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Abstract: The article explores passive systems for regulating microclimates in residential settings,
with a focus on modular constructions. It investigates the use of the trombe wall system for passive
ventilation to ensure comfort and hygiene. The study examines building designs that enable effective
air circulation without using mechanical systems. Furthermore, the effectiveness of the passive
system of using solar energy with the trombe wall as a ventilation device in modular houses has
been experimentally confirmed. Although the research confirms the effectiveness of this solar
system in modular homes, there is limited documentation regarding its overall efficiency, particularly
concerning the impact of the surface pressure coefficient on ventilation. The study establishes the
correlations governing the thermosiphon collector’s effectiveness at varying air layer thicknesses.
Optimal parameters, such as maximum air consumption (L = 120 m3h−1), are identified at an air
layer thickness (δ) of 100 mm and outlet openings area (F) of 0.056 m2. These findings pave the way
for improving passive systems aimed at maintaining optimal thermal and air conditions in modern
homes. The findings suggest the potential for more efficient and sustainable housing solutions.
Further research is essential to understand how factors like building design and wind speed affect
ventilation system efficacy.

Keywords: passive ventilation; trombe wall; solar screen; modular houses; ventilation mode

1. Introduction

The environmental crisis and energy instability necessitate a comprehensive reassess-
ment of current methodologies related to both the construction of new buildings and the
operation of existing structures. Emerging trends in construction emphasize energy effi-
ciency and environmental sustainability, propelling the rapid advancement of technologies
aimed at enhancing the comfort and energy performance of living spaces.

One of the key technologies in residential buildings is natural ventilation, which is
not recognized as entirely controlled but is recognized as an energy-efficient and environ-
mentally friendly method of ensuring air exchange in rooms with the possibility of using
renewable energy sources [1,2].
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Several compelling factors underscore the need for in-depth exploration and the inte-
gration of natural ventilation technologies in residential buildings. The continual escalation
of energy prices and the necessity to reduce environmental impact demand the identifi-
cation of more effective and sustainable solutions while upholding indoor microclimate
parameters. Natural ventilation, relying on convective air movement processes, emerges
as a balanced and cost-effective response to this challenge, offering a means to establish a
healthy and comfortable environment for building occupants.

Two primary categories of natural ventilation, both gravity-based (hinging on temper-
ature differentials as shown in Figure 1) and wind-induced, play pivotal roles. To ensure
effective natural ventilation, specialized devices such as window facades, wall grilles, and
roof ventilators are employed. Each type presents distinct advantages and drawbacks,
necessitating careful consideration during the design and construction phases.
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Figure 1. Principle of gravity ventilation. (Cold outdoor air enters the house through leaks or
ventilation grills, while warm indoor air is removed through vertical ventilation ducts). Illustration
by the authors. 1—inflow of external air; 2—exhaust air from the room; 3—transit exhaust air;
4—transit incoming air; 5—exhaust air.

A significant advantage of natural ventilation systems lies in their positive impact
on the energy efficiency of buildings. In contrast to conventional mechanical systems,
natural ventilation can significantly reduce electricity expenses and promote sustainable
resource consumption.

Therefore, the imperative investigation of innovative technologies related to natural
ventilation becomes a key focus for the scientific community. Particular emphasis is directed
toward the exploration of passive ventilation systems utilizing renewable energy sources,
notable for their potential integration with other engineering systems [3–8]. An example
of a such system can be a passive ventilation system with a soil heat exchanger and heat
recuperators (Figure 2). Such systems are effective and can be utilized year-round; however,
there is a risk of condensation occurring within the ground heat exchanger, which may
promote mold growth and bacterial proliferation. Therefore, manufacturers implement
innovative materials to protect the internal linings of the piping in the ground collector.

An innovative technical solution involves the utilization of the trombe wall system as
a combined piece of heating and ventilation equipment. The utilization of solar energy to
facilitate a natural convective airflow represents an effective passive ventilation method
for the premises [9–14], offering the potential for reducing electricity consumption even
in instances where mechanical fans are employed [15,16]. The study of a photovoltaic
(PV) Trombe wall is also of significant interest [17]. Furthermore, the incorporation of
contemporary heat exchange mechanisms within trombe walls, employing phase transi-
tion materials, presents novel avenues for energy conservation in cooling spaces during
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warmer seasons [18–21]. Phase change materials exhibit unique properties, undergoing
phase transitions in response to temperature fluctuations, thereby absorbing or releasing
significant amounts of heat during the thermal exchange process. This characteristic makes
them suitable for integration into systems that operate effectively both during the day and
at night [19,22,23]. Certain scientific studies focus on enhancing the efficiency of passive
ventilation systems through the integration of trombe wall technology [24–26], facilitating
its application in social and temporary housing [27].
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Figure 2. Passive ventilation system with soil heat exchanger and heat recuperators. Illustration by
the authors. 1—outside air intake; 2—incoming air into the room; 3—exhaust air from the room;
4—recuperator; 5—exhaust air; 6—soil collector.

During the colder months, trombe walls serve as an effective means of supplying heat
to indoor spaces by utilizing the heated ventilation air that passes through the structure,
thereby facilitating passive heating within the building (Figure 3). Numerous studies
are dedicated to improving the efficiency of such systems by incorporating specialized
devices into the air ducts to enhance heat exchange between the heated wall surface and
the airflow [28–31]. This strategy proves particularly effective in conjunction with electric
heating systems, resulting in substantial reductions in electrical energy consumption [32].

Buildings 2024, 14, x FOR PEER REVIEW 4 of 19 
 

 

Figure 3. Application of the trombe wall in passive ventilation systems. Illustration by the authors. 

1—incoming external air; 2—exhaust air from the room; 3—exhaust air from the channel; 4—accu-

mulative wall. 

In the contemporary landscape, marked by advanced technological development in 

passive ventilation systems, conducting scientific research on their energy efficiency and 

indoor comfort is increasingly challenging. Consequently, computer modeling has 

emerged as a key tool, enabling virtual investigations, optimizing ventilation system de-

signs, and improving operational performance. Computer and mathematical modeling 

allow for the prediction of system efficiency, supporting the development of environmen-

tally sustainable and energy-efficient architectural solutions [11,12,33–37]. Experimental 

studies are commonly employed to validate theoretical concepts, providing insight into 

the actual efficiency of passive ventilation systems. Models facilitate extensive variational 

analyses and optimizations without the necessity for the physical implementation of each 

design [38–40]. 

To test theoretical concepts, experimental studies are widely used, which allows the 

determination of the real efficiency of passive ventilation systems [16,41,42]. 

The implementation of a comprehensive parametric experiment serves to validate the 

effectiveness of the chosen technical approach, contributing to the achievement of the de-

sired outcomes in the operation of ventilation systems [43–46]. This methodology has 

proven particularly advantageous for assessing the impact of wind on passive ventilation 

systems and determining the optimal placement of intake and exhaust openings in venti-

lation structures [36,47]. Moreover, it is essential to consider the impact of indoor air cur-

rents on the efficiency of these systems [48,49]. Experimental research often employs sys-

tematic experimental design, enabling multiple variation analyses and optimization with-

out the need for the physical implementation of each project. 

Such research methodologies facilitate the acquisition of more accurate and reliable 

data, contributing to the development of effective passive ventilation systems. Hence, the 

authors of this article employed diverse approaches to assess the effectiveness of the 

trombe wall as a passive ventilation device in an energy-efficient modular residential 

building. 

The study aims to evaluate the effectiveness of utilizing the trombe wall system as a 

ventilation mechanism within a modular residential building. Through analytical and ex-

perimental research, the investigators aim to determine the operational characteristics of 

the trombe wall when integrated into the building’s external envelope. Furthermore, it 

seeks to assess the trombe wall’s potential as a passive ventilation device, aiming to facil-

itate air exchange within the interior space and reduce reliance on primary climate control 

equipment. The research objectives include a comprehensive analysis of airflow structures 

concerning inlet and outlet dimensions and the thickness of the air channel, as well as a 

Figure 3. Application of the trombe wall in passive ventilation systems. Illustration by the au-
thors. 1—incoming external air; 2—exhaust air from the room; 3—exhaust air from the channel;
4—accumulative wall.



Buildings 2024, 14, 3154 4 of 17

In the contemporary landscape, marked by advanced technological development in
passive ventilation systems, conducting scientific research on their energy efficiency and
indoor comfort is increasingly challenging. Consequently, computer modeling has emerged
as a key tool, enabling virtual investigations, optimizing ventilation system designs, and
improving operational performance. Computer and mathematical modeling allow for the
prediction of system efficiency, supporting the development of environmentally sustain-
able and energy-efficient architectural solutions [11,12,33–37]. Experimental studies are
commonly employed to validate theoretical concepts, providing insight into the actual effi-
ciency of passive ventilation systems. Models facilitate extensive variational analyses and
optimizations without the necessity for the physical implementation of each design [38–40].

To test theoretical concepts, experimental studies are widely used, which allows the
determination of the real efficiency of passive ventilation systems [16,41,42].

The implementation of a comprehensive parametric experiment serves to validate
the effectiveness of the chosen technical approach, contributing to the achievement of the
desired outcomes in the operation of ventilation systems [43–46]. This methodology has
proven particularly advantageous for assessing the impact of wind on passive ventilation
systems and determining the optimal placement of intake and exhaust openings in ventila-
tion structures [36,47]. Moreover, it is essential to consider the impact of indoor air currents
on the efficiency of these systems [48,49]. Experimental research often employs systematic
experimental design, enabling multiple variation analyses and optimization without the
need for the physical implementation of each project.

Such research methodologies facilitate the acquisition of more accurate and reliable
data, contributing to the development of effective passive ventilation systems. Hence, the
authors of this article employed diverse approaches to assess the effectiveness of the trombe
wall as a passive ventilation device in an energy-efficient modular residential building.

The study aims to evaluate the effectiveness of utilizing the trombe wall system as
a ventilation mechanism within a modular residential building. Through analytical and
experimental research, the investigators aim to determine the operational characteristics
of the trombe wall when integrated into the building’s external envelope. Furthermore,
it seeks to assess the trombe wall’s potential as a passive ventilation device, aiming to
facilitate air exchange within the interior space and reduce reliance on primary climate
control equipment. The research objectives include a comprehensive analysis of airflow
structures concerning inlet and outlet dimensions and the thickness of the air channel, as
well as a thorough evaluation of the system’s performance in ventilation mode. Ultimately,
the study aims to establish the optimal dimensions of ventilation openings based on the
findings of these investigations.

2. Materials and Methods

Based on the authors’ preliminary analysis of the available scientific literature, it be-
comes evident that the use of alternative energy sources as potential energy carriers entails
significant costs, even for small-scale heat-generating equipment installations. Conse-
quently, this study proposes a system for the passive utilization of solar energy, specifically
through the integration of a trombe wall as a ventilation tool within the hybrid external
enclosure of modular housing. The primary objective is to facilitate the necessary air ex-
change within the module’s interior. An illustration of a room section featuring the hybrid
external enclosure is provided in Figure 4.

An experimental setup was developed to assess the effectiveness of the proposed
technical solution, constructed entirely using the same materials employed in the external
enclosure of the modular residential unit (Figure 5).

Thermophysical characteristics of the trombe wall:

1. The proposed design is entirely opaque, lacking any transparency;
2. The thermal resistance of the trombe wall construction is 9.25 m2 KW−1;
3. The absorptive capacity of the absorber plate is 0.91;
4. Heat loss through the trombe wall is 5 Wm−2.



Buildings 2024, 14, 3154 5 of 17

Buildings 2024, 14, x FOR PEER REVIEW 5 of 19 
 

thorough evaluation of the system’s performance in ventilation mode. Ultimately, the 

study aims to establish the optimal dimensions of ventilation openings based on the find-

ings of these investigations. 

2. Materials and Methods 

Based on the authors’ preliminary analysis of the available scientific literature, it be-

comes evident that the use of alternative energy sources as potential energy carriers entails 

significant costs, even for small-scale heat-generating equipment installations. Conse-

quently, this study proposes a system for the passive utilization of solar energy, specifi-

cally through the integration of a trombe wall as a ventilation tool within the hybrid ex-

ternal enclosure of modular housing. The primary objective is to facilitate the necessary 

air exchange within the module’s interior. An illustration of a room section featuring the 

hybrid external enclosure is provided in Figure 4. 

 

Figure 4. Premises of a modular house with a trombe wall integrated into a hybrid external protec-

tion. Illustration by the authors. a—module width 2140 mm, b—module length 2500 mm, h—mod-

ule height 2600 mm, 1—external protection, 2—trombe wall, 3—exhaust air from the channel, 4—

supply air, 5—open control valves; 6—closed regulating valves. 

An experimental setup was developed to assess the effectiveness of the proposed 

technical solution, constructed entirely using the same materials employed in the external 

enclosure of the modular residential unit (Figure 5). 

  

Figure 5. Photo of the experimental installation. Illustration by the authors. 1—external protection, 

2—trombe shaft, 3—closed regulating valves, 4—own control valves, 5—infrared getter. 

Thermophysical characteristics of the trombe wall: 

1. The proposed design is entirely opaque, lacking any transparency; 

Figure 4. Premises of a modular house with a trombe wall integrated into a hybrid external protection.
Illustration by the authors. a—module width 2140 mm, b—module length 2500 mm, h—module
height 2600 mm, 1—external protection, 2—trombe wall, 3—exhaust air from the channel, 4—supply
air, 5—open control valves; 6—closed regulating valves.
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During operation, infrared rays effectively heat the black metal plate positioned on
the external surface of the hybrid outer enclosure. This results in the transfer of heat from
the heated plate to the air entering the air layer through the lower ventilation opening,
initiating the phenomenon of free convection, specifically the “thermosiphon effect”. As the
air temperature increases, it rises due to a decrease in density and is subsequently expelled
outdoors through the upper exhaust ventilation opening. The velocity and volume of air
passing through the trombe wall duct are meticulously regulated using control dampers
located at the lower intake and upper exhaust openings, in conjunction with the thickness
of the duct. Figure 6 illustrates the schematic of the experimental setup operating in
ventilation mode.

Table 1 presents the measurement instruments and their specifications used for investigat-
ing the characteristics of the trombe wall system. The measured parameters included thermal
radiation intensity, air temperature, surface temperature, and air velocity. The intensity of ther-
mal radiation was measured using a pyranometer M-80M, with an absolute error of ±20 Wm−2

and a relative error ranging from 0.2% to 0.37%. Air temperature in the measurement zone
was determined by the ATT-1004 thermomanometer (LLC “ZAVOD UKRMASHPROM”, Kyiv,
Ukraine), with an absolute error of ±1.3 ◦C and a relative error between 0.18% and 1.7%. The
surface temperature was measured using the Nimbus-530/1 pyrometer, with an absolute error
of ±0.08 ◦C and a relative error from 0.14% to 0.78%. The air velocity was also measured by
the ATT-1004, with an absolute error of ±0.005 m/s and a relative error between 0.6% and
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1.25%. From the table, it is evident that the accuracy of the measurements varies depending
on the parameter, with the highest relative error observed in air velocity measurements and
the lowest in thermal radiation measurements. This variability was considered during data
analysis to ensure accurate results.
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Figure 6. Scheme of the experimental installation for operation in the ventilation mode. Illustration by
the authors. tin and tout—the air temperature in the experimental module and outside it, respectively, δ
is the width of the air channel. 1—heat-insulating layer; 2—black metal plate; 3—thermal anemometer;
4—pyrometer; 5—thermometer; 6—albedometer; 7—infrared heater; 8—regulating valves; 9—outline
of the room; 10—closed flaps; 11—open flaps; 12—exhaust air from the channel; 13—exhaust air from
the room; 14—infrared rays, 15—air channel.

For the constant value of the mean error, the allowable measurement error was consid-
ered as follows:

∆np = 3 s (1)

If the error exceeded ∆np, which was calculated ∆np = 0.17, the measurement error
was excluded from the calculations and the experiment was repeated. The cumulative error
of all measurement systems amounted to 2.1%.

The research was carried out using an experimental setup designed to simulate the
living environment of a modular house with a floor area of 5.4 m2 and a volume of 14 m3.
The experimental studies focused on evaluating the efficiency of the trombe wall as a
ventilation device for indoor spaces. The research methodology was structured as follows:

1. The appropriate thickness of the air layer in the trombe wall (15) δmin, through which
air movement occurred due to the phenomenon of natural convection, was set. The
thickness was adjusted in increments of 30 mm, starting from the minimum value of
δmin = 40 mm to the maximum value of δmax = 100 mm;

2. The ventilation openings (11) were left open to allow air to pass through. At the
beginning of the experiment, the area of the openings was set to F = 0.012 m2. Air
from the internal volume of the module entered the air gap (15) through the lower
ventilation opening and exited through the upper ventilation opening. Subsequently,
the area of the ventilation openings was adjusted, ranging from Fmin = 0.012 m2 to
Fmax = 0.08 m2;

3. The infrared heater (7) simulated solar thermal radiation, with a constant power
output of 6000 W. The experiments were conducted under steady-state conditions,
with the intensity of radiation on the external surface of the trombe wall (2) set to
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I = 400 Wm−2. The temperature of the black metal plate surface was measured using
a pyrometer (4). Under steady-state conditions, the temperature remained constant at
τ = 55 ◦C;

4. Since the research was conducted under steady-state conditions, in addition to the
constant thermal radiation from the infrared heaters, the air temperatures in the
experimental module (tin = 20 ◦C) and outside of it (tout = 16 ◦C) remained unchanged.
The average surface temperature of the irradiated dark metal surface of the trombe
wall was also stable at τ = 55 ◦C. Air temperature measurements were taken using a
thermo-anemometer (3) ATT Thermoanemometer-1004, while surface temperatures
were recorded with a pyrometer (4) Nimbus-530/1 (Table 1). The experiment was
conducted once these physical parameters reached stability.

5. The velocity of the convective air flow within the air layer (15) and through the ventilation
openings (11) was measured using a thermo-anemometer (3) ATT Thermoanemometer-1004;

6. Based on the obtained data on air velocities, the areas of the ventilation openings, and
the air channel area of the trombe wall, the ventilation air flow rates were calculated.
The measured air flow values at the velocity measurement points were consistent.
This allowed the determination of the amount of exhausted air, L. Measurements were
taken at 10-min intervals over the course of 8 h;

7. Subsequently, the thickness of the air layer (δ) was varied, and for different values of
the ventilation opening area (F), the experiment was repeated.

Table 1. Measuring systems.

The Name of the
Measured Element

Foto Absolute Error
Relative Measurement Error

Minimum, % Maximum, %

The intensity of thermal
radiation (Piranometer

M-80M)
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3. Results

An empirical investigation was undertaken to assess the performance of the trombe
wall, employing a carefully designed experimental framework that incorporated considera-
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tions of factors such as the thickness of the air layer and the dimensions of the inlet and
outlet apertures.

3.1. Experiment Planning

Planning the experiment was one of the key stages of the research, enabling a sys-
tematic approach to studying the influence of various factors on the research object. The
experimental protocol clearly defined the variables, including the air layer’s thickness,
the ventilation openings’ area, and their variations. A certain number of experimental
experiments made it possible to reduce the time and costs of conducting large volumes of
non-systematic research. Furthermore, the assessment of homogeneity of variance using
the Cochran criterion, along with the calculation of critical values, confirmed that the
experimental results were both statistically significant and reliable.

The experimental protocol involved the systematic examination of the volume of air
extracted by the collector, with specific attention given to the variables of the air layer
thickness (δ, mm) and the area of the inlet and outlet openings (F, m2). The research
encompassed variations in the air layer thickness within the range of 40 to 100 mm.

To facilitate the analysis of the measured values, a set of relevant factors is presented
in Table 2.

Table 2. Planning factors and levels.

The Name of the Factor
Code

Designation

Levels of Factors
Variation
IntervalLower

−1
Upper

+1

thickness of the air layer δ, mm x1 40 100 0.3

area of ventilation holes F, m2 x2 0.012 0.08 0.014

To assess the individual influence of each parameter, an experimental plan-matrix was
formulated in accordance with the guidelines provided by Adler, Kalosh, and Barabaschuk.
The initial values for each factor were designated as −1 for the minimum and +1 for the
maximum (refer to Table 2). The requisite number of experimental trials was determined
using the following formula:

N = pk (2)

where the number of levels of factors of the experiment is p = 2 and the number of
factors k = 2.

Therefore, the number of experiments was equal N = 22 = 4. To assess the influ-
ence of the specified factors, a full factorial experiment was executed, comprising four
distinct experiments. The plan-matrix for the two-factor experiment is presented below
(refer to Table 3).

Table 3. Plan-matrix of a complete factorial experiment 2k by k = 2.

No. of Experiments
Determining Factors Feedback Function

x1 (δ) x2 (F)

1 2 3 4

1 +1 +1 y
2 −1 +1 y
3 +1 −1 y
4 −1 −1 y
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The response function is represented by the quantity of air extracted by the collector,
denoted as L, measured in cubic meters per hour (m3h−1). For each experiment, the air
quantity was computed as the arithmetic mean of the summation of localized values:

L =
1
K ∑K

l=1 Ll , m3h−1 (3)

where K denotes the number of specific local values of the air quantity (L) and l signifies
the ordinal number assigned to each respective local air quantity value.

The outcomes of the factorial experiment for the process were encapsulated by a
mathematical model of polynomial structure.

y = b0 + b1x1 + b2x2 + b12x1x2 (4)

The planning matrix, research results, and their processing are given in the Table 4.

∑N
i=1 yi = 159.3; ∑N

i=1 S2
i = 39.16

Table 4. Planning matrix and calculation results of an experimental study.

#
Plan State Variable

yi s2
ix0 x1 x2 x1x2 y1 y2 y3

1 2 3 4 5 6 7 8 9 10

1 + + + + 49.1 42.7 43.2 45.0 12.670

2 + − + − 42.4 37.5 41.2 40.4 6.523

3 + + − − 39.3 34.0 40.3 37.9 11.463

4 + − − + 37.6 32.6 37.7 36.0 8.503

The coefficients of the regression equation were determined by Formula (5), as follows:

bj =
1
N ∑N

i=1 xjiyi, j = 0.1, . . . , k. (5)

where j—factor number; xji—coded value of the factor in the experiment; yi—the average
value of the state variable for n parallel experiments of the i-th line.

b0 = 39.80; b1 = 1.63; b2 = 2.88; b12 = 0.68.

To assess the homogeneity of variance through the Cochran criterion, the calculation
involved determining the ratio of the maximum variance to the sum of all variances, as per
the following formula:

Gp = 12.67/39.16 = 0.325.

Based on the degrees of freedom, where f1 = n − 1 = 3 − 1 = 2 and f2 = N = 4, as well as
the level of significance q = 0.05 critical ratio G(1−P) = 0.7679, which exceeded the calculated
Gp = 0.380, that is, the calculated variance is homogeneous.

According to the results of the regression analysis, the approximating polynomial took
the form

y = 39.8 + 1.63x1 + 2.88x2 + 0.68x1x2 (6)

In the equation, y is an optimization parameter that characterizes the amount of air
extracted from the trombe wall and x1 and x2 are coded values of the factors, which are
transformed into their natural values according to the formula.

A detailed examination of the regression coefficients reveals that the factor with the
most significant influence on the response function (x2, representing the area of ventilation
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holes F, m2) surpasses the impact of the factor x1 (indicating the thickness of the layer in
trombe walls, denoted as δ, mm).

3.2. The Results of the Study on Air Flow Velocity

The study conducted experimental research on the impact of the air layer thickness in
a trombe wall, which ranged from 40 mm to 100 mm, as well as the height and width of the
ventilation openings, on air flow velocity within the ventilation channel of a modular house
system. This enabled the assessment of air exchange efficiency and the determination of
optimal parameters for ensuring proper ventilation. By applying the continuity equation
and the air exchange rate formula, the air flow rates and air exchange rates in the module
were established based on the system’s parameters.

Tables 5–7 present the research results for air layer thicknesses of 40 mm, 70 mm, and
100 mm, respectively.

Table 5. The thickness of the air layer, δ = 40, mm.

Location of Flaps Flap Height, h, mm Flap Width, b, mm Air Velocity in
the Flap ν, m s−1

Upper open flap 15 800 0.5

Bottom open flap 15 800 0.5

Upper open flap 35 800 0.6

Bottom open flap 35 800 0.6

Upper open flap 50 800 0.6

Bottom open flap 50 800 0.6

Upper open flap 70 800 0.5

Bottom open flap 70 800 0.5

Upper open flap 85 800 0.4

Bottom open flap 85 800 0.4

Upper open flap 100 800 0.3

Bottom open flap 100 800 0.3

Table 6. The thickness of the air layer, δ = 70, mm.

Location of Flaps Flap Height, h, mm Flap Width, b, mm Air Velocity in
the Flap ν, m s−1

Upper open flap 15 800 0.6

Bottom open flap 15 800 0.6

Upper open flap 35 800 0.6

Bottom open flap 35 800 0.6

Upper open flap 50 800 0.6

Bottom open flap 50 800 0.6

Upper open flap 70 800 0.5

Bottom open flap 70 800 0.5

Upper open flap 85 800 0.3

Bottom open flap 85 800 0.3

Upper open flap 100 800 0.2

Bottom open flap 100 800 0.2
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Table 7. The thickness of the air layer, δ = 100, mm.

Location of Flaps Flap Height, h, mm Flap Width, b, mm Air Velocity in
the Flap ν, m s−1

Upper open flap 15 800 0.6

Bottom open flap 15 800 0.6

Upper open flap 35 800 0.6

Bottom open flap 35 800 0.6

Upper open flap 50 800 0.6

Bottom open flap 50 800 0.6

Upper open flap 70 800 0.6

Bottom open flap 70 800 0.6

Upper open flap 85 800 0.45

Bottom open flap 85 800 0.45

Upper open flap 100 800 0.3

Bottom open flap 100 800 0.3

The continuity equation was used to determine the exhaust air flow at the exit from
the trombe wall, as follows:

L = v × F × 3600, m3h−1 (7)

where v—speed measured during the experiment m/s; F—area of ventilation holes, m2.
The air exchange rate determines how many times per hour the entire volume of air in

the room is completely replaced with fresh air. The formula is as follows:

k = L/V (8)

Air flow (L): Denotes the quantity of air supplied or extracted from the room within a
specified timeframe, measured in cubic meters per hour (m3h−1).

Volume of the room (V): Represents the total air volume within the room, measured in
cubic meters (m3).

4. Discussion

Based on the results of these investigations, graphical representations were developed
to illustrate the relationship between the ventilation air flow rate, the sizes of the ventilation
openings, and the thickness of the air layer.

4.1. Determination of Air Exchange Efficiency in the Operation of a Trombe Wall

This stage of the experimental research involved testing the efficiency of the trombe
wall design, operating in ventilation mode for modular homes. The optimal air layer
thickness and ventilation opening area were determined to achieve maximum air exchange
with minimal energy consumption, as the study focuses on a passive ventilation system.
Additionally, the correlation between the air layer thickness, ventilation opening area, and
air flow rate was examined to understand how changes in one parameter affect the others,
and how this can be leveraged to enhance the overall efficiency of the ventilation system.

Figure 7 illustrates the airflow through the trombe wall under ventilation mode.
From Figure 7, it can be seen that the maximum air consumption is fixed at the

mark L = 120 m3h−1 with the thickness of the air channel δ = 100 mm and the area of the
outlet openings F = 0.056 m2.

Table 8 presents the ventilation characteristics of the examined trombe wall system,
detailing the thickness of the air layer (40, 70, and 100 mm), the area of the ventilation
openings (0.012–0.08 m2), air consumption rates (21–120 m3h−1), and the air exchange rates
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(1.5–8.6 times/h). The findings indicate that the highest air consumption (120 m3h−1) and
the maximum air exchange rate (8.6 times/h) are attained with an air layer thickness of
100 mm and a ventilation hole area of 0.056 m2. Conversely, reducing either the thickness of
the air layer or the area of the ventilation openings diminishes the efficiency of air exchange,
underscoring the importance of a carefully balanced selection of these parameters to achieve
effective ventilation.
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According to the provisions of DBN V.2.5-67-2013, the normative air exchange rate
for residential spaces must not be less than 0.6 air changes per hour (h−1). Experimental
results indicate that the proposed design of the trombe wall, operating in ventilation mode,
effectively facilitates the necessary air exchange within the modular house. Depending
on the dimensions of the ventilation openings and the thickness of the air layer, the air
exchange rate for a module with a volume of 14 m3 can vary significantly, ranging from
1.5 air changes per hour (h−1) to 7.1 air changes per hour (h−1).
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Table 8. Ventilation characteristics of the examined trombe wall.

The Thickness of the Air Layer, δ
Area of

Ventilation
Holes, F, m2

Air Consumption,
L, m3h−1

Multiplicity of
Air Exchange,

k, h−1

100 0.012 22 1.6

100 0.28 60 4.3

100 0.04 82 5.6

100 0.056 120 8.6

100 0.068 110 7.9

100 0.08 86 6.1

70 0.012 22 1.6

70 0.28 60 4.3

70 0.04 82 5.9

70 0.056 100 7.1

70 0.068 75 5.4

70 0.08 58 4.1

40 0.012 21 1.5

40 0.28 60 4.3

40 0.04 85 6.1

40 0.056 100 7.1

40 0.068 95 6.8

40 0.08 85 6.1

4.2. Computer Modeling of Air Flow Velocity in the Interior of a Modular House

At this stage, an analysis was conducted to assess the effectiveness of the proposed
technical solution in facilitating air movement throughout the room, which is critically
important for maintaining adequate air exchange without the use of mechanical systems.
A detailed evaluation of air flow velocity within the working volume of the room was
carried out. This approach allows for an assessment of how effectively the Trombe wall can
contribute to reducing energy consumption in modular homes through passive ventilation,
thereby diminishing the need for mechanical systems.

Computer simulation of the air exchange process within the space was conducted to
validate the appropriateness of the chosen technical solution for passive ventilation in a
modular house utilizing the trombe wall system (see Figure 8). The simulation employed
the design of the trombe wall utilized in the experimental investigations.

As illustrated in Figure 8, the air flow velocity in key cross-sections of the room,
particularly in the areas where occupants are located, remains within acceptable limits. This
indicates that the air flow does not exceed a velocity of 0.5 m s−1, which is a crucial criterion
for comfort, as higher velocities may cause discomfort, drafts, or even impact the health
of residents. This measurement fully complies with the requirements of the Ukrainian
State Building Standard DBN B.2.5-67-2013, which regulates microclimate parameters in
buildings, including ventilation and air distribution within rooms.

The results of computer modeling, which corroborate these findings, provide further
evidence that the proposed technology is effective. Specifically, this pertains to the innova-
tive design of the trombe wall, which functions as a passive ventilation system. This implies
that the wall is capable of facilitating natural air movement within the space without the
use of mechanical systems, such as fans, thereby making it an energy-efficient solution.
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This design enables the trombe wall to be highly effective for use in modular homes,
where ensuring adequate ventilation with minimal energy expenditure is essential. This so-
lution not only maintains a comfortable microclimate within the space but also contributes
to enhancing the overall energy efficiency of the building, which is a significant advantage in
light of contemporary demands for energy conservation and environmental sustainability.

5. Conclusions

The authors have proposed an original design for a trombe wall intended for modular
residential buildings. Its distinctive feature is the use of a 3 mm thick metal sheet, painted
black, instead of transparent glazing. This metal sheet serves as a solar thermal energy
absorber and, due to its high thermal conductivity, heats the air in the air layer. Conse-
quently, this induces natural convection. Additionally, the metal sheet acts as a structural
element of the sandwich panel, serving as the external protection for the modular house.
Thus, the authors explore the potential for effectively utilizing this design as a device for
facilitating passive ventilation within modular dwellings. Given that passive systems can
significantly reduce the overall energy consumption of the building—particularly during
warmer months, when energy demands for maintaining indoor climate conditions are
considerable—this approach presents a valuable solution.

Experimental studies were conducted to investigate the performance of the trombe
wall in ventilation mode. The research was carried out under varying air layer thicknesses
and different ventilation opening areas. The proposed configuration of the hybrid external
enclosure for the modular house, incorporating the trombe wall, has validated its effective-
ness and demonstrated its capability as a supplementary ventilation device within systems
designed to maintain the necessary parameters in the modular unit.

After a comprehensive analysis of the obtained graphical dependencies, it was con-
cluded that for the proposed design of the trombe wall, the maximum air flow was
L = 120 m3h−1 and the optimal areas of the ventilation grilles are in the range from 2.5 to
3% of the area of the trombe wall. Under such conditions, the highest air consumption is
observed within the air layer, which reflects the phenomenon of natural convection, with
an optimal ratio between the geometric dimensions of the air layer thickness and the area
of the ventilation grilles.

Another important criterion for evaluating the effectiveness of the ventilation system
is the air exchange rate. This criterion is particularly significant, as it ensures the regular
renewal of air within the space, removing harmful substances such as carbon dioxide and
volatile organic compounds, while maintaining moisture levels and providing comfortable
conditions for residents. The effectiveness of the proposed design of the hybrid external
enclosure for the modular house, incorporating the trombe wall, has been substantiated.
The achievable multiple air exchange rates for a module with a volume of 14 m3 were
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delineated, encompassing a range from 1.5 air changes per hour (h−1) to 7.1 air changes
per hour (h−1). This spectrum aligns comprehensively with the prescribed requirements
for delivering calculated air exchange in both residential and public premises.

Moreover, the computer modeling conducted in this study has led to the conclusion
that the velocities within the working volume of the space adhere to regulatory standards,
not exceeding 0.5 m s−1. This further confirms the effectiveness of such a system and
provides a pathway for future scientific research, particularly in the investigation of passive
cross-ventilation systems in modular-type buildings.

5.1. Research Limitations

The study faced certain limitations that should be considered when interpreting the
results. The experimental research was conducted under laboratory conditions, which do
not fully replicate real-world weather scenarios that significantly impact the performance
of the trombe wall. Additionally, the experiments utilized only specific air layer thicknesses
corresponding to the modular house’s external protection design and ventilation hole sizes,
which limits the scalability of the results to other building types. Furthermore, variations in
external environmental temperatures throughout the year and fluctuations in solar intensity
were not accounted for, as the study focused on a steady-state mode, potentially affecting
the system’s overall ventilation performance.

5.2. Future Research

Future research will focus on further analyzing the effectiveness of the trombe wall
as a passive ventilation system under real operational conditions and in various climate
zones for modular homes. Specifically, upcoming studies will examine the impact of
climatic factors such as outdoor air temperature and wind load on system performance.
Additionally, investigating the potential integration of the trombe wall systems with other
energy-efficient passive technologies, such as cross-ventilation, heat storage, or the use of
solar collectors, will be a promising method for reducing the building’s energy consumption.
Moreover, a detailed study of the effects of different geometric parameters of the air layer
and ventilation openings will be crucial for achieving optimal air exchange rates and indoor
comfort levels.
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