Investigation of Medium-Term Performance of Porous Asphalt and Its Impacts on Tire/Pavement Noise
Abstract
:1. Introduction
2. Test Sections and Methods
2.1. Test Sections
2.2. Test Methods
2.2.1. CiCS on the Multifunctional Automatic Pavement Detection Vehicle
2.2.2. On-Board Sound Intensity (OBSI) Tire/Pavement Noise Test
2.3. Characteristic Indexes
- (1)
- PCI
- (2)
- RDI
- (3)
- RQI
- (4)
- SRI
- (5)
- TCS
3. Results and Analysis
3.1. Development Trend of Service Performance of Porous Asphalt Pavement
3.2. Tire/Pavement Noise Analysis Based on the OBSI Method
3.3. Correlation Analysis of OBSI and Pavement Performance Indicators
4. Conclusions
- (1)
- The DR and SFC of the three porous asphalt pavements diminished significantly with the increasing age of the pavement, while the IRI and RD exhibited no remarkable reduction. The SFC had a relatively obvious decline over 1–4 years of operation, with a decrease rate of 13.8–17.0%.
- (2)
- Two-layer porous asphalt pavement (PUC-10 + PAC-13) exhibited the best noise reduction effect compared to the other two porous pavement structures for medium-term service.
- (3)
- The OBSI noise value of the DTC had a significant linear relationship with the SMTD and SFC. The RD had a more significant effect on the OBSI noise value of the PUC-10 porous asphalt pavement. The linear relationship between the OBSI noise value of the PUC-10 + PAC-13 porous asphalt pavement and the SFC was great. This is mainly because the microscopic texture changed under the influences of loading and environmental factors on the pavement, and it resulted in an improvement of the tire/pavement noise value in the high-frequency range. Also, the microscopic wear of the pavement will directly affect the skid-resistance performance of the pavement.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michiyuki, Y.; Hiroshi, N.; Takuya, M. Sound absorption mechanism of porous asphalt pavement. J. Ince Jpn. 1999, 25, 29–43. [Google Scholar]
- Pakholak, R.; Plewa, A.; Gardziejczyk, W. Influence of Type of Modified Binder on Stiffness and Rutting Resistance of Low-Noise Asphalt Mixtures. Materials 2021, 14, 2884. [Google Scholar] [CrossRef] [PubMed]
- Rassoshenko, I.; Nikitenko, A.; Ivanov, N. Low-Noise Asphalt Application and Its Efficiency Analysis. Akustika 2019, 34, 127–131. [Google Scholar] [CrossRef]
- Tian, J.; Luo, S.; Liu, Z.; Yang, X.; Lu, Q. Determination of Construction Parameters of Porous Ultra-Thin Overlays Based on Laboratory Compaction Studies. Materials 2020, 13, 4496. [Google Scholar] [CrossRef] [PubMed]
- Hauwermeiren, W.V.; David, J.; Dekoninck, L. Assessing Road Pavement Quality Based on Opportunistic In-car Sound and Vibration Monitoring. In Proceedings of the 26th International Congress on Sound and Vibration, Montreal, QC, Canada, 7–11 July 2019. [Google Scholar]
- Awwal, A.; Mashros, N.; Hasan, S.A.; Hassan, N.A.; Rahman, R. Road Traffic Noise for Asphalt and Concrete Pavement. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1144, 012082. [Google Scholar] [CrossRef]
- Vaitkus, A.; Skrodenis, D.; Ernas, O.; Vorobjovas, V. Surface Texture and Layer Permeability Of Aquaplaning Resistant Asphalt Pavements. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1202, 012026. [Google Scholar] [CrossRef]
- Li, M.; Lu, H.; Li, J.; Mao, Q.; Chen, L. Performance study and application of porous ultra-thin wearing course for asphalt pavement maintenance. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1075, 012014. [Google Scholar] [CrossRef]
- Kleizienė, R.; Šernas, O.; Vaitkus, A.; Simanavičienė, R. Asphalt Pavement Acoustic Performance Model. Sustainability 2019, 11, 2938. [Google Scholar] [CrossRef]
- Pizzo, L.; Bianco, F.; Moro, A.; Schiaffino, G.; Licitra, G. Relationship between tyre cavity noise and road surface characteristics on low-noise pavements. Transp. Res. Part D Transp. Environ. 2021, 98, 102971. [Google Scholar] [CrossRef]
- Spies, L.; Li, T.; Burdisso, R.; Sandu, C. An artificial neural network (ANN) approach to model Tire-Pavement interaction noise (TPIN) based on tire noise separation. Appl. Acoust. 2023, 206, 109294. [Google Scholar] [CrossRef]
- Faßbender, S.; Oeser, M. Investigation on an Absorbing Layer Suitable for a Noise-Reducing Two-Layer Pavement. Materials 2020, 13, 1235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Z.; Meng, X. Noise reduction characteristics of asphalt pavement based on indoor simulation tests. Constr. Build. Mater. 2019, 215, 285–297. [Google Scholar] [CrossRef]
- Jin, D.; Ge, D.; Wang, J.; Malburg, L.; You, Z. Reconstruction of Asphalt Pavements with Crumb Rubber Modified Asphalt Mixture in Cold Region: Material Characterization, Construction, and Performance. Materials 2023, 16, 1874. [Google Scholar] [CrossRef] [PubMed]
- Jaskula, P.; Ejsmont, J.A.; Gardziejczyk, W.; Mioduszewski, P.; Stienss, M.; Motylewicz, M.; Szydlowski, C.; Gierasimiuk, P.; Rys, D.; Wasilewska, M. Bitumen-Based Poroelastic Pavements: Successful Improvements and Remaining Issues. Materials 2023, 16, 983. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Tan, K.H.; Fwa, T.F. Evaluation of wearing course mix designs on sound absorption improvement of porous asphalt pavement. Constr. Build. Mater. 2017, 141, 402–409. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Z.; Xie, J.; Wang, Z.; Li, H. Study on the sound absorption coefficient model for porous asphalt pavements based on a CT scanning technique. Constr. Build. Mater. 2020, 230, 117019. [Google Scholar] [CrossRef]
- Mahmud, M.; Hassan, N.A.; Hainin, M.R.; Che, R.I.; Mashros, N. Characterisation of microstructural and sound absorption properties of porous asphalt subjected to progressive clogging. Constr. Build. Mater. 2021, 283, 122654. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Abdelhady, A.; Du, H. Laboratorial investigation on sound absorption property of porous concrete with different mixtures. Constr. Build. Mater. 2020, 259, 120414. [Google Scholar] [CrossRef]
- Xu, B.; Li, M.; Liu, S.; Fang, J.; Ding, R.; Cao, D. Performance analysis of different type preventive maintenance materials for porous asphalt based on high viscosity modified asphalt. Constr. Build. Mater. 2018, 191, 320–329. [Google Scholar] [CrossRef]
- Zw, A.; Jx, A.; Lei, G.A.; Ml, B.; Yl, A. Improvement of acoustic model and structural optimization design of porous asphalt concrete based on meso-structure research. Constr. Build. Mater. 2020, 265, 120327. [Google Scholar]
- Chen, D.; Ling, C.; Wang, T.; Su, Q.; Ye, A. Prediction of tire-pavement noise of porous asphalt mixture based on mixture surface texture level and distributions. Constr. Build. Mater. 2018, 173, 801–810. [Google Scholar] [CrossRef]
- Alber, S.; Ressel, W.; Liu, P.; Wang, D.; Oeser, M. Influence of soiling phenomena on air-void microstructure and acoustic performance of porous asphalt pavement. Constr. Build. Mater. 2018, 158, 938–948. [Google Scholar] [CrossRef]
- Amrina, R.J.A.; Buchari, E. Evaluation Pavement Deteriorating Condition on Surface Distress Index (SDI) Data Using Radial Basis Function Neural Networks (RBFNN). J. Phys. Conf. Ser. 2019, 1198, 032008. [Google Scholar]
- Afarin, K.; Amir, G. Machine learning for developing a pavement condition index. Autom. Constr. 2022, 139, 104296. [Google Scholar]
- Piryonesi, S.M.; Tamer, E. Examining the relationship between two road performance indicators: Pavement condition index and international roughness index. Transp. Geotech. 2021, 26, 100441. [Google Scholar] [CrossRef]
- Cao, L.; Li, L.W.; Yang, C.; Zhang, B.; Dong, Z. Performance prediction of expressway pavement in high maintenance level areas based on cosine deterioration equation: A case study of Zhejiang Province in China. J. Road Eng. 2022, 2, 267–278. [Google Scholar] [CrossRef]
- Ganji, M.R.; Golroo, A.; Sheikhzadeh, H.; Ghelmani, A.; Bidgoli, M.A. Dense-graded asphalt pavement macrotexture measurement using tire/road noise monitoring. Autom. Constr. 2019, 106, 102887. [Google Scholar] [CrossRef]
- Li, M.; Zeng, F.; Xu, R.; Cao, D.; Li, J. Study on Compatibility and Rheological Properties of High-Viscosity Modified Asphalt Prepared from Low-Grade Asphalt. Materials 2019, 12, 3776. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Li, M.; Li, J.; Li, Y. Research on high-temperature rheological performance of fiber reinforced high-viscosity asphalt mastics. Constr. Build. Mater. 2023, 397, 132397. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Li, M.; Li, J.; Li, Y. Study of fatigue performance of fiber reinforced high-viscosity asphalt mastic based on rheology. Constr. Build. Mater. 2023, 400, 132784. [Google Scholar] [CrossRef]
- JTG 5210-2018; Highway Performance Assessment Standards. Ministry of Transport of the People’s Republic of China: Beijing, China, 2018.
- GB/T 26764-2011; Multifunctional High-Speed Highway Condition Monitor. Standardization Administration of China: Beijing, China, 2011.
- JTG/T E61-2014; Specifications of Automated Pavement Condition Survey. Ministry of Transport of the People’s Republic of China: Beijing, China, 2014.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- AASHTO T 360-16; Standard Test Method for Measuring Tire/Road Noise Using the On-Board Sound Intensity (OBSI) Method. American Association of State Highway and Transportation Officials: Washington, DC, USA, 2020.
- Zheng, N.; Chen, X.; Bi, J.; Wu, X. Research on the relationship between anti-skid performance and various aggregate micro texture based on laser scanning confocal microscope. Constr. Build. Mater. 2022, 316, 125984. [Google Scholar]
- Zheng, N.; Bi, J.; Dong, S.; Lei, J.; He, Y.; Cui, Z.; Chen, L. Testing and evaluation for long-term skid resistance of asphalt pavement composite seal using texture characteristics. Constr. Build. Mater. 2022, 356, 129241. [Google Scholar] [CrossRef]
- Víctor, V.; Fernando, T.; Pedro, H.; Santiago, P. Surface Aging Effect on Tire/Pavement Noise Medium-Term Evolution in a Medium-Size City. Coatings 2018, 8, 206. [Google Scholar]
Type of Mixture | Passing Percentage (%) of the Following Sieve Holes (mm) | Polyester Fiber Content (%) | Bitumen Ratio (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.0 | 13.2 | 9.5 | 7.5 | 6.7 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |||
DTC-10 | 100 | 100 | 92.7 | - | 44.9 | 28.8 | 23.4 | 17.1 | 11.1 | 8.9 | 8 | 6.4 | 0.2 | 4.85 |
PUC-10 | 100 | 100 | 90.0 | 72.0 | - | 25.3 | 12.3 | 11.9 | 9.1 | 7.5 | 6.4 | 5.4 | 0.1 | 4.58 |
PAC-13 | 100 | 87.5 | 4.8 | - | - | 13.7 | 11.2 | 8.7 | 7.3 | 6.2 | 5.4 | 4.8 | 0.1 | 4.40 |
Indicator Name | Unit | DTC-10 | PUC-10 | PAC-13 |
---|---|---|---|---|
Void content percentage | % | 4.2 | 20.4 | 19.9 |
Marshall Stability | kN | 9.1 | 7.22 | 7.42 |
Residual Mashall stability percentage | % | 94.6 | 90.4 | 89.7 |
Residual Freeze-thaw split tensile strength ratio | % | 93.4 | 95.7 | 84.8 |
Standard raveling loss percentage | % | 3.32 | 5.3 | 7.5 |
Immersion raveling loss percentage | % | - | 4.3 | 9.2 |
Dynamic Stability | time/mm | 5231 | 6574 | 9043 |
Permeability | mL/min | 52 | 6570 | 7116 |
Variable | Variable Setting |
---|---|
Test speed | 1 = 80 km/h; 2 = 100 km/h |
Lane | 1 = Passing lane; 2 = Driving lane |
Pavement structure | 1 = Compact gradation pavement; 2 = PUC-10; 3 = PAC-13; 4 = PUC-10 + PAC-13 |
Type of pavement distress | 1 = No damage; 2 = Transverse cracks; 3 = Longitudinal cracks; 4 = Repair |
Indicator | M (SD) | Range | OBSI | Speed | Lane | Pavement Structure | Pavement Distress | |
---|---|---|---|---|---|---|---|---|
OBSI (dB) | Correlation significant | 91.33 (2.30) | 83.83–98.65 | 1 | ||||
Speed (km/h) | Correlation significant | - | - | 0.585 * 0.000 | 1 | |||
Lane | Correlation significant | - | - | 0.317 * 0.000 | 0.000 1.000 | 1 | ||
Pavement Structure | Correlation significant | - | - | −0.201 * 0.000 | 0.000 1.000 | 0.161 * 0.000 | 1 | |
Pavement distress | Correlation significant | - | 0.034 0.109 | 0.003 0.899 | 0.036 0.089 | −0.195 * 0.000 | 1 |
Pavement Structure | Indicator | SMTD | RD | DR | SFC | IRI |
---|---|---|---|---|---|---|
DTC-10 | Correlation Significance | 0.567 * 0.000 | 0.035 0.619 | −0.123 0.083 | −0.304 * 0.000 | −0.121 0.088 |
PUC-10 | Correlation Significance | 0.265 0.157 | 0.545 * 0.002 | 0.084 0.738 | 0.132 0.488 | −0.089 0.638 |
PAC-13 | Correlation Significance | 0.127 0.067 | −0.135 0.052 | 0.074 0.486 | 0.082 0.240 | 0.022 0.746 |
PUC-10 + PAC-13 | Correlation Significance | −0.052 0.554 | −0.024 0.786 | 0.142 0.095 | −0.231 * 0.008 | −0.044 0.618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Wang, G.; Li, M.; Zhao, Y.; Li, J.; Han, D.; Li, P. Investigation of Medium-Term Performance of Porous Asphalt and Its Impacts on Tire/Pavement Noise. Buildings 2024, 14, 64. https://doi.org/10.3390/buildings14010064
Wu H, Wang G, Li M, Zhao Y, Li J, Han D, Li P. Investigation of Medium-Term Performance of Porous Asphalt and Its Impacts on Tire/Pavement Noise. Buildings. 2024; 14(1):64. https://doi.org/10.3390/buildings14010064
Chicago/Turabian StyleWu, Hao, Ge Wang, Mingliang Li, Yue Zhao, Jun Li, Dingding Han, and Pengfei Li. 2024. "Investigation of Medium-Term Performance of Porous Asphalt and Its Impacts on Tire/Pavement Noise" Buildings 14, no. 1: 64. https://doi.org/10.3390/buildings14010064
APA StyleWu, H., Wang, G., Li, M., Zhao, Y., Li, J., Han, D., & Li, P. (2024). Investigation of Medium-Term Performance of Porous Asphalt and Its Impacts on Tire/Pavement Noise. Buildings, 14(1), 64. https://doi.org/10.3390/buildings14010064