (3). ε represents the strain of the
specimen, and τ refers to the loading stress.

Rτ =
1

10 ∑10
i=1

[
εc,i − εr,i

εc,i − εr,i−1
× 100%

]
(2)

J
τ (kPa−1) =

1
10 ∑10

i=1

[
εr,i − εr,i−1

τ(kPa)

]
(3)
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3. Results and Discussions
3.1. Effect of Aging on Chemical Structure and Molecular Weight of SBS Modifier
3.1.1. Chemical Structure

The infrared spectra of different aged SBS modifiers are displayed in Figure 3. The peak
at 699 cm−1 corresponds to the out-of-plane bending vibration of monosubstituted benzene
in polystyrene (PS) segments. The peak at 969 cm−1 comes from the out-of-plane bending
vibration of (trans)-CH= in polybutadiene (PB) segments. The intensity for 969 cm−1

decreases sharply after aging, while that for 699 cm−1 remains stable. It implies that the
chemical stability of PS is much better than that of PB. Therefore, the aging index (IB/S) [31]
is recommended to evaluate the aging degree of SBS, whose computational formulas are
listed in Equation (4).

IB/S =
A969

A699
(4)



Buildings 2024, 14, 291 6 of 19

IC=O =
A1720

A699
(5)

where A(XX) refers the area of xx cm−1 peak.
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Furthermore, the emerging absorption peak at 1720 cm−1 originates from the stretch-
ing vibration of the carbonyl group, and its intensity increases sharply with aging. It
indicates that SBS is oxidized during aging. Another aging index (IC=O) is calculated using
Equation (5). The aging indexes of different aged SBS modifiers are shown in Figure 4. IB/S
decreases from 1.68 to 0.17, and IC=O increases to 0.21 with the extension of aging, and their
change rate in the early aging stage is far greater than that in the late aging stage. It means
the PB segments in SBS have been severely damaged and oxidized during TFOT aging,
implying that SBS is susceptible to aging alone in a high-temperature oxygen environment.
The FTIR main characteristic peaks of aged SBS are listed in Table 4, and 2870 cm−1 and
2952 cm−1 belong to the symmetric and asymmetric stretching vibrations of methyl, respec-
tively. 1450 cm−1 ascribes to the out-of-plane bending vibration of methylene, and 2845 cm−1

and 2923 cm−1 also originate from methylene; their intensity all has a decrease. These results
suggest the PB segments in SBS gradually undergo oxidative degradation with aging.
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Table 4. FTIR main characteristic peaks of aged SBS.

Wavenumber/cm−1 Group Structure Vibration Type

699 styrene Ph-H Out-of-plane bending vibration of
monosubstituted benzene

969 butadiene (trans)-CH=CH Out-of-plane bending vibration
1450 methylene -CH2- Out-of-plane bending vibration
1495 benzene
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3.1.2. Mass Change

The mass change rate of different aged SBS modifiers is depicted in Figure 5. The
value of MR is positive and gradually increases. It means SBS has undergone a violent
oxidation reaction during the direct aging process, and the increasing oxygen content in
SBS enhances its mass.
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3.1.3. Molecular Weight

The GPC curves of different aged SBS modifiers are illustrated in Figure 6. The
GPC curves of SBS shift to the right after TFOT short-term aging, and they further shift
slowly during PAV long-term aging. The average molecular weight decreases by 90.6%
after direct thermal-oxygen aging at 163 ◦C for 5 h (Figure 7), and its polydispersity
increases largely. In the subsequent PAV aging, the molecular weight of SBS decreases
slowly, and its polydispersity also decreases gradually. These results indicate that high
temperatures are more likely to lead to the degradation of SBS molecules, and SBS has
been seriously degraded with significantly decreased molecular weight in the TFOT aging
stage. Combined with Section 3.1.1, the results show that the oxidative degradation of SBS
is mainly initiated by C=C bonds in PB segments. And the SBS aging reaction mechanism
can be described as depicted in Figure 8 [32].
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3.2. Effect of Aging on Chemical Structure and Properties of SBS-Modified Bitumen
3.2.1. Chemical Structure

The infrared spectra of different aged SMBs are displayed in Figure 9. Obviously,
the absorption peak (1030 cm−1 and 1700 cm−1) intensity of oxygen-containing groups
gradually increases, and the intensity of characteristic absorption peaks for PB segments in
the SBS modifier is gradually weakened. This indicates that SBS and asphalt in SMB are
gradually oxidized. Three aging indexes are selected to analyze the aging degree of SMB,
and their computational formulas are listed in Equations (6)–(8) [33].

IC=C =
A969

A700∼3000
(6)

IS=O =
A1030

A700∼3000
(7)

IC=O =
A1700

A700∼3000
(8)

where A(xx) refers to the area of the xx cm−1 peak and A(700~3000) represents the sum of all
absorption peak areas between 700 cm−1 and 3000 cm−1.
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Figure 9. Infrared spectra of different aged SMBs.

The aging indexes of different aged SMBs are depicted in Figure 10. IS=O and IC=O
increase with the extension of the aging process, and the growth rate of IC=O for SMB is
much lower than that of SBS in Section 3.1.1, which indicates the aging resistance of the SBS
polymer inside asphalt is better than that of the SBS modifier. Meanwhile, the declining
rate of IC=C for SMB is also lower than that for SBS. The physical blocking effect of asphalt
on oxygen slows down the oxygen permeation rate and reduces its contact concentration
with SBS, thus delaying the aging process of SBS in a binder.
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3.2.2. Molecular Weight

The molecular weight distribution of different aged SMBs is shown in Figure 11. The
main leaching peak on the right side belongs to asphalt in SMB, while the small leaching
peak on the left is attributed to SBS in SMB. It can be seen from the partially enlarged view
that the leaching peak area for SBS decreases, and its position gradually shifts to the right.
After careful observation, it can be found that the SBS leaching peak for T2P-SMB is very
small, and that for T3P-SMB and T4P-SMB almost disappears. It suggests that the oxidative
degradation of SBS in binders is not significant in the construction and early service stages.
SBS in SMB has been seriously degraded after TFOT aging and double PAV aging, and
further aging tests will lead to the complete degradation of SBS into small molecules,
implying that SBS will be completely oxidized and degraded in the later service stage.
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The common rejuvenation method only focuses on the restoration of the colloidal
structure of aged SMB. However, the SBS modifier and the construction of the SBS cross-
linking network in the binder play an important role in improving the high- and low-
temperature performance of the binder. Based on the aging mechanism of SMB, the reactive
rejuvenator system includes common and reactive rejuvenators. The common rejuvenator
is used to re-balance the asphalt component in aged SMB, and the reactive rejuvenator is
utilized for reconstructing its crosslinking network structure in aged SMB. Therefore, the
destroyed SBS crosslinking structure in a binder would be reconstructed using a structural
repair agent, so the aged SMB with the aging level of T2P-SMB is recommended to be
high-value recycled using the reactive rejuvenation method [34]. For the aged SMB with a
more serious aging level than T2P-SMB, it is recommended to be recycled using a common
rejuvenation method since its SBS crosslinking structure in the binder was completely
degraded [35]. Namely, GPC curve analysis could also provide a new perspective on the
selection of appropriate rejuvenation methods for aged SBS-modified asphalt.

3.2.3. Physical Properties

The physical aging indexes [36] (softening point increment (SPI), penetration retention
rate (PRR) and ductility retention rate (DRR)) of different aged SMBs are displayed in
Figure 12. The values of PRR and DRR decrease as aging progresses, and DRR decreases
to 4.1% for T2P-SMB, which indicates that SMB gradually hardens and embrittles during
aging, and the low-temperature ductility has seriously deteriorated after TFOT and double
PAV aging. It is noteworthy that the value of SPI for T-SMB is −1.5 ◦C, which implies the
high-temperature performance of SMB is slightly reduced. According to the analysis in the
above section, SBS in SMB will undergo oxidative degradation during the aging process,
which leads to a decreased softening point. Meanwhile, asphalt in SMB will undergo
oxidative polycondensation, which will cause an increasing softening point. Obviously, the
oxidation degradation of SBS dominates the high-temperature performance of SMB in the
early aging stage, while the oxidation of asphalt dominates in the subsequent long-term
aging process.
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G* and δ of different aged SMBs are displayed in Figure 13. From Figure 13a, the G*
for SMB, T-SMB and TP-SMB changes slightly due to the combined action of SBS oxidative
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degradation and asphalt oxidative hardening during aging. It suggests that the change
in G* for SMB is not significant in the construction and early service stages. While the
G* for T3P-SMB and T4P-SMB increases largely, this is because SBS has been completely
degraded after TFOT and three times PAV aging from Section 3.2.2, and the oxidation
hardening of asphalt has completely dominated the complex modulus growth of SMB. The
entropy elasticity of the SBS cross-linked network structure can inhibit the transition of
SMB from a highly elastic state to a viscous flow state within a certain temperature range,
resulting in the formation of a phase angle plateau. Therefore, the appearance of the phase
angle platform region indicates the formation of the SBS cross-linking network structure in
SMB. The narrowing of the platform area means that the ability of SBS modifiers to inhibit
the state transition of SMB is weakened, which suggests the damaged SBS cross-linking
network structure and the degraded molecular structure. From Figure 13b, the phase angle
platform of SMB shifts towards high temperature after TFOT aging, and that of TP-SMB
disappears, which means the SBS cross-linked network in SMB has been broken after TFOT
and PAV aging. The δ for TP-SMB is greatly reduced as the aging continues owing to the
oxidation-hardening of asphalt. It implies that the stiffness, elasticity and deformation
resistance of SMB will be greatly enhanced in the later service stage.
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3.2.4. Rheological Properties 
G* and δ of different aged SMBs are displayed in Figure 13. From Figure 13a, the G* 

for SMB, T-SMB and TP-SMB changes slightly due to the combined action of SBS oxidative 
degradation and asphalt oxidative hardening during aging. It suggests that the change in 
G* for SMB is not significant in the construction and early service stages. While the G* for 
T3P-SMB and T4P-SMB increases largely, this is because SBS has been completely de-
graded after TFOT and three times PAV aging from Section 3.2.2, and the oxidation hard-
ening of asphalt has completely dominated the complex modulus growth of SMB. The 
entropy elasticity of the SBS cross-linked network structure can inhibit the transition of 
SMB from a highly elastic state to a viscous flow state within a certain temperature range, 
resulting in the formation of a phase angle plateau. Therefore, the appearance of the phase 
angle platform region indicates the formation of the SBS cross-linking network structure 
in SMB. The narrowing of the platform area means that the ability of SBS modifiers to 
inhibit the state transition of SMB is weakened, which suggests the damaged SBS cross-
linking network structure and the degraded molecular structure. From Figure 13b, the 
phase angle platform of SMB shifts towards high temperature after TFOT aging, and that 
of TP-SMB disappears, which means the SBS cross-linked network in SMB has been bro-
ken after TFOT and PAV aging. The δ for TP-SMB is greatly reduced as the aging continues 
owing to the oxidation-hardening of asphalt. It implies that the stiffness, elasticity and 
deformation resistance of SMB will be greatly enhanced in the later service stage. 
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Temperature sensitivity could be another index to analyze the aging behavior of SMBs;
the temperature sensitivity of different aged SMBs is shown in Figure 14. The fitting
analysis results of the relationship between logG* and T are listed in Table 5. The absolute
value (|K|) of slope can be used to evaluate the temperature sensitivity of the binder, and
a higher value of |K| means better temperature sensitivity. The analysis results are shown
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in Figure 14b. The temperature sensitivity of SMB is basically unchanged after TFOT and
PAV aging, while its temperature sensitivity is greatly reduced as it continues to age. The
destroyed SBS cross-linking structure in SMB and the small molecules produced by the
oxidative degradation of SBS during the aging process will benefit from enhancing the
temperature sensitivity of SMB. However, the aging of asphalt will increase the content of
heavy components (including resin and asphaltene) in SMB, which will lead to a reduction
in its temperature sensitivity. Obviously, the complex modulus–the temperature sensitivity
of aged SMB is influenced by these two aspects. It suggests that the change in temperature
sensitivity for SMB is not significant in the construction and early service stages. However,
as the aging continues, the asphalt continues to be deeply aged, and its influence on the
temperature sensitivity of SMB is dominant. After T3P aging, the temperature sensitivity
of SMB seems to be stable again after the previous decrease, which is attributed to the
combined effect of SBS oxidation degradation and asphalt oxidation hardening.
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Table 5. Complex modulus–temperature sensitivity equation of all binders.

Sample LogG* = KT + B

SMB LogG* = −0.05301T + 7.69565
T-SMB LogG* = −0.05316T + 7.69777

TP-SMB LogG* = −0.05327T + 7.72873
T2P-SMB LogG* = −0.05182T + 7.63042
T3P-SMB LogG* = −0.04995T + 7.72096
T4P-SMB LogG* = −0.05003T + 7.82036
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3.2.5. Multi-Stress Creep and Recovery Property
Percentage Recovery and Non-Recoverable Creep Compliance

The percentage recovery of aged SMBs is shown in Figure 15. The R3.2 value of SMB
first increases with the deepening of the aging degree, then tends to be flat, and then
increases significantly from Figure 15a. Explicitly, aging has a more significant influence
on R3.2 of SMB at higher temperatures. Figure 15b shows that the R0.1 value of SMB first
decreases and then increases under low shear stress with the extension of aging time. The
creep recovery ability of SMB is mainly attributed to the entropy elasticity of the SBS
cross-linked structure and the stiffness elasticity of asphalt. Figure 16a shows that aging is
beneficial for reducing the value J3.2 of SMB, and it is most evident at high temperatures of
64 ◦C and 70 ◦C, while J0.1 of SMB increases and then decreases with the extension of aging
time. The value J0.1 for SMB to TP-SMB rises gradually, while their R0.1 shows a decreasing
trend. This is because the destruction of the SBS cross-linked network leads to a decrease
in the entropy elasticity of SMB, while the stiffness elasticity of asphalt in the binder is
insufficient. The percentage recovery R0.1 for T2P-SMB to T4P-SMB rises gradually, which
is attributed to the increase in stiffness elasticity from aged asphalt in binder. The stiffness
elasticity of asphalt is caused by the change in intramolecular energy, which is similar to
the elastic recovery ability of spring. There is an obvious correlation between the stiffness
elasticity of asphalt and its mechanical properties [37], which is also confirmed by the
raising complex modulus for T2P-SMB to T4P-SMB from Section 3.2.4. It also suggests that
the viscoelastic properties of SMB change from polymer-modified asphalt to matrix asphalt
after serious aging.
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Figure 16. Non-recoverable creep compliance of different aged SMBs (a): non-recoverable creep 
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Percentage Recovery Temperature Sensitivity

The percentage recovery temperature sensitivity curves of different aged SMBs and
their analysis results are shown in Figure 17 and Table 6, respectively. Obviously, there
is a significant temperature-sensitivity difference in the creep recovery ability of SMB
with different aging degrees under high and low shear stress. The percentage recovery
temperature sensitivity coefficient (|K|) of SMB decreases gradually with the increase
in aging degree under high shear stress (3.2 kPa). The percentage recovery temperature
sensitivity coefficient (|K|) of SMB shows a trend of increasing first, then decreasing, and
then increasing with the deepening of aging under low shear stress (0.1 kPa). The entropy
elasticity of SBS is less sensitive to temperature; the oxidative degradation of SBS in SMB
during aging would enhance the temperature sensitivity. The temperature sensitivity of R0.1
is much lower than that of R3.2 for SMB, so the R0.1 value of SMB is primarily dominated
by its entropy elasticity. On the contrary, the temperature sensitivity coefficient (|K|)
of R3.2 from SMB to T4P-SMB decreases gradually, which is attributed to the increase in
stiffness elasticity from aged asphalt in the binder. The content of macromolecular heavy
components in asphalt increases largely after deep aging, which leads to an increase in the
kinetic energy barrier of asphalt molecules; thus, the sensitivity to temperature decreases
within a certain range.
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Figure 17. Percentage recovery temperature sensitivity curves of different aged SMBs (a): percentage
recovery temperature sensitivity under 3.2 kPa; (b): percentage recovery temperature sensitivity
under 0.1 kPa.

Table 6. Percentage recovery temperature sensitivity equation of all binders.

R3.2 = KT + B |K| R0.1 = KT + B |K|

SMB R3.2 = −2.829T + 201.71 2.829 R0.1 = 0.017T + 96.66 0.017
T-SMB R3.2 = −2.278T + 186.89 2.278 R0.1 = −1.089T + 145.87 1.089

TP-SMB R3.2 = −1.718T + 157.73 1.718 R0.1 = −0.899T + 125.32 0.899
T2P-SMB R3.2 = −1.601T + 153.47 1.601 R0.1 = −1.033T + 130.36 1.033
T3P-SMB R3.2 = −1.584T + 150.97 1.584 R0.1 = −1.168T + 142.61 1.168
T4P-SMB R3.2 = −0.965T + 127.48 0.965 R0.1 = −1.276T + 160.88 1.276

3.2.6. Fluorescence Micrograph

Fluorescence micrographs of all binders are displayed in Figure 18. Each fluores-
cence point in a fluorescence micrograph represents the existence of SBS molecules. From
Figure 18a, the fluorescent spots are densely distributed and interwoven in the micrograph,
which indicates that SBS is uniformly dispersed in SMB and forms a cross-linked network
structure. The fluorescent spots are also uniformly and densely distributed in the micro-
graphs of T-SMB from Figure 18b, which suggests that the influence of the mixing and
construction processes on the phase state of SBS in SMB is limited. From Figure 18c–f, the
fluorescent spots in fluorescence micrographs gradually become sparse until they disappear
completely. It implies that the cross-linked structure of SBS in SMB is destroyed, and SBS is
gradually oxidized and degraded in service. Simultaneously, the entropy elastic property
of SMB gradually weakened to disappear in service, confirming the characteristics of aging
matrix asphalt in the above analysis.



Buildings 2024, 14, 291 17 of 19

Buildings 2024, 14, x FOR PEER REVIEW 17 of 20 
 

3.2.6. Fluorescence Micrograph 
Fluorescence micrographs of all binders are displayed in Figure 18. Each fluorescence 

point in a fluorescence micrograph represents the existence of SBS molecules. From Figure 18a, 
the fluorescent spots are densely distributed and interwoven in the micrograph, which 
indicates that SBS is uniformly dispersed in SMB and forms a cross-linked network struc-
ture. The fluorescent spots are also uniformly and densely distributed in the micrographs 
of T-SMB from Figure 18b, which suggests that the influence of the mixing and construc-
tion processes on the phase state of SBS in SMB is limited. From Figure 18c–f, the fluores-
cent spots in fluorescence micrographs gradually become sparse until they disappear 
completely. It implies that the cross-linked structure of SBS in SMB is destroyed, and SBS 
is gradually oxidized and degraded in service. Simultaneously, the entropy elastic prop-
erty of SMB gradually weakened to disappear in service, confirming the characteristics of 
aging matrix asphalt in the above analysis. 

 
Figure 18. Fluorescence micrograph of all binders.  Figure 18. Fluorescence micrograph of all binders.

4. Conclusions

The evolution of the chemical structure, molecular weight and properties of SBS and
SMB during the aging process were investigated. Some valuable conclusions are made
as follows:

[1] Severe oxygen absorption reactions occur in the aging process of SBS, the polybuta-
diene segments in SBS are more susceptible to oxidative degradation as compared
with polystyrene segments, and their molecular weight decreases rapidly at the early
aging stage;

[2] IC=O and IS=O of SMB increase gradually with the deepening of aging; the structure
index of the PB segment in SBS and its molecular weight decrease. The change rate of
aging indexes and molecular weight for SMB during the aging process is far less than
that of SBS in direct aging, which indicates the aging resistance of the SBS modifier
inside asphalt is better than that of the SBS modifier;
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[3] The effect of aging on the creep recovery behavior of SMB under high and low shear
stresses is quite different; it is due to the combined effect of SBS oxidation degradation
and asphalt oxidation hardening;

[4] SBS modifier endows the asphalt with entropy elasticity and reduces its temperature
sensitivity. SBS undergoes oxidative degradation as aging progresses, resulting in a
gradual weakening of entropy elasticity and an increase in stiffness elasticity;

[5] FM analysis shows the distribution of SBS in SMB gradually becomes sparse and
uneven and gradually disappears as aging progresses. It implies that SBS has been
completely oxidized and degraded, and the viscoelastic properties of SMB have
gradually transformed to those of aged matrix asphalt.
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