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Abstract: Building envelopes and indoor environments exhibit thermal inertia, forming a virtual
energy storage system in conjunction with the building air conditioner (AC) system. This system
represents a current demand response resource for building electricity use. Thus, this study centers
on the CatBoost algorithm within machine learning (ML) technology, utilizing the LASSO regression
model for feature selection and applying the Optuna framework for hyperparameter optimization
(HPO) to develop a cost-optimal control method for minimizing building AC loads. This method
addresses the challenges associated with traditional load forecasting and control methods, which are
often impacted by environmental temperature, building parameters, and user behavior uncertainties.
These methods struggle to accurately capture the complex dynamics and nonlinear relationships
of AC operations, making it difficult to devise AC operation and virtual energy storage scheduling
strategies effectively. The proposed method was applied and validated using a case study of an office
building in Nanjing, China. The prediction results showed coefficient of variation in root mean square
error (CV-RMSE) values of 6.4% and 2.2%. Compared with the original operating conditions, the
indoor temperature remained within a comfortable range, the AC load was reduced by 5.25%, and the
operating energy costs were reduced by 24.94%. These results demonstrate that the proposed method
offers improved computational efficiency, enhanced model performance, and economic benefits.

Keywords: building air conditioner load; machine learning; load control; energy costs; indoor temperature

1. Introduction
1.1. Background and Motivation

With the increasing electrification of buildings, the demand for electricity in building
operations has progressively increased [1], exhibiting significant fluctuations. These peak
and off-peak electricity usage characteristics impose substantial pressure on the grid and
power supply [2]. Demand response (DR) is recognized as an effective demand-side energy
management and optimization technique capable of guiding users in actively adjusting
their energy usage patterns through monetary incentives [3]. This strategy can be used to
reduce electricity demand during peak periods and emergencies [4,5], thereby decreasing
the variability in electricity demand [6].

When the grid requires buildings to adjust their load, buildings can achieve load
reductions or shifts through temperature regulation, by shutting down non-essential equip-
ment, by using energy storage systems, and by implementing building energy management
system (BEMS). Among these methods, energy storage devices, particularly electrochemical
storage, are the most direct measures. They not only compensate for the volatility of the
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power system but also enhance the safety of building electricity use [7–9]. However, due to
issues such as initial investment costs, maintenance, and lifecycle concerns, this approach
is challenging to implement on a large scale. In recent years, virtual energy storage (VES)
in buildings has gained considerable attention. A VES avoids the aforementioned initial
investment costs and space limitations, making it a viable alternative to battery storage [10],
and is considered one of the most valuable DR resources [3,11]. Building a VES originates
from the thermal buffering capacity of building envelopes and indoor environments. When
heating, ventilation, and air conditioning (HVAC) systems cool or heat indoor spaces, the
stored cold or heat is retained within the building envelope, indoor equipment, and air.
Thus, reducing the cooling or heating power of an HVAC system decreases the electricity
load without immediately changing the indoor temperature, but rather by releasing the
stored cold or heat, resulting in a gradual temperature increase or decrease. This process is
analogous to charging and discharging energy storage devices [12–14].

A building air conditioning (AC) system serves both as an energy provider for a VES
and as a key component in the DR system of buildings that maintains the requirements of
comfortable temperatures. Kaliyamoorthy et al. [15] evaluated the charging and discharging
patterns of loads from the perspectives of power and energy, validating the feasibility of
using building AC combined with a VES for DR. Braun et al. [16] demonstrated that pre-
cooling buildings overnight reduced the cumulative load by 23% compared with buildings
that were not pre-cooled, highlighting the load adjustment potential of such DR systems. Lu
et al. [13] explored methods for achieving hourly load-balancing services using integrated
AC systems, indicating that further optimization is possible by combining building AC
systems with VES.

Building AC systems exhibit diverse dynamic characteristics [17], gradual and con-
tinuous response traits [18], and are susceptible to uncertainties such as environmental
temperature, building parameters, and user behavior. Capturing these complex dynam-
ics and nonlinear relationships to develop AC operation strategies for VES scheduling is
therefore complex and challenging [19]. In this study, we propose using machine learning
(ML) algorithms to minimize AC load costs while meeting the requirement of comfortable
temperatures as dual objectives, aiming to enhance predictive analysis accuracy and to
develop automated adjustment strategies.

1.2. Literature Review

Three main prediction methods exist for AC load regulation: simulation-based meth-
ods, mechanism-based methods, and data-driven methods. AC load and indoor environ-
mental temperature are influenced by factors such as outdoor weather, building envelope
insulation, and indoor occupancy and behavior, which introduce significant randomness
into real-world operations. Thus, building VES adjustment models using simulation soft-
ware is highly challenging [20], and their prediction results can be significantly inaccurate
when precise data are lacking [21]. Consequently, simulation-based methods are often used
for steady-state and hypothetical load adjustment analyses. Mechanism-based methods
involve constructing mathematical models to describe physical processes. For example,
Hu et al. [22] developed a thermal model for a simplified room to support a model predic-
tive controller for load adjustment and validated the method’s cost-effectiveness through
simulations. Li et al. [23] built a linear state-space model to capture indoor temperature
dynamics and used a quasi-steady-state approach to represent the AC system for control
purposes. Similarly, Hughes et al. [24] employed a simple first-order linear dynamic model
to analyze the flexibility of residential AC systems. The authors in [25] conceptualized
rooms equipped with variable frequency air conditioners as “thermal battery models” and
incorporated them into load adjustment scheduling. Overall, both methods rely on certain
assumptions and simplifications, which can limit their ability to capture the true dynamics
of building energy systems [26], thereby affecting the accuracy of the models and strategies,
and the effectiveness of any load adjustments.
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Research indicates that data-driven modeling approaches can enhance the accuracy
of results [27,28]. Data-driven methods utilize ML algorithms from the field of artificial
intelligence to perform black-box modeling using extensive historical data. These methods
not only correctly interpret but also learn from external data and adapt accordingly to
achieve specific goals and tasks [29,30]. ML has broad applications in the building sec-
tor, including energy system forecasting [31,32], operations [33,34], control [35,36], and
diagnostics [37–39]. Although ML methods have been applied in building energy systems
to some extent, research interest in their use for load adjustment has only significantly
increased in recent years [20]. ML technologies enable the real-time analysis of grid states,
demand prediction, and energy optimization, thereby achieving peak shaving, mismatch
mitigation, enhanced energy efficiency, and reduced operational costs [40,41]. For instance,
Zhou et al. [42,43] used ML algorithms for short-term load forecasting in residential DR
scenarios, showing good predictive accuracy. Behl et al. [44] provided a model-based con-
trol method using regression tree algorithms (mbCRTs) for the comprehensive closed-loop
control of load adjustment strategies in large commercial buildings. Ben et al. [45] employed
a General Regression Neural Network (GRNN) to predict cooling loads, achieving a good
fit between the predicted and actual building load curves.

1.3. Contributions

This study represents the first application of the CatBoost algorithm in the prediction
of building AC loads considering the role of building VESs. Historical data generated
by real-time building energy monitoring systems were used as input parameters, rather
than assumed preset simulation parameters, enhancing the practical applicability of this
research. During the algorithm model optimization process, we employed the LASSO
regression model for feature selection and utilized the Optuna framework for automated
hyperparameter optimization (HPO). A comparison of the model’s performance before and
after optimization demonstrated a significant improvement in accuracy with the adjusted
algorithm model.

Building on these results, we also developed a multi-objective prediction and decision-
making method for AC load optimization, constrained by minimizing costs and ensuring
indoor comfort temperatures. This approach makes the automatic load adjustment of an
AC system under DR requirements feasible, offering significant value by reducing energy
consumption and cost expenditures, as well as lowering the carbon emissions associated
with building operations. The research framework is illustrated in Figure 1.
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2. Materials and Methods

Boosting is an ML technique used to reduce bias in supervised learning and is known
for its outstanding performance [3]. The Boosting family includes algorithms such as
CatBoost, XGBoost, and AdaBoost. Bian et al. [46] utilized the CatBoost and AdaBoost
algorithms to predict an HVAC system’s power consumption, demonstrating their excellent
predictive performance. Kaligambe et al. [47] designed and trained several XGBoost models
to estimate the indoor temperature, relative humidity, and carbon dioxide concentration,
confirming the accuracy of these models and their suitability for optimal HVAC system
control in smart buildings. Wang et al. [3] introduced an HVAC system predictive control
strategy based on the XGBoost algorithm to enhance daytime DR. CatBoost is one of
the principal algorithms in the Boosting family, proficient in handling both numerical
and categorical data. It is noted for its robustness, versatility, platform applicability, and
prediction speed [48]. In this study, we leveraged the CatBoost algorithm for model
development and training, followed by a demand response decision analysis based on
the prediction results. The basic process involved first developing and training a machine
learning-based model for predicting the AC load and indoor temperature. Feature selection
was conducted using a LASSO regression model, and HPO was performed following
the Optuna framework to optimize computational efficiency and model performance,
further enhancing the model’s performance and generalization capabilities. Subsequently,
simulations were conducted based on real-time measurements from building equipment
and environmental data. Using the prediction results, decisions were made to set the
temperature for cost optimization within a comfortable indoor temperature range. Finally,
temperature setting commands were issued to the AC’s temperature controllers via the
building equipment management system, adjusting the building environment to schedule
building a VES and to achieve user-side DR control. The principle behind this process is
illustrated in Figure 2.
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2.1. Data Acquisition and Selection of Input Variables

Then, the indoor environmental parameters, equipment operating parameters, and
occupancy information were monitored. These parameters were transmitted in real time to
an intelligent monitoring platform via a wireless network. Sensors transmitted the data
every 10 min, which were then stored in a responsive database. Data extracted from 3 June
2023 to 27 August 2023 were utilized for the analysis.

The relationship between the inputs and outputs in this study was established by
predicting the current AC power consumption and indoor temperature using historical
monitoring data. The impact of the outdoor environmental parameters on AC power
consumption and the indoor temperature was significant and included factors such as
the outdoor temperature and solar radiation. These factors were thus incorporated as
input variables in the predictive model. Additionally, the indoor environment conditions,
number of occupants, and time information also correlated with AC power consumption
and the indoor temperature and were considered. The historical information reflected
certain thermal inertia trends and was therefore relevant. Consequently, historical data
from the past 10, 20, 30, 40, and 50 min, including outdoor temperature, outdoor humidity,
eastward wind speed, northward wind speed, net solar radiation intensity, total solar
radiation intensity, indoor humidity, number of occupants, set temperature, HVAC power
consumption, indoor temperature, and time information were used as input variables for
the model.

2.2. Feature Selection

Feature selection is a crucial step in ML, essential for building an efficient and accurate
prediction model. The primary goal of feature selection is to choose the most informative
features from the raw data to simplify the model, enhance its performance, and reduce
the risk of overfitting. In this study, we addressed these issues by employing the LASSO
regression model for optimal feature selection. LASSO regression, which stands for “Least
Absolute Shrinkage and Selection Operator”, is a widely used method for feature selection
and regularization in regression analyses. The fundamental principle behind LASSO is the
introduction of an L1 regularization term into the ordinary least squares method, thereby
minimizing the objective function to achieve feature selection and coefficient sparsity. The
advantage of LASSO regression lies in its ability to automatically perform feature selection,
resulting in a more streamlined and interpretable model. Currently, LASSO regression is
considered one of the most commonly used feature selection methods [49]. In this study,
70 potential input features were screened, and LASSO regression was used to select those
with significant correlations to AC power consumption and indoor temperatures.

2.3. Hyperparameter Optimization

Like most ML algorithms, the CatBoost model has several hyperparameters, and
different combinations of these hyperparameters can significantly impact the model’s
performance. By fine-tuning hyperparameters such as learning rate, tree depth, and
number of trees, the predictive accuracy of the model can be improved. Since each dataset
is unique, specific hyperparameter settings are required to achieve an optimal performance
for a given problem. Additionally, appropriate hyperparameter settings help balance
model complexity, preventing overfitting and underfitting. In this study, we utilized
a widely adopted HPO framework: Optuna. Optuna provides an efficient method for
automatically searching for optimal hyperparameters. It employs an algorithm known as
the “Tree-structured Parzen Estimator” (TPE) to select the hyperparameters most likely to
enhance the model’s performance [50]. Compared with traditional grid search and random
search methods, this approach is typically more efficient and precise. Furthermore, Optuna
automates the hyperparameter search process, including defining the search space, running
optimization trials, and recording the results. This significantly reduces the manual effort
required for HPO [51].
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2.4. CatBoost Model Training

Here, we developed two key predictive models based on the CatBoost algorithm—
the AC power consumption prediction model and the indoor temperature prediction
model—which provide crucial references for building AC load regulation.

Firstly, actual AC operation data with a temporal sequence were collected, with the
first 80% used as the training set and the remaining 20% reserved for internal validation.
This deliberate partitioning preserved the inherent temporal characteristics of the time
series data. Next, LASSO regression was employed for feature selection, and the Op-
tuna framework was used for HPO. After HPO, the model was fitted using the optimal
hyperparameter combination and subsequently validated. To assess the performance of
the predictive models, four key metrics were used: two scale-dependent metrics—mean
absolute error (MAE) and root mean square error (RMSE)—and two scale-independent
metrics—R-squared (R2) and the coefficient of variation of RMSE (CV-RMSE). The scale-
dependent metrics provide an intuitive understanding of prediction errors in specific
scenarios, while the scale-independent metrics facilitate comparisons with similar studies.

2.5. Load Adjustment Decision

Building VES resources allows for the adjustment of or shift in the required loads by
modifying the AC set temperature without violating the constraints of comfortable indoor
temperatures. In this study, we follow the same principle for load adjustment decisions.
Additionally, under the DR requirements of the grid, cost-oriented load adjustment has
significant potential for widespread adoption. Therefore, the primary decision objective for
setting the temperature in this study is to minimize AC operating costs while maintaining
the constraints of comfortable indoor temperatures. The specific process for deciding on
the set temperature is illustrated in Figure 3. First, the method involves manually dividing
the AC set temperature range and then defining the adjustment range from 23.5 ◦C to
26.5 ◦C with a granularity of 0.5 ◦C, which serves as the candidate set temperatures [3].
Simultaneously, the comfortable indoor temperatures were constrained to between 23 ◦C
and 27 ◦C. This range was chosen based on historical operating temperatures to ensure
that the indoor environment remains within an acceptable range for occupants. Given the
constraints of economic costs, the cost formula is as follows:

minC = Ce − CDR (1)

where C is the total cost; Ce is the cost of electricity, as shown in Equation (2); and CDR is
the cost return during the DR period, as shown in Equation (3).

Ce =
n

∑
t=1

P(t) · price(t) (2)

where price is the energy consumption electricity price, which is determined by local
electricity management regulations.

CDR =
n

∑
t=1

[Pnon−DR(t)− P(t)] · bonus(t) (3)

where Pnon-DR represents power consumption under non-DR conditions, which can be
determined based on historical operational patterns, and bonus is the price offered for
participating in DR, as determined by local electricity regulations.

The values for air conditioning power consumption and indoor temperature during
the decision-making process were derived from the optimized, high-performance CatBoost
models, as given in the following equations:

Pt = CatBoost 1(XP,t) (4)
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Tin,t = CatBoost 2(XTin,t) (5)

where Pt represents the predicted AC power consumption at time t, XP,t denotes the input
variables for predicting AC power consumption at time t, Tin,t is the predicted indoor
temperature at time t, and XTin,t represents the input variables for predicting the indoor
temperature at time t.

The final set temperature was determined based on cost minimization. Among the
candidate set temperatures, the one with the lowest cost that maintained the indoor tem-
perature within the specified comfort range was selected as the final set temperature.
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3. Results and Analysis
3.1. Prediction Model
3.1.1. Data Source

The data used in this study were collected from an office building in Nanjing, China.
The building’s equipment management system is illustrated in Figure 4. Approximately
12,500 data entries were collected. After excluding data points related to the non-operational
periods of the AC system and removing extreme outliers, the dataset was refined to about
5000 continuous entries. The initial feature set included 12 variable categories (X1–X12),
comprising current time (H), indoor humidity (Din), indoor occupancy (Min), outdoor
temperature (Tout), outdoor humidity (Dout), radial wind speed (Vradial), zonal wind speed
(Vzonal), net solar radiation intensity (Rnet-solar), total solar radiation intensity (Rtotal-solar),
set temperature (Tset), AC power consumption (P), and indoor temperature (Tin). Table 1
presents statistical descriptions of these variables. The data were systematically updated
every 10 min, resulting in a comprehensive dataset with 70 variables (X1–X12 for the past
10 to 50 min and X1–X10 for the current time). The distributions of the 12 variables are
shown in Figure 5.
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Table 1. Statistical descriptions of the data.

Variable Unit Description Range Average Median

X1: H - current hours [7, 21] 14.49 ± 3.85 15
X2: Din % indoor relative humidity [41.29, 71.29] 57.28 ± 4.39 57.57
X3: Min people indoor occupancy [0, 111] 66.23 ± 36.40 88
X4: Tout

◦C outdoor temperature [18.13, 35.1] 28.98 ± 2.59 29.16
X5: Dout % outdoor relative humidity [28.18, 99.99] 75.57 79.63

X6: Vradial m/s radial wind speed [−3.1, 99.99] 0.71 ± 1.67 0.85
X7: Vzonal m/s zonal wind speed [−6.03, 5.92] −0.45 ± 2.19 −0.52

X8: Rnet-solar J/m2 net solar radiation intensity [0, 2,862,042] 1,023,792 ± 808,399 904,292
X9: Rtotal-solar J/m2 total solar radiation intensity [−4, 3,439,454] 1,223,246 ± 965,701 1,077,806

X10: Tset
◦C set temperature [17, 26.5] 25.38 ± 1.02 26

X11: P kWh power consumption [0.00, 3.49] 1.19 ± 0.70 1.07
X12: Tin

◦C indoor temperature [22.90, 34.50] 27.33 ± 2.39 26.10
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3.1.2. The Result of Feature Selection

LASSO regression was employed to handle any redundant variables and to enhance
the model’s practicality. The variable selection process in LASSO regression is depicted in
Figure 6. As the penalty coefficient (Lambda) increased, the coefficients of certain variables
approached zero, indicating their limited impact on the model. After applying LASSO
regression, 14 variables were retained for the final model (Model 1: AC power consumption
prediction model). These variables were Min, Dout, Tset, Tout_20 min, Dout_20 min, P_20 min,
P_30 min, Tin_30 min, Din_40 min, P_40 min, Min_50 min, Tout_50 min, Tset_50 min, and P_50 min. To
explore the importance of the model input features, Shapley additive explanation (SHAP)
values were used to rank the significance of the variables used in the model’s construction
(Figure 7). For Model 2 (the indoor temperature prediction model), nine variables were in-
cluded: H, Min, Din_10 min, P_10 min, Din_20 min, P_20 min, Tin_20 min, Tset_40 min, and Tin_50 min.
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Figure 7. Feature importance via SHAP. Dots are colored based on feature values for each sample,
accumulating vertically to show density. The y-axis color ranges from blue to red, indicating feature
values (blue for low, red for high). The x-axis represents the impact on the model output, with positive
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Buildings 2024, 14, 3040 10 of 18

3.1.3. The Result of Hyperparameter Optimization

HPO was conducted for Model 1 to enhance its prediction performance, as shown in
Figure 8. After 100 trials, the CatBoost model with the lowest RMSE was identified. The
final hyperparameter settings obtained from the search are detailed in Table 2. To validate
the effectiveness of the optimization process (Figure 9), a comparison was made between
the model’s performance before and after HPO, using the best combination of the obtained
parameters. The results indicate that the CatBoost model showed improved prediction
capabilities after HPO. The optimization process for Model 2 was similar, demonstrating
a significant performance enhancement post-optimization, and the results are shown in
Figure 10.
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Figure 8. HPO process of Model 1. (A) Optimization history plot: each blue point represents the result
of a trial, and the dark orange line represents the best objective function value; (B) Contour plot: the
horizontal and vertical axes represent two different hyperparameter values, while the contour lines
indicate the objective function value. Different colored regions represent various ranges of the objec-
tive function value, with darker colors indicating lower values. (C) Slice plot for hyperparameters:
the shade of color represents the influence of every parameter on the model’s performance.
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Table 2. Search domain and values set for the hyperparameters.

Hyperparameter Search Domain Set Value

iterations [100, 1000] 880
depth [4, 10] 10

learning_rate [0.01, 0.3] 0.2949
random_strength [1 × 10−9, 10] 0.0092

bagging_temperature [0.01, 100] 0.0340
l2_leaf_reg [1 × 10−8, 10] 1.0519 × 10−6

3.1.4. Model Validation

Based on the above methods, the optimal CatBoost models were obtained. The final
20% of the dataset was used to fit the models, designated as the internal validation set.
Detailed results of the model validation are presented in Tables 3 and 4. The results show
that Model 1 achieved an MAE of 0.06, an RMSE of 0.08, an R-squared value of 0.98, and a
CV-RMSE of 6.4%. Model 2 exhibited an MAE of 0.36, an RMSE of 0.62, an R-squared value
of 0.94, and a CV-RMSE of 2.2%. Both models demonstrated low error rates and superior
prediction performances. Additionally, K-fold cross-validation was conducted to further
assess model robustness and performance, providing additional validation of the models’
effectiveness (Figure 11).
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Table 3. Model performance for predicting power consumption.

Metrics
Scale-Dependent Metrics Scale-Independent Metrics

MAE RMSE R2 CV-RMSE

Pre-HPO 0.22 0.30 0.84 22.5%
After-HPO 0.06 0.08 0.98 6.4%

Table 4. Model performance for predicting indoor temperature.

Metrics
Scale-Dependent Metrics Scale-Independent Metrics

MAE RMSE R2 CV-RMSE

Pre-HPO 0.56 0.74 0.90 2.6%
After-HPO 0.36 0.62 0.94 2.2%
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3.2. Set Temperature Adjustment Analysis

Using the designed control strategy, a specific day during a demand response event
was selected to demonstrate the response process and economic benefits of the strategy. Of
note, the data from the adjustment day were excluded from the modeling phase to ensure
the integrity of the predictive model. In this study, the peak and off-peak electricity prices
were 0.86 CNY/kWh and 0.66 CNY/kWh, respectively. The peak load periods were from
10:00 to 11:00 and 14:00 to 15:00, with the DR incentive assumed to be 4.8 CNY/kWh. The
AC system performed adjustments, either by pre-cooling or increasing the temperature, at
different time points (09:00, 10:00, 13:00, and 14:00). For each time point, seven candidate set
temperatures were used. These potential set temperatures were substituted into Equations
(4) and (5), and the CatBoost model was employed to obtain the AC power consumption
and indoor temperature at different times. The results are illustrated in Figures 12 and 13.
Figure 12 shows the impact of adjusting the set AC temperature on power consumption at
different time points, while Figure 13 depicts the effect on the indoor temperature.

Through a decision-making process constrained by cost minimization, the optimal
set temperature combination was determined. In detail, during peak demand periods,
set temperatures were adjusted to 25.0 ◦C at 09:00, 26.5 ◦C at 10:00, 25.0 ◦C at 13:00, and
26.0 ◦C at 14:00. Starting from 08:00, the total electricity consumption and cost for the
corresponding day were calculated, as depicted in Figures 14 and 15. In Figure 14, the
power consumption during the DR event corresponds to the AC power consumption at
the optimal set temperature combinations. Furthermore, in Figure 15, the cost under the
DR event represents the comprehensive cost associated with the AC power consumption
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at these optimal set temperatures, including both electricity costs and any cost returns
during the DR period, as calculated according to Equation (1). Compared with the scenario
without demand response, the AC power consumption was reduced by 5.25% and the
cost savings amounted to 24.94%, effectively shifting peak loads and demonstrating the
economic benefits of this strategy. Specifically, the model effectively balanced the flexibility
of temperature adjustment with economic efficiency by using finely tuned set temperature
candidates (ranging from 23.5 ◦C to 26.5 ◦C in 0.5 ◦C increments) and comprehensive cost
calculations (including both electricity costs and DR incentives), ensuring its effectiveness
and cost-efficiency in practical applications.
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Figure 12. Predicted P under different potential set temperatures during two time intervals:
(a) 09:00~10:50; and (b) 13:00~14:50.
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Figure 13. Predicted Tin under different potential set temperatures during two time intervals:
(a) 09:00~10:50; and (b) 13:00~14:50.
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Figure 14. Comparison of daily AC power consumption.
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4. Discussion

Building energy efficiency is closely linked to maintaining a comfortable indoor tem-
perature. Given the insulation and thermal conditions of building envelopes, the oper-
ational regulation of AC systems is key to energy savings. Therefore, investigating and
identifying the most cost-effective adjustment strategies within a comfortable temperature
range utilizing building VESs and by considering the operating states and characteristics of
AC systems is essential.

The proposed AC load forecasting and adjustment method, validated through a real-
world case study, achieved a 5.25% reduction in electricity consumption and a 24.94%
reduction in costs. These reductions highlight the effectiveness of coupling building VESs
with AC load regulation. The cost savings are particularly notable because they demonstrate
the potential for real-time DR programs to reduce operational expenses, especially during
peak periods when electricity prices are higher. Furthermore, the electricity savings indicate
a direct reduction in energy demand, which alleviates the burden on the grid during
peak hours.

Additionally, unlike previous studies that employed long-term data [52], this study
developed and validated the model using only two months of historical data from the case
building at 10 min intervals. However, the prediction accuracy for AC power consumption
and indoor temperatures, as shown in Tables 3 and 4, indicates that the CatBoost algorithm,
calibrated with actual multiparameter operational data rather than simplistic assumed
data, achieves high accuracy in its prediction. The model’s fit between actual and predicted
values is satisfactory, with CV-RMSEs of 6.4% (for AC power consumption) and 2.2% (for
the indoor temperature), which are significantly lower than the ASHRAE guideline of 30%
CV-RMSE for hourly data [53]. This also translates to savings in time and effort for the
simulation analysis.

The physical essence of these results lies in the system’s ability to optimize AC op-
erations without compromising indoor comfort. By leveraging the building’s thermal
inertia, the AC system can be adjusted to reduce energy consumption during peak demand
while maintaining a stable indoor environment. This showcases the potential of building
VESs to act as a buffer, shifting energy demand and alleviating the stress on power grids
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during high-demand periods. Additionally, this study demonstrates that real-time data
from building operations enhances the accuracy of predictive models, making them more
reflective of actual energy dynamics compared to models based on static assumptions or
long-term averages.

Buildings’ operational energy consumption accounts for approximately 30% of the
total energy consumption in a city. Thus, reducing energy use in buildings is a primary
focus for countries to address climate change and reduce carbon emissions from building
operations [54]. When compared with further enhancing the thermal performance of
building envelopes or improving the efficiency of building equipment, fully leveraging
the existing building VESs and operational adjustments of AC systems to reduce loads
is clearly more economically advantageous. This study demonstrates that, by simply
applying the proposed AC load forecasting and adjustment method within an existing
building environment and its equipment, the building energy–savings rate can be increased
by 5.25%, indicating a strong potential for wider applications. Once scaled, this approach
could alleviate grid supply pressures during peak load periods at the regional power supply
level, thereby addressing the issue of high operational costs faced by power generation
during peak demand [55].

Although this study focuses on a commercial office building using the CatBoost
algorithm, the methodology is not limited to office buildings. In demand-side energy
management, DR strategies can be applied at various levels, including home, building, and
building cluster energy management. In the future, this approach can be expanded to entire
buildings and building clusters, incorporating more VES resources to enhance DR and
achieve larger energy savings. Moreover, this AI/ML-based DR scheduling method can
be applied to other energy management scenarios, such as residential buildings, schools,
hospitals, and hotels. The method also extends beyond HVAC scheduling. In DR events,
resources like energy storage devices, EVs, and appliances can be integrated with HVAC
systems to optimize building energy efficiency. Combining data from these sources enables
a comprehensive DR strategy.

This study introduces a novel DR strategy model using the CatBoost algorithm to opti-
mize electricity use through the use of VESs when building HVAC systems. Key innovations
include: (1) The innovative application of the CatBoost algorithm: unlike traditional linear
models for HVAC systems, this research applies the CatBoost algorithm for its superior
nonlinear modeling, high-dimensional data handling, and robust performance, marking
its debut in DR control for building HVAC systems. (2) Feature selection and HPO: this
study utilizes LASSO regression for efficient feature selection and the OPTUNA framework
for automatic hyperparameter tuning, enhancing model performance and interpretability.
(3) The use of real-time operational data: while related research typically relies on energy
simulation platform data, this study utilizes real-time operational data from office buildings
for model development and validation. This approach demonstrates the economic potential
of DR through VESs and provides a more accurate representation of building dynamics,
reflecting the impact of various real-world factors on the model’s performance.

However, this study has certain limitations. Firstly, the predictive model built using
ML was validated only with internal data, lacking external validation, which may affect
the model’s generalization performance. Secondly, the DR incentive mechanism explored
in this study is relatively narrow, as it does not fully consider diverse models and incentive
strategies, potentially limiting the ability to fully harness VESs potential under DR scenarios.
Finally, although the prediction model performs well overall, there are still some instances
where the predictions are less accurate. Future work will thus involve expanding the
number of validation cases and optimizing the model and data processing methods to
enhance its broader applicability.

5. Conclusions

In this study, we investigated a cost-minimizing adjustment method for building
AC loads within a comfortable indoor temperature range, considering the VESs in build-
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ings. The proposed approach was validated on a typical office building in Nanjing, China,
demonstrating the following key contributions: (1) Accurate Load Forecasting: the model
showed high accuracy in forecasting AC power consumption and indoor temperatures,
contributing to more reliable demand response strategies. (2) Effective Operational Adjust-
ment: the proposed adjustment method effectively optimized set temperatures, leading
to a 5.25% reduction in energy consumption and a 24.94% reduction in operational costs,
showcasing the potential for significant energy savings. (3) Rapid Response to Demand: the
method allows for quick adjustments in response to real-time energy demand, enhancing
the system’s ability to participate in demand response events and reduce peak load stress.

As smart buildings continue to develop rapidly, the operational adjustment of build-
ing equipment, particularly AC systems, is a key area of research. Supported by sensors,
controllers, and building energy management systems, the method developed in this
study endows AC systems with self-learning and self-regulation capabilities. This allows
for reduced building energy consumption without compromising occupant comfort, ef-
fectively supporting the development of smart buildings and unlocking their potential
for sustainability.
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