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Abstract: As a new type of pile, the bearing characteristics of stepped variable-section DX piles
(multi-joint extruded and expanded piles) are quite complicated; thus, their design concepts and
pile-forming processes are still in the exploration stage, and their application in actual engineering
is not particularly mature. The settlement law and load transfer law of the variable section DX pile
have not been studied deeply, and the values of the parameters of engineering design are not clear,
which are the problems to be solved for the variable section DX pile. To solve the above problems,
the present study on the bearing characteristics of stepped variable-section DX piles under vertical
loading is of great scientific significance and engineering practical value. In this study, the bearing
capacity of a DX pile with two variable steps was first analyzed experimentally. Then, the bearing
capacity of variable cross-section DX piles and equal cross-section piles were simulated under the
same soil conditions. Later, the numerical simulation results were compared with the experimental
results to verify the validity and accuracy of the numerical models established in ABAQUS software.
Finally, the bearing capacity of stepped variable-section DX piles in different soil layers was analyzed
numerically to compare the effect of different soils on the compressive bearing capacity of piles. The
results indicated that the load-bearing plates had a greater influence on the bearing capacity of the
stepped variable-section DX piles. At the optimum variable section ratio, which was close to 0.9, DX
piles had a good bearing capacity. The relative errors of the numerical simulation ultimate loads were
below 10%, which verified the accuracy of the developed numerical model. The simulated ultimate
load of the equal-section pile was the smallest. The vertical compressive bearing capacity and the
effect of controlling settlement under the same level of load of the variable section DX pile in sandy
soil were both better than those in silt soil. There was little difference between the bearing capacities
of the piles with a load-bearing plate. The bearing capacity of the pile with two load-bearing plates
was the best, which can be used in practical engineering.

Keywords: DX piles; stepped variable-section; load–settlement; soils; bearing capacity

1. Introduction

In structural engineering, pile foundation as a traditional form of foundation has been
used until now, and plays an increasingly important role. It is mainly used in the case
of poor geological conditions or high building requirements, with small settlement and
high bearing capacity [1–5]. Among them, grouted piles are widely used because of their
advantages, such as the high bearing capacity of a single pile, easy control of construction
depth, low cost, and low noise [6–10]. The reinforced concrete equal cross-section grouted
piles, which are more frequently used in China [11–15], mainly rely on the end bearing force
at the bottom of the pile and the friction force at the side of the pile to carry the load. The
way to improve the bearing capacity of piles is to increase the pile end area and increase the

Buildings 2024, 14, 3078. https://doi.org/10.3390/buildings14103078 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings14103078
https://doi.org/10.3390/buildings14103078
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings14103078
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings14103078?type=check_update&version=1


Buildings 2024, 14, 3078 2 of 18

pile side friction resistance. The usual practice is to increase the pile diameter and increase
the pile side area, but this practice is usually more difficult to construct and increases the
project cost.

Figure 1a shows a stepped variable-section pile. Variable cross-section piles have an
obvious squeezing effect on the soil layer during settlement, increasing the pile’s lateral
friction resistance [16,17]. When the pile is under pressure, the step form can play a certain
bearing role in each soil layer, and then, combined with the pile end grouting process, it can
improve the bearing performance of the pile. Variable cross-section form fully applies the
axial force of the pile body gradually decreases from top to bottom under vertical load, and
the distribution law of bending moment shear force under transverse load is also big at the
top and small at the bottom, so as to save the material used for the pile body and reduce the
cost of the project. Figure 1b shows a DX pile. DX piles can greatly increase the single-pile
bearing capacity because the load-bearing plate improves the contact area between the pile
body and the soil, which enhances the bearing performance, and the rotary excavation and
squeezing and expanding equipment has the effect of squeezing and compacting the soil
around the pile.
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Figure 1. Schematic diagram of piles. Figure 1. Schematic diagram of piles.

On the basis of ensuring the safety and stability of pile foundations, it is a new
challenge for the engineering community to meet the strict requirements of high quality,
fast schedule and low cost on the project through theoretical and technological innovation.
With this aim, many new forms of piling have been developed [18,19]. A stepped variable
section DX pile [20] (named DX Pile after the inventor, Mr. Dexin He) is a new type of
variable-section pile based on the combination of the advantages of both stepped variable
section piles and DX piles, as shown in Figure 1c. It combines the advantages of both
stepped variable-section piles and DX piles. It can fully mobilize the potential of pile–soil
interaction and greatly improve the pile bearing capacity while reducing the cost. However,
the design of stepped variable cross-section DX piles still adopts the recommended formula
of the specification [21]. To meet the specification requirements, it is necessary to use the
method of increasing the diameter of the pile body; this is not conducive to the construction
progress and cost control. Therefore, how to ensure the stepped variable cross-section
DX piles can ensure safety under vertical and horizontal loads as well as control the
construction cost is a worthy research topic.

The stepped variable cross-section DX pile is subjected to pressure when it is affected
by many factors, such as the pile type, material, and the influence of soil quality [22]. The
bearing mechanism of the stepped variable cross-section DX pile is very complex under
loading [23]. The study of pile–soil interaction on complex pile types is quite complicated. It
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is very difficult to obtain accurate calculation results by the theoretical method of derivation
of equations. The finite element numerical simulation calculation method has been widely
used in the study of pile bearing mechanism, group pile effect, and pile–soil action. Finite
element simulation can consider the aspects of nonlinearity, non-uniformity, and pile–soil
contact properties of the soil so it can better reflect the actual situation. Ogura H. [24–26]
studied a pile type similar to bamboo piles and carried out experiments in sandy soil
to analyze the relationship between load and settlement. The results indicated that its
bearing capacity was much higher than that of a straight-bore pile of the same diameter.
Zhang et al. [27] proposed a numerical simulation method to consider the damaged area
and parameters surrounding the pile based on field tests, indoor simulations, and damage
theory. Based on the field test, Dong et al. [28] used ABAQUS finite element software to
numerically simulate the experimental process of vertical load capacity test of a single pile
of equal-section pile and variable-section pile. The results indicated that the average lateral
friction resistance of variable section piles was larger than that of equal section piles, and
the effect of lateral friction resistance of variable section piles is more advantageous than
that of equal section piles.

As verified by several engineering examples, the step-type variable cross-section DX
pile technology has the features of unique construction technology, advanced machinery,
and simple construction process; reliable quality of bearing plate cavity and high bearing
performance of single pile; and reduction of pile body materials to reduce the project
cost [29]. However, the design of the step-type variable cross-section DX pile still adopts
the recommended formula of the specification. To meet the specification requirements, the
method of increasing the diameter of the pile body is adopted, which not only increases
the difficulty of construction but also improves the project cost. Therefore, how to ensure
the safety of stepped variable section DX piles under vertical or horizontal loads while
controlling the construction cost is a topic worth studying. Therefore, based on the above
purpose, the present study on the bearing characteristics of stepped variable-section DX
piles under vertical compression has important scientific significance and practical value
in engineering.

As a new type of pile, the bearing characteristics of stepped variable-section DX piles
are quite complicated; thus, the design concept and pile-forming process are still in the
exploration stage, and their application in actual engineering is not particularly mature.
The settlement law and load transfer law of the variable section DX pile have not been
studied deeply, and the values of the parameters of engineering design are not clear, which
are the problems to be solved for the variable section DX pile. In this study, the bearing
capacity of a DX pile with two variable steps was first analyzed experimentally. Then,
combined with the experimental results in reference [30], numerical simulation analysis
were carried out to analyze the bearing process of variable cross-section DX piles and
equal cross-section piles under the same soil conditions by using ABAQUS finite element
software. Later, the numerical simulation results were compared with the experimental
results to verify the validity and accuracy of the numerical models. Finally, the bearing
capacity of stepped variable-section DX piles in different soils was analyzed numerically
to compare the effect of different soils on the compressive bearing capacity of piles. This
study can promote the application and dissemination of stepped variable-section DX piles
in practical engineering.

2. Design of Specimens and Experimental Program
2.1. Physical and Mechanical Properties of the Soil Samples

The soil used for the test was powdered soil from a site in Suqian as the model material
for the foundation soil. After each layer of soil was compacted, soil samples (see Figure 2)
were taken out around the model piles using the ring knife method to conduct geotechnical
tests. Then, the physical and mechanical property indicators of the soil samples were
obtained in Table 1.
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Figure 2. Geotechnical test.

Table 1. Physical and mechanical properties of the soil samples.

Density
Specific

Gravity of
Soil Particles

Moisture
Content

Cohesive
Force

Angle of
Internal
Friction

Modulus of
Compression

Poisson’s
Ratio

1.59 g/cm3 2.72 g/cm3 16.23% 15.12 kPa 25.4◦ 10.06 MPa 0.4

2.2. Design of Test Piles

The model design first observed the condition of geometrical similarity according
to the actual engineering needs and then integrated the difficulty and cost of the test
production, the actual conditions of the production equipment, the accuracy requirements
of the test measurements, and other aspects of the considerations, which can ensure the
accuracy of the test piles. Piles S1–S5 were from reference [30], and one pile, S6, was the
experimental model in this study, which was made in the same batch as piles S1–S5. The
diameter of the piles body was 50 mm, and the length of the piles was 1100 mm. The
diameter of the load-bearing plate was 100 mm. The variable ratio b is the ratio of the lower
pile diameter to the upper pile diameter. The location of the variable section was 500 mm
from the top of the pile. The variable section pile adopted a stepped pile type. The number
of load-bearing plates was 2 for pile S6, 1 for piles S2–S5, and 0 for pile S1. The position of
the load-bearing plate of the pile S6 was 180 mm and 360 mm from the bottom of the pile.
The parameters of the test piles are shown in Table 2. The material parameters of each pile
body are shown in Table 3. Figure 3 shows the design drawing of piles S1–S6.

Table 2. Design parameters of test piles (Unit: mm).

No. L D1 D2 b l1 l2 D3

S1 1100 50 50 1 — — —
S2 1100 50 50 1 — 180 100
S3 1100 50 45 0.9 500 180 100
S4 1100 50 40 0.8 500 180 100
S5 1100 50 35 0.7 500 180 100
S6 1100 50 40 0.8 500 360/180 100

Note: L was the length of the pile; l1 was the distance from the variable section to the pile top; l2 was the distance
from the load-bearing plate to the pile bottom; D1 was the diameter of the pile top; D2 was the diameter of the
pile bottom; D3 was the diameter of the load-bearing plate.

Table 3. Material parameters of pile body.

Pile Material Density Elastic Modulus Poisson’s Ratio

Pine wood 0.58 g/cm3 5.4 GPa 0.3
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2.3. Test Setup and Loading

The soil was first filled to a predetermined pile end height location. Then, the model
pile was placed and secured at the designated location, and then the soil fill was continued
to a predetermined pile top height. The model pile and soil pressure box were buried, as
shown in Figure 4.
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To better simulate the actual environment for the test, the model box and the loading
device were specially designed for this model test. The bottom edge of the model box
measured 1.8 m × 1.8 m, and the height was 2 m. The bottom plate of the model box was
cross-welded with channels, and the four directions of the middle plate of the model box
each extended out to connect the channels of the loading device. The peripheral skeleton
of the model box was made of equilateral angle steel welded together, and the wall of the
box was made of steel plate with a thickness of 5 mm, which was designed as a flat type
for filling and unloading the soil. The loading device was designed and produced by the
lever principle. The column was connected to the chassis, and then the lever was connected
to the column with an articulated connection. The other end of the lever hung an iron
frame for placing the loading weights. To prevent the lever from tilting sideways during
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the loading process so that the centralized force was eccentric, a limit on both sides of the
lever was designed. The centralized force was applied by means of a removable screw
mounted underneath with a spherical head. Under the condition of meeting the distance
requirement, up to five model piles can be placed in two directions in the plane. When
the test of one pile was finished, the mounting screw could be removed to carry out the
loading test on another model pile. The model loading device diagram is shown in Figure 5.
The vertical load model test loading mode adopted the slow sustaining load method in
reference [5]. The vertical load was applied step by step incrementally during the test, and
then the next level of load was added after each level of load reached relative stability until
the model pile reached the ultimate load.
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An electronic displacement meter with an accuracy of 0.01 mm was used to measure
the settlement of the pile tops. Magnetic bearings held the displacement gauge to the
channel steel, and the measurement point of the displacement gauge was set at the steel
plate at the top of the pile. During the test loading, the corresponding displacement
readings were recorded after each stage of load stabilization. Resistance strain gauges were
pasted on each model pile to test the strain values. Ten pairs of strain gauges were arranged
symmetrically on both sides of each pile body, totaling 20 gauges, and finally, the average
value of the two sets of data was taken as the final value. The indicators of the strain gauges
are shown in Table 4. The earth pressure measurement points were in the soil layer under
the bearing plate, variable section, and pile end. When the soil was laid in layers, it was
necessary to bury the earth pressure box at the measurement points, such as the bottom
of the pile, the bottom of the bearing plate, and the variable section of each model pile, as
shown in Figure 6. The main technical specifications of the earth pressure box used are
shown in Table 5. A schematic diagram of the distribution of strain gauges in the pile, and
the location of the earth pressure box is given in Figure 6.

Table 4. Indicators of strain gauges.

Model
Number Dimension Resistance Sensitivity

Factor
Accuracy

Class Spring Tab

BK120-50AA 50 mm × 3 mm 119.5 ± 0.1 Ω 2.05 ± 1% A Half bridge

Table 5. Indicators of earth pressure boxes.

Scales Bridge Pressure Dimension Sensitivity Factor

2 MPa 2 V Φ20 mm × 10 mm 0.55
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2.4. Experimental Results
2.4.1. Load–Settlement Curves

Load–settlement curves of piles S1–S6 are shown in Figure 7. Compared with the
equal-section pile, the DX piles were obviously stronger in terms of settlement control. The
presence of the load-bearing plate made the contact area between the pile and the soil body
increase, and the lateral friction resistance of the pile body was greatly increased, thus
increasing the bearing capacity of the pile. In the early stage of loading, when the load
on the top of the pile was small, the settlement of stepped variable-section DX piles was
similar to that of the equal section pile, and the advantages of stepped variable-section DX
piles were gradually revealed with the increase of the load.
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Figure 7. Load–settlement curves of piles.

2.4.2. Ultimate Load Capacity and Material Load Capacity per Unit Volume

To analyze and compare the efficiency of material use per unit volume of each pile,
Q/V was introduced. In addition, the ratio of vertical bearing capacity Qsi of stepped
variable-section DX piles to standard piles Qs1 and the ratio of volume Vsi of stepped
variable-section DX piles to standard piles Vs1 (i is the number of each pile) were introduced
to compare the changes in bearing capacity and material volume between DX piles, as
shown in Table 6.
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Table 6. Ultimate load capacity and material load capacity per unit volume.

Index S1 S2 S3 S4 S5 S6

Q (N) 4200 5850 6000 5700 4800 7200
V (cm3) 1766 1864 1655 1470 1307 1568

Q/V (N/cm3) 2.4 3.1 3.6 3.9 3.7 4.5
Qsi/Qs1 1.00 1.38 1.42 1.35 1.14 1.71
Vsi/Vs1 1.00 1.06 0.94 0.83 0.74 0.88

From Table 6, the ultimate load of DX piles was higher than that of the equal section
pile S1. The total volume of S2 piles with a DX load-bearing plate was increased by 6%,
but its bearing capacity was increased by 38%. The bearing capacity of pile S3 was the
most prominent among the DX piles with a DX load-bearing plate, and the ultimate load of
the pile decreased gradually as the pile diameter ratio became smaller, among which the
ultimate load of pile S5 decreased more obviously. It indicated that the factor of variable
cross-section pile diameter ratio had a large influence on the bearing capacity of the DX
pile. There was an optimal variable cross-section ratio, whose value was near 0.9, the DX
piles exert a large bearing capacity. Pile S6 was a DX pile with two DX load-bearing plates.
Its bearing capacity was higher than that of pile S3 with a DX load-bearing plate, indicating
that the load-bearing plates played a greater role in improving the ultimate load of the pile.

The Q/V had an obvious correlation with the variable cross-section pile diameter ratio.
As the variable cross-section ratio decreased, the ultimate capacity per unit volume first
increased and then decreased. From the index of ultimate load per unit volume of material,
the variable section pile diameter ratio cannot be too large to maximize the efficiency of
material use. There was an optimal variable section ratio b, whose value was higher when
b was near 0.8. The value of Q/V Pile S6 with two load-bearing plates was greater than the
other DX piles with a load-bearing plate, and that of the equal-section straight pile S1 was
the smallest, indicating that the load-bearing plates had a greater influence on the ultimate
capacity per unit volume of the stepped variable-section DX piles.

2.4.3. Distribution Curves of Lateral Friction Resistance

Figure 8 shows the distribution of lateral friction resistance of pile S6. Compared with
pile S4 in reference [30], variable section S6 pile had two load-bearing plates, and its lateral
friction resistance was fully exerted. The sudden change of lateral friction resistance at the
bearing discs can illustrate the great role of the bearing plate in the bearing of the pile body.
With the gradual increase of loading, the relative displacement between the pile and the
soil was also increased, the lateral friction resistance became larger, and the bearing plate
was more fully utilized. When the pile settlement reached a certain level, there was a gap
between the pile and the soil, and the soil was loosened, resulting in less lateral friction
resistance at the top of the load-bearing plate.
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2.4.4. Earth Pressure

Figure 9 shows the variation curves of soil pressure at the pile end under vertical
loading. Under the same vertical load, the soil pressure at the pile end of equal-section
pile S1 was larger than that of DX piles S2–S6. The friction resistance of the pile body and
load-bearing plate resistance of the DX pile bear a large portion of the pile body, which
played a great role. The soil pressure at the pile end was very small, which can effectively
control the settlement at the pile end. Among the various DX piles, the S6 pile had two load-
bearing plates. Its soil pressure at the end of the pile was the smallest, and the advantage
of settlement control was obvious. The soil pressures at the end of piles S2, S3, and S4 were
small, indicating that a reasonable variable section was favorable to the bearing capacity
of the piles. Pile S5, with a smaller b value, had larger soil pressure at the pile end and an
obvious loss of bearing capacity.
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3. Finite Element Modeling of Pile Bodies
3.1. Basic Assumptions

(1) The pile body was rigid so that the pile body was not compressed by vertical pressure.
The pile body was assumed to be modeled by linear elastic.

(2) The soil was assumed to be an isotropic elastic–plastic body, and the Mohr–Coulomb
yield criterion was used.

(3) The friction coefficients between the units did not change during the modeling process.
(4) The effect of disturbance of the soil layer by factors such as the construction process

was not considered.

3.2. The Constitutive Model of the Soil Body

The primary issue in the analysis of pile–soil problems was the selection of a constitu-
tive model for the soil properties. The soil was assumed to be an isotropic elastic–plastic
body, and the Mohr–Coulomb yield criterion was used.

The three widely used classical elastoplastic models are the Mohr–Coulomb model,
the Druker–Prager model, and the Cambridge model. The Mohr–Coulomb model was used
to simulate the pile–soil interaction. It can describe the material properties of geotechnical
materials, such as the isotropic strain hardening and softening properties, and has been
widely used in the simulation of geotechnical engineering. In the simple stress state, the
Mohr–Coulomb yield criterion is

f (σ1, σ2, σ3) =
1
2
(σ1 − σ3) +

1
2
(σ1 + σ3) sin ψ − c cos ψ = 0 (1)
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where σ1, σ2, σ3 refer to the first principal stress, the second principal stress, and the
third principal stress; c and Ψ must refer to the cohesion and the angle of internal friction,
respectively.

As shown in Figure 10, the friction angle φ also indicates the shape of the yield surface
of the material on the π-plane, and when φ = 0◦, the Mohr–Coulomb model is transformed
into the Tresca model, which is independent of the peripheral pressure, and at this time,
the yield surface on the π-plane exhibits an ortho-hexagonal shape. At φ = 90◦, the Mohr–
Coulomb model is transformed into the Rankine model when the yield surface of the
π-plane presents a positive triangle and Rmc → ∞. If 0◦ ≤ φ ≤ 90◦, then the yield surface
presents a hexagonal shape with equal sides but not equal angles, which is called the
Mohr–Coulomb hexagon.
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3.3. The Constitutive Mode of the Pile Body

The pile body was rigid so that the pile body was not compressed by vertical pressure.
The pile body was assumed to be modeled by linear elastic. The constitutive relation is

σij =

[
2Gµ

1 − 2µ
δijδkl + G

(
δikδjl + δilδjk

)]
εkl = Dijklεkl (2)

where E is the elastic modulus of the material, µ is the Poisson’s ratio of the material,
G = E/2(1+µ), Dijkl is the component of the elasticity tensor, and the matrix form of
Dijkl is

D =
E

(1 + µ)(1 − 2µ)



1 − µ µ µ 0 0 0
1 − µ µ 0 0 0

1 − µ 0 0 0
1
2 − µ 0 0

1
2 − µ 0

0

 (3)

3.4. Finite Element Modeling

According to the actual dimensions of the pile and the soil body of the model test, the
soil body around the pile was a rectangular body of 1.8 m × 1.8 m × 2 m, the outer diameter
of the pile body was 0.05 m, the length of the pile was 1.1 m, and the depth of the pile below
the soil layer was 0.9 m. The model with 1/4 symmetry was established. The pile body
was modeled as shown in Figure 11a. The model space was selected as three-dimensional
(3D), and its type was deformable. The shape in the basic features was selected as solid
and its type was rotated. The model space of the soil body was also selected as 3D, and
its type was deformable. The shape in the basic features was selected as solid and its type
was stretched. The soil body of the rectangular body was modeled, and then the geometric
elements were split to divide the soil part where the pile was located, and the soil body
was established, as shown in Figure 11b. A linear elastic model was used for the pile, and
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an isotropic elastoplastic body was selected for the soil. The material modeling parameters
of the pile and soil are shown in Tables 1 and 3.
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Figure 11. Establishment of the pile–soil model.

After defining the material properties of the parts, they were assembled in the assembly
module, where the parts were assembled into a whole by means of different positioning
relationships. The contact module was utilized to define the contact units. Face-to-face
contact was selected to create contact surfaces for each component, and then a master–slave
algorithm was used to create contact pairs. A softer soil material was selected for the
follower surface. The soil surface and the pile surface were set up as bound lifts that
would not be displaced relative to each other. ABAQUS software has three main meshing
techniques: free meshing, structured meshing, and swept meshing. Both the pile model and
the soil model were meshed by the swept mesh technique using linear C3D8R units. The
meshing was completed, as shown in Figure 12. Applying loads and boundary constraints
was performed in the loading module. The boundary conditions for the numerical model
were vertical displacement and bottom radial selection constraints for the soil model, and
radial displacement selection constraints for the side parts of the soil model. To study the
stress–strain relationship of the model, the magnitude curve should be added after selecting
the load type. The type of the curve was a tabular magnitude curve, which determined the
increase of the load at each time point, and the size and sequence of loading were based on
the experimental pile.
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3.5. Validation of Numerical Results

Numerical simulation analysis was conducted on the equal-section pile S1, the DX pile
S2, and stepped variable-section DX piles S4 and S6. Figure 13 shows the comparison of
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experimental and numerical simulation load–settlement curves. The experimental values
and simulation values of the ultimate load existed within a certain allowable error; this
was because the numerical simulation of the parameter value was generally idealized,
while in the actual experiment, there were many uncontrollable factors, such as uneven soil
layer densities, etc., which caused errors, but the experimental and numerical simulation
load–settlement curves overlapped. The experimental and numerical simulation ultimate
loads were compared in Table 7. From Table 7, it can be seen clearly that the relative errors
of the numerical simulation results were below 10%, which validated the accuracy of the
finite element model.
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Figure 13. Comparison of experimental and numerical simulation load–settlement curves.

Table 7. Comparison of experimental and numerical simulation ultimate loads.

No. Experiment Ee/N Simulation S/N Relative Error Er = (S − Ee)/Ee

S1 4200 4100 –2.4%
S2 5850 6300 7.7%
S4 5700 6200 8.8%
S6 7200 7500 4.2%

3.6. Finite Element Results
3.6.1. Stress Analysis of the Pile Body

When the vertical load at the pile top was 4.2 kN, the stress cloud of each pile body was
simulated, as shown in Figure 14. Under vertical pressure, the stress of the equal-section
pile S1 gradually decreased from top to bottom, the stress of DX pile S2 also decreased from
top to bottom, and the decrease at the bearing plate was obviously accelerated, indicating
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that a large portion of the load was transmitted to the soil around the pile through the
bearing plate. Variable-section piles S4 and S6 had reduced cross-sectional area at the
variable section and higher stresses, and the stress decreasing above and below their load-
bearing plates was obvious. Compared with the equal-section pile S1, the axial force in
the area below the bearing plate of the variable cross-section DX pile was extremely small,
indicating that most of the load had been transferred to the soil around the piles, and
the soil pressure at the bottom of the piles was small, which can effectively control the
settlement of the piles, and reflected the advantages of variable cross-section DX piles
in bearing.
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3.6.2. Soil Pressure around Piles

When the vertical load at the pile top was 4.2 kN, the stress cloud of soil around piles
was simulated, as shown in Figure 15. The soil around the pile took more load transfer
and played a great role in bearing. The soil stress at the load-bearing plate and variable
section of the variable section DX pile was larger, while the soil stress on the pile side of the
equal section pile was very small, indicating that in the process of pile bearing, due to the
existence of the variable section and the load-bearing plate, it made a large part of the load
to be transferred to the soil around the pile through the end-bearing action, which reduced
the axial force of the pile end, and thus played a great role in the pile bearing. The soil
pressure at the pile end of the equal-section straight piles was the largest, indicating that the
equal-section straight pile was easy to settle and subside, while the soil pressure at the pile
end of the DX piles was significantly increased, indicating that the stepped variable-section
DX piles were advantageous for the control of pile settlement, and with the increase in the
number of load-bearing plates, the bearing capacity of the stepped variable-section DX pile
became better.
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3.6.3. Compressive Bearing Capacity of a Pile in Different Soil Layers

Various parameters of the soil were varied to simulate and analyze the pile-bearing
process in different soil layers. The parameters of silt soil and sandy soil are shown in
Table 8. The load–settlement curves of piles in pulverized soil and sandy soil are shown
in Figure 16. The settlement of pile S4 was the largest in the preloading period, and that
of pile S2 was accelerated in the later period. There was not much difference between the
two ultimate loads. The bearing capacity of stepped variable-section DX piles in sandy soil
was stronger than that in silt soil. The settlements of the three-stepped variable-section DX
piles in sandy soil were smaller than those in silt soil, indicating that the piles were more
effective in resisting compressive bearing in sandy soil than in pulverized soil.

Table 8. Parametric soil test parameters for silt and sandy soils.

Name Density
/(g/cm3)

Specific Gravity of
Particles /(g/cm3)

Water
Content

c
/kPa

Ψ

/◦
E

/MPa µ

Silt soil 1.59 2.72 16.23% 15.12 25.4 10.06 0.4
Sandy soil 1.79 2.65 1.65% 4.27 16.2◦ 34.3 0.4
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4. Conclusions

The bearing capacity of a DX pile with two variable steps was first analyzed experimen-
tally. Then, the bearing capacity of variable cross-section DX piles and equal cross-section
piles were simulated under the same soil conditions. Later, the numerical simulation
results were compared with the experimental results to verify the validity and accuracy
of the numerical models. Finally, the bearing capacity of stepped variable-section DX
piles in different soils was analyzed numerically to compare the effect of different soils
on the compressive bearing capacity of piles. This study can promote the application and
dissemination of stepped variable-section DX piles in practical engineering.
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The main conclusions were as follows.

1. Piles S1–S5 were from reference [30], and one pile, S6, was the experimental model
in this study, which was made in the same batch with piles S1–S5. The diameter of
the piles body was 50 mm, and the length of the piles was 1100 mm. The diameter of
the load-bearing plate was 100 mm. The variable ratio b was the ratio of the lower
pile diameter to the upper pile diameter, which took the values of 0.7, 0.8, 0.9, and 1.
The location of the variable section was 500 mm from the top of the pile. The variable
section pile adopted a stepped pile type. The number of load-bearing plates was 2 for
pile S6, 1 for piles S2–S5, and 0 for pile S1;

2. The load-bearing plates had a greater influence on the bearing capacity of the stepped
variable-section DX piles. At the optimum variable section ratio, which is close to 0.9,
DX piles had a high bearing capacity. The bearing capacity of stepped variable-section
DX piles with two variable steps was improved and its bearing capacity was best.
The sudden change of lateral friction resistance at the bearing discs can illustrate the
great role of the bearing plate in the bearing of the pile body. The soil pressure at the
end of the pile with two variable steps was the smallest, and its settlement control
was obvious;

3. The experimental values and simulation values of the ultimate load existed within a
certain allowable error; this was because the numerical simulation of the parameter
value was generally idealized, while in the actual experiment, there were many
uncontrollable factors such as uneven soil layer densities, etc., which caused errors,
but the experimental and numerical simulation load–settlement curves overlapped.
The relative errors of the numerical simulation ultimate loads were below 10%, which
verified the accuracy of the developed numerical model;

4. The simulated ultimate load of the equal-section pile was the smallest. The effect
of settlement control of equal-section piles was poor. Due to the existence of the
load-bearing plate, the ultimate load of the piles with a bearing plate was greatly
improved. The piles with two load-bearing plates had the highest bearing capacity;

5. The vertical compressive bearing capacity and the effect of controlling settlement
under the same level of load of the variable section DX pile in sandy soil were both
better than those in silt soil. There was little difference between the bearing capacities
of the piles with a load-bearing plate. The bearing capacity of the pile with two
load-bearing plates was the best.
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