Influence Mechanism of Accelerator on the Hydration and Microstructural Properties of Portland Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Experimental Method
2.2.1. Setting Time
2.2.2. Strength
2.2.3. Hydration Heat
2.2.4. Thermos Gravimetric Analysis
2.2.5. Porosity Test
2.2.6. Scanning Electron Microscopy Test
3. Experiment Results and Analysis
3.1. Effect of Accelerator on Setting Time
3.2. Effect of Accelerator on Strength
3.3. Effect of Accelerator on Hydration Process
3.4. Effect of Accelerator on Characteristic Hydration Products
4. Influence Mechanism of the Accelerator on Shotcrete Microstructure
4.1. Pore Structure Character Parameter
4.2. Pore Structure Fractal Dimension
4.3. Matrix Microstructure
5. Conclusions
- Both ALK and AKF accelerators significantly accelerate the early hydration of cement, leading to a faster setting time for shotcrete. AKF also accelerates setting time up to an 8% dosage, after which it stabilizes. AKF shows a faster increase in hydration heat release during the early induction period compared to ALK, enhancing early hydration more substantially.
- ALK and AKF influence the hydration of C3A differently. ALK accelerates gypsum consumption, primarily producing hexagonal plate-like AFm phases. In contrast, AKF speeds up C3A hydration and maintains a stable Al3+/SO42− ratio, resulting in the formation of predominantly rod-shaped AFt phases.
- ALK and AKF significantly accelerate the early hydration of cement. Hence, the porosity and the most probable pore size of hardened cement paste at 1 d are significantly smaller than those of the reference group, which contributes to the rapid strength improvement of early hydration. However, ALK byproducts lead to a more porous and less refined pore structure. AKF, on the other hand, does not impede the hydration of C3S or the densification of C-S-H gel, thereby fostering a more refined pore structure and better overall development of the shotcrete matrix.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AFm | Monosulfoaluminate hydrate |
AFt | Ettringite |
AKF | Aluminum sulfate alkali-free accelerator |
ALK | Alkali accelerator |
C-A-H | Calcium aluminum hydrate |
C-S-H | Calcium silicate hydrate |
C3S | Tricalcium silicate |
Dm | Fractal dimension |
DTG | Derivative thermogravimetry |
EDS | Energy-dispersive X-ray spectroscopy |
KAlO2 | Potassium aluminate |
m | Meter |
mm | Millimeter |
m2 | Square meters |
m2.kg−1 | Square meters per kilogram |
min | Minute |
MPa | Megapascal |
MIP | Mercury intrusion porosimetry |
N | Newton |
NaAlO2 | Sodium aluminate |
nm | Nanometer |
Psi | Pound-force per square inch |
P | Pressure |
Pi | Pressure of mercury injection |
PC | Portland cement |
REF | Reference |
g | Gram |
g.cm−3 | Grams per cubic centimeter |
SO42− | Sulfate ion |
STA | Simultaneous thermal analyzer |
SiO2 | Silicon dioxide |
SG | Specific gravity |
SEM | Scanning electron microscope |
μW | Microwatt |
TGA | Thermogravimetric analysis |
Vr | Pore diameter |
# | Number |
% | Percentage |
π | Pie |
References
- Raza, A.; Junjie, Z.; Shiwen, X.; Umar, M.; Chengfang, Y. Experimental analysis of frost resistance and failure models in engineered cementitious composites with the integration of Yellow River sand. Sci. Eng. Compos. Mater. 2024, 31, 74–80. [Google Scholar] [CrossRef]
- Yuan, C.; Raza, A.; Manan, A.; Ahmad, S.; Wang, C.; Umar, M. Experimental and FEM analysis on the impact of Yellow River Sand replacement rate on Engineered Cementitious Composite (ECC). In Proceedings of the Institution of Civil Engineers-Engineering Sustainability; Emerald Publishing Limited: Bingley, UK, 2024; pp. 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Raza, A.; Umar, M.; Chen, Y.; Yuan, C. Study on Frost Resistance and Interface Bonding Performance through the Integration of Recycled Brick Powder in Ultra-High-Performance Concrete for Structural Reinforcement. Materials 2023, 16, 6999. [Google Scholar] [CrossRef]
- Zhang, J.; Ali, R.; Fu, W.; Yuan, C. Research on uniaxial compression performance and constitutive relationship of RBP-UHPC after high temperature. Sci. Eng. Compos. Mater. 2024, 31, 997–1009. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, J.; Raza, A.; Fu, W. Residual and damage properties of recycled brick powder-UHPFRC after high temperature. In Proceedings of the Institution of Civil Engineers-Construction Materials; Emerald Publishing Limited: Bingley, UK, 2024; pp. 1–51. [Google Scholar] [CrossRef]
- Memon, B.A.; Oad, M.; Buller, A.H.; Raza, A. Effect of Curing Methods on Tensile Strength of Green Concrete Cylinders Made with Demolishing Coarse Aggregates. World J. Eng. Res. Technol. 2020, 6, 66–75. [Google Scholar] [CrossRef]
- Yuan, C.; Fu, W.; Raza, A.; Li, H. Study on Mechanical Properties and Mechanism of Recycled Brick Powder UHPC. Buildings 2022, 12, 1622. [Google Scholar] [CrossRef]
- Hemphill, G.B. Practical Tunnel Construction; Jone Wiley Sons: Hoboken, NJ, USA, 2013; pp. 307–322. [Google Scholar] [CrossRef]
- Hewlett, P.; Liska, M. Lea’s Chemistry of Cement and Concrete; Butterworth-Heinemann: London, UK, 2005; pp. 1053–1055. [Google Scholar] [CrossRef]
- Jolin, M.; Beaupré, D.; Pigeon, M.; Lamontagne, A. Use of Set Accelerating Admixtures in Dry-Mix Shotcrete. J. Mater. Civ. Eng. 1997, 9, 180–184. [Google Scholar] [CrossRef]
- Wang, J.; Niu, D.; Zhang, Y. Mechanical properties, permeability and durability of accelerated shotcrete. Constr. Build. Mater. 2015, 95, 312–328. [Google Scholar] [CrossRef]
- Cai, Y.; Liu, X.; Kong, X.; Hao, T.; Lu, Z. Influence of Liquid Accelerator with Different Alkalinity on Setting Behavior and Mechanical Properties of Cement Pastes at Different Temperatures. J. Chin. Ceram. Soc. 2016, 44, 1563–1570. [Google Scholar] [CrossRef]
- Prudêncio, L.R., Jr. Accelerating admixtures for shotcrete. Cem. Concr. Compos. 1998, 20, 213–219. [Google Scholar] [CrossRef]
- Salvador, R.P.; Cavalaro, S.H.; Segura, I.; Figueiredo, A.D.; Pérez, J. Early age hydration of cement pastes with alkaline and alkali-free accelerators for sprayed concrete. Constr. Build. Mater. 2016, 111, 386–398. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Shi, J.; Wang, Y. Influence of sodium aluminate on cement hydration and concrete properties. Constr. Build. Mater. 2014, 64, 342–349. [Google Scholar] [CrossRef]
- Ramezani, M.; Dehghani, A.; Sherif, M.M. Carbon nanotube reinforced cementitious composites: A comprehensive review. Constr. Build. Mater. 2022, 315, 125100. [Google Scholar] [CrossRef]
- Manan, A.; Zhang, P.; Ahmad, S.; Umar, M.; Raza, A. Machine learning prediction model integrating experimental study for compressive strength of carbon-nanotubes composites. J. Eng. Res. 2024, in press. [Google Scholar] [CrossRef]
- Cui, X.; Han, B.; Zheng, Q.; Yu, X.; Dong, S.; Zhang, L.; Ou, J. Mechanical properties and reinforcing mechanisms of cementitious composites with different types of multiwalled carbon nanotubes. Compos. A Appl. Sci. Manuf. 2017, 103, 131–147. [Google Scholar] [CrossRef]
- Smaoui, N.; Bérubé, M.; Fournier, B.; Bissonnette, B.; Durand, B. Effects of alkali addition on the mechanical properties and durability of concrete. Cem. Concr. Res. 2005, 35, 203–212. [Google Scholar] [CrossRef]
- Paglia, C.; Wombacher, F.; Böhni, H. The Influence of Alkali-Free and Alkaline Shotcrete Accelerators within Cement Systems: I. Characterization of the Setting Behavior. Characterization of the Setting Behavior. Cem. Concr. Res. 2001, 31, 913–918. [Google Scholar] [CrossRef]
- Paglia, C.S.; Wombacher, F.J.; Bohni, H.K. Influence of Alkali-free and Alkaline Shotcrete Accelerators within Cement Systems: Hydration, Microstructure, and Strength Development. ACI Mater. J. 2004, 101, 353–357. [Google Scholar] [CrossRef]
- Paglia, C.; Wombacher, F.; Böhni, H. The Influence of Alkali-Free and Alkaline Shotcrete Accelerators within Cement Systems: Influence of the Temperature on the Sulfate Attack Mechanisms and Damage. Cem. Concr. Res. 2003, 33, 387–395. [Google Scholar] [CrossRef]
- Salvador, R.P.; Cavalaro, S.H.; Monte, R.; de Figueiredo, A.D. Relation between Chemical Processes and Mechanical Properties of Sprayed Cementitious Matrices Containing Accelerators. Cem. Concr. Compos. 2017, 79, 117–132. [Google Scholar] [CrossRef]
- Salvador, R.P.; Cavalaro, S.H.; Cano, M.; Figueiredo, A.D. Influence of Spraying on the Early Hydration of Accelerated Cement Pastes. Cement Concr. Res. 2016, 88, 7–19. [Google Scholar] [CrossRef]
- Dinoia, T.P.; Sandberg, P.J. Alkali Free Shotcrete Accelerator Interactions with Cement and Admixture, Shotcrete: More Engineering Developments; Taylor & Francis Group: London, UK, 2004; pp. 137–144. [Google Scholar] [CrossRef]
- Han, J.; Wang, K.; Wang, Y.; Shi, J. Study of aluminum sulfate and anhydrite on cement hydration process. Mater. Struct. 2016, 49, 1105–1114. [Google Scholar] [CrossRef]
- Lu, W.; Chen, X.; Ho, D.C.W.; Wang, H. Effects of setting regulators on the efficiency of an inorganic acid based alkali-free accelerator reacting with a Portland cement. Cem. Concr. Res. 2007, 37, 528–536. [Google Scholar] [CrossRef]
- GB/T 35159; Flash Setting Admixtures for Shotcrete. The Standardization Administration of the People’s Republic of China: Beijing, China, 2017. (In Chinese)
- GB/T 17671; Test Method of Cement Mortar Strength. (ISO Method). The Standardization Administration of the People’s Republic of China: Beijing, China, 2021. (In Chinese)
- Yuan, C.; Xu, S.; Raza, A.; Wang, C.; Wang, D. Influence and Mechanism of Curing Methods on Mechanical Properties of Manufactured Sand UHPC. Materials 2022, 15, 6183. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Memon, B.A.; Oad, M. Effect of Curing Types on Compressive Strength of Recycled Aggregates Concrete. Quest Res. J. 2019, 17, 7–12. [Google Scholar] [CrossRef]
- Niu, D.; Jiang, L.; Fei, Q. Deterioration mechanism of sulfate attack on concrete under freeze–thaw cycles. J. Wuhan Univ. Technol. Mater Sci. Ed. 2013, 28, 1172–1176. [Google Scholar] [CrossRef]
- Lu, W.; Chen, X.; Ho, D.C.W.; Wang, H. Microstructure, permeability and mechanical properties of accelerated shotcrete at different curing age. Constr. Build. Mater. 2015, 78, 203–216. [Google Scholar] [CrossRef]
- Ge, Z. Influence of Accelerator Main Components on Hydration and Mechanical Properties of Portland Cement. J. China Railw. Soc. 2020, 42, 112–118. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, J.; Yang, Q.; Li, Q.; Lu, X.; Ye, Z. Hydration of Portland cement in the presence of triethanolamine and limestone powder: Mechanical properties and synergistic mechanism. Constr. Build. Mater. 2024, 438, 137323. [Google Scholar] [CrossRef]
- Wang, S.; Li, B.; Zeng, H.; Liang, C.; Zhang, G. Comparison of mechanical strengths and microstructure of Portland cement-calcium sulfoaluminate cement binders with cellulose ethers of different viscosities. Constr. Build. Mater. 2024, 437, 137022. [Google Scholar] [CrossRef]
- Cui, S.; Liu, P.; Cui, E.; Su, J.; Huang, B. Experimental study on mechanical performance and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels. Constr. Build. Mater. 2018, 173, 124–135. [Google Scholar] [CrossRef]
- Huang, H.; An, M.; Wang, Y.; Yu, Z.; Ji, W. Effect of environmental thermal fatigue on concrete performance based on mesostructural and microstructural analyses. Constr. Build. Mater. 2019, 207, 450–462. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, W.; Liu, X. Scale-dependent nature of the surface fractal dimension for bi- and multi-disperse porous solids by mercury porosimetry. Appl. Surf. Sci. 2006, 253, 1349–1355. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, J.; Chen, C.; Chen, W. Study of Pore Fractal Characteristic of Cement Mortar. J. Build. Mater. 2011, 14, 92–97+105. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, L.; Wang, W.; Qiao, M.; Zhao, S.; Zhu, B. Influence of main components of accelerators on mechanical property and hydration of Portland cement in a dry-hot geothermal environment. Constr. Build. Mater. 2023, 394, 132290. [Google Scholar] [CrossRef]
- Quennoz, A.; Scrivener, K.L. Interactions between alite and C3A-gypsum hydrations in model cements. Cem. Concr. Res. 2013, 44, 46–54. [Google Scholar] [CrossRef]
- Lu, W.; Chen, X.; Ho, D.C.W.; Wang, H. Thermodynamic modeling of the effect of temperature on the hydration and porosity of Portland cement. Cem. Concr. Res. 2008, 38, 1–18. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Ma, Y.; Xiao, Y.; Liu, Y. Accelerators for shotcrete—Chemical composition and their effects on hydration, microstructure and properties of cement-based materials. Constr. Build. Mater. 2021, 281, 122557. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Y.; Zhong, X.; Li, L. Test and simulation of cement hydration degree for shotcrete with alkaline and alkali-free accelerators. Cem. Concr. Compos. 2020, 112, 103684. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, C.; Lei, L.; Ma, Y.; Liu, J.; Hu, X. Formulation of an alkali-free accelerator and its effects on hydration and mechanical properties of Portland cement. Cem. Concr. Compos. 2022, 129, 104485. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | Na2O | f-CaO | C3S | C2S | C3A | C4AF |
---|---|---|---|---|---|---|---|---|---|---|---|
22.64 | 4.68 | 3.57 | 64.88 | 2.94 | 0.35 | 0.49 | 0.91 | 56.53 | 21.94 | 6.44 | 10.40 |
Fineness 0.08 mm (%) | Density/ (g∙cm−3) | Specific Surface Area (m2·kg−1) | Setting time (Minutes) | Flexural Strength (MPa) | Compressive Strength (MPa) | |||
---|---|---|---|---|---|---|---|---|
Initial | Final | 3 d | 28 d | 3 d | 28 d | |||
1.2 | 3.16 | 340 | 159 | 214 | 5.7 | 8.2 | 26.2 | 50.4 |
Cement | ALK | AKF | Water |
---|---|---|---|
1.000 | — | — | 0.350 |
1.000 | 0.020 | — | 0.340 |
1.000 | 0.040 | — | 0.330 |
1.000 | 0.060 | — | 0.320 |
1.000 | 0.080 | — | 0.310 |
1.000 | — | 0.040 | 0.330 |
1.000 | — | 0.060 | 0.320 |
1.000 | — | 0.080 | 0.310 |
1.000 | — | 0.090 | 0.305 |
1.000 | — | 0.100 | 0.300 |
1.000 | — | 0.120 | 0.290 |
Performance Index | Specimen Size | Quantity |
---|---|---|
setting time | — | — |
compressive and flexural strength | 160 mm × 40 mm × 40 mm | 45 |
hydration heat | — | — |
thermos gravimetric | 40 mm × 40 mm × 40 mm | 12 |
porosity | 40 mm × 40 mm × 40 mm | 12 |
scanning electron microscopy | 40 mm × 40 mm × 40 mm | 6 |
Curing Age (Days) | Water Mass Loss of AFt (%) | Water Mass Loss of AFm (%) | Water Mass Loss of Ca(OH)2 (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
REF | ALK-4% | AKF-8% | REF | ALK-4% | AKF-8% | REF | ALK-4% | AKF-8% | |
1 | 4.06 | 4.55 | 7.82 | — | 2.51 | — | 3.74 | 4.15 | 2.54 |
3 | 4.24 | 3.80 | 7.59 | — | 3.18 | — | 4.56 | 4.88 | 3.53 |
7 | 4.36 | 4.41 | 9.19 | 1.05 | 3.85 | — | 5.24 | 5.11 | 3.74 |
28 | 4.55 | 4.45 | 8.89 | 2.29 | 4.57 | 1.64 | 5.84 | 5.09 | 4.32 |
Age (d) | Fractal Dimension | ||
---|---|---|---|
REF | ALK-4 (%) | AKF-8 (%) | |
1 | 2.3970 | 2.5729 | 2.4425 |
3 | 2.5294 | 2.7084 | 2.5870 |
7 | 2.6449 | 2.7297 | 2.6626 |
28 | 2.8945 | 2.8298 | 2.8965 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Li, K.; Like, L.; Huawei, S.; Chen, C.; Yuan, C. Influence Mechanism of Accelerator on the Hydration and Microstructural Properties of Portland Cement. Buildings 2024, 14, 3201. https://doi.org/10.3390/buildings14103201
Zhang G, Li K, Like L, Huawei S, Chen C, Yuan C. Influence Mechanism of Accelerator on the Hydration and Microstructural Properties of Portland Cement. Buildings. 2024; 14(10):3201. https://doi.org/10.3390/buildings14103201
Chicago/Turabian StyleZhang, Ge, Kunpeng Li, Li Like, Shi Huawei, Chen Chen, and Chengfang Yuan. 2024. "Influence Mechanism of Accelerator on the Hydration and Microstructural Properties of Portland Cement" Buildings 14, no. 10: 3201. https://doi.org/10.3390/buildings14103201
APA StyleZhang, G., Li, K., Like, L., Huawei, S., Chen, C., & Yuan, C. (2024). Influence Mechanism of Accelerator on the Hydration and Microstructural Properties of Portland Cement. Buildings, 14(10), 3201. https://doi.org/10.3390/buildings14103201