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Abstract: Within high-precision indoor environments, such as semiconductor fabrication or tex-
tile plants, humidity control is paramount for preserving product integrity and reducing energy
expenditure. The non-uniform indoor air environment poses a significant challenge in achieving
humidity regulation that meets the distinct requirements of various locations. Traditional feedback
control mechanisms may lead to instability, overshooting, and oscillation in indoor parameters. This
paper proposes a comprehensive method to address humidity assurance issues in high-precision
indoor environments by establishing analytical expressions that link the demand parameters at
different locations with air supply parameters. Using a case study, this paper examines several typical
operational scenarios with diverse control objectives, including minimizing dehumidification energy
consumption, minimizing air supply humidity adjustment values, and constraints on adjustable
air supply inlets. This method enables rapid calculation of air supply humidity and regulation of
humidity parameters at multiple locations within the indoor environment. It considers various loca-
tions, requirements, optimization targets, and precision, demonstrating that it can quickly determine
the optimal air supply parameters based on the objective function. This method facilitates rapid
adjustment and high-precision assurance of different humidity requirements at multiple locations,
making it suitable for high-precision design and control of indoor humidity environments.

Keywords: differentiated multi-location humidity; non-uniform environment; control strategy;
regulation optimization; adjustment efficiency

1. Introduction

The level of humidity in a given indoor environment has a significant impact on the
quality of the air and the health of the occupants. Furthermore, it also affects the durability
and functionality of products in civil and industrial buildings, especially in high-precision
industrial environments [1–5]. Therefore, humidity assurance and control are important
issues in the provision and maintenance of moist indoor environments. Humidity control
is required for the production environment of many products, such as electronic products,
pharmaceuticals, food, wood, and metal products, and building design standards always
include humidity requirements [6].

In practical applications, the indoor humidity parameters that need to be guaranteed
are not unique and fixed. In actual production and operation, one workshop or space
usually contains several scenarios according to different production processes that will
switch between each other. During this process, the indoor moisture sources and parameters
do not always maintain a consistent state. Meanwhile, the actual distribution of indoor
air parameters, such as humidity, is non-uniform under ventilation and air conditioning
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modes, including displacement ventilation, personalized ventilation [7], and even mixed
ventilation [8] and air curtain systems [9,10].

On the other hand, in the actual operation of industrial plants, corresponding op-
timized parameters and strategies are formulated for different objectives and control
scenarios. Conventional methods of indoor humidity design and control are based on
the lumped parameter approach, which is unable to guarantee the requirements of a non-
uniform indoor environment. In fact, it may even result in increased energy consumption
and reduced operational efficiency [11].

For the design and control of indoor non-uniform environments, the Computational
Fluid Dynamics (CFD) technique can be used to predict the effects of different design or
control scenarios [12–14]. However, it is challenging to apply to the complex or large num-
ber of calculation cases because of the long computing owing to the iterative process. When
there are a variety of combinations and constraints of air supply parameters, it requires
massive traversal calculation to obtain the optimal solution, which is very inefficient.

The most common methods for controlling indoor air humidity rely on feedback
strategies [15,16]. The guaranteed parameters of different positions in a single room or
space are different. When traditional feedback control strategies attempt to achieve high-
precision satisfaction of guaranteed parameters at different positions simultaneously, it
often results in control overshoot caused by continuous repeated adjustments, and even
oscillation [17,18]. Although some scholars have attempted to achieve feedforward control
to some extent using numerical calculation methods [19,20], most of the current feedforward
control methods still rely on the accuracy of the prediction model of disturbance and
progress for environmental parameter changes [21–24]. In general, some repetitions in the
adjustment processes and time consumption are acceptable for most simple environmental
controls so that these adjustment processes can satisfy the control requirements. However,
for the complex situation of multiple locations and requirements mentioned previously, this
method is inefficient and takes a lot of time and energy to meet the adjustment requirements.

Since the target parameters cannot be determined quickly or even in advance, the
implementation of the strategy for input parameter optimization strategy based on the
traditional operation method is complicated. The input parameters can only be evaluated
during or after the adjustment and then changed or optimized, which makes it impossible
to select an optimized strategy among several possible adjustment options.

In order to quickly obtain the distribution of indoor air parameters, some scholars have
studied the contribution of different boundary and initial conditions to the indoor humidity
at any point and the corresponding contribution indices under the stable airflow field and
have developed algorithms based on these indicators, which are used to quickly calculate
the indoor humidity distribution [24–26]. However, when determining the optimized
air supply parameters to meet the different requirements of multiple indoor locations,
although the contribution indices and calculation algorithms can be applied to calculate
faster than CFD, it still needs to calculate a large number of cases using the ergodic method,
so the efficiency of the optimization design has not been significantly improved. Thus, it
cannot be directly used to guarantee the high-precision humidity parameters of multiple
indoor locations under different objective functions.

In previous research on passive contaminants, the authors of this paper established
the relationship between air supply and indoor contaminant concentrations in different
locations [27–29].

In an indoor air environment, the transportation of water vapor is similar to that
of a passive contaminant [25]. Based on our previous research on passive contaminants,
in this paper, a comprehensive method for optimizing indoor humidity is proposed and
an analytical model of the number of guaranteed positions and supply units that can
independently adjust the air supply parameters in the same space is obtained. Using a case
study, the model for non-uniform moisture environment optimization is applied to four
different actual scenarios, allowing humidity parameters to be guaranteed simultaneously
at different positions simultaneously in one space. This method establishes the relationship
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between the demand of multiple locations and the air supply parameters, which can
greatly improve the calculation efficiency of finding the optimal solution and realize
the rapid adjustment and high-precision guarantee of different humidity parameters in
multiple locations.

2. Methodology
2.1. Analytical Expression of Indoor Humidity Distribution

For indoor passive contaminants, the transport equation is well known and is given
by Equation (1)

∂ρC(τ)
∂τ

+
∂ρC(τ)Uj

∂xj
=

∂

∂xj

(
ΓCe f f

∂C(τ)
∂xj

)
+ SC(τ) (1)

C(τ): the contaminant concentration at time τ, (kg/kg).
ΓCe f f : the effective diffusion coefficient of the passive gaseous contaminant, m2/s.
SC(τ): the rate of production of species, kg/s.
The transport equation of contaminant dispersion in a steady flow field is linear, and

the superposition theorem is applicable [27]. The reference indicates that for indoor air
flow, the transport equation of the moisture is the same as that of the gas contaminant, so
the linear superposition theorem can also be used to solve the transport equation of indoor
moisture dispersion [25].

Similar to the dispersion of a passive contaminant, indoor humidity distribution is
determined by boundary conditions, including the moisture source, humidity of the air
supply, and initial distribution of humidity in the subsequent moment. In typical indoor
environments with air conditioning when the boundary conditions alter, the distribution of
indoor parameters will reach a steady state within a relatively short timeframe. Therefore,
this paper will focus on the steady-state situation. In our previous research, we proposed
an algebraic algorithm for expressing the relationship between the humidity at an arbitrary
position and all influencing factors of steady state [25].

When the steady state is reached, the humidity distribution of indoor space will only
be affected by air supply and sources, which include internal sources and boundaries, and
the humidity at an arbitrary point p can be represented by

dp =
NS

∑
nS=1

[
dnS anS ,p

S

]
+

NC

∑
nC=1

[
JnC

Q
anC ,p

C

]
(2)

dp: the humidity at an arbitrary point p, (kg/kg).
dnS : the humidity of the air supply at the nSth inlet, kg/kg.
JnC : the moisture emission rate of the nCth source, kg/s.
Q: the total room air flow rate, kg/s.
anS ,p

S : the accessibility index of the nSth air supply inlet to point p.
anC ,p

C : the accessibility index of the nCth moisture source to point p.
The two accessibility indices, anS ,p

S and anC ,p
C , are defined to describe the contributions

of the air supply and moisture source, respectively [25], that are quantified indicators of
the ability of each boundary condition to influence different local points. They can quantify
how easily moisture is delivered to an arbitrary position from the air supply inlet and
moisture source. The accessibility values can be obtained using field measurements or
numerical simulation.

2.2. Matrix Equations for Fast Calculating the Compensative Humidities of Air Supplies When
Moisture Sources Change

Based on the analytical expression of the distribution of indoor humidity, a set of
matrix equations of determination of the humidity variation of the air supply is proposed.
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When the indoor moisture sources change, it can be treated as a change in the emission
rate of the moisture source from JnC to JnC ,*, which can be expressed as

∆JnC = JnC ,* − JnC (3)

JnC ,*: the new emission rate of the nCth moisture source, kg/s.
∆JnC : the change in the emission rate of the nCth moisture source, kg/s.
In most industrial plants, the primary sources of moisture are manufacturing equip-

ment. The location and emission intensity under different production scenarios could be
considered as given. In addition, the human body is also considered a potential factor in the
increase in indoor humidity. In the working environment, the location of workers and the
emission rate of moisture are known in principle. When the location of personnel changes,
it can also be determined using the source identification technology as the characteristics of
indoor moisture dispersion can be regarded as passive contaminant characteristics and the
change in the moisture source can be obtained using source identification technique [30,31].
Therefore, the position and emission rate of moisture sources are assumed as known in
this study. For simplification, it is also assumed that the change in the emission rate of the
moisture source is completed instantaneously, or that it can be treated as being completed
in multiple time steps.

When the moisture source changes, the indoor air humidity distribution is going to be
changed accordingly. Setting the total number of control points is Np, which are recorded
sequentially as 1...np...Np, the change in humidity can be described by

∆dnp = dnp − d
np
0 (4)

dp
0 is the setting value of the humidity of point p, kg/kg.

dnp is the humidity of point p, kg/kg.
∆dnp is the change in humidity at point p from the setting value, kg/kg.
When the humidity demand of the control point remains unchanged, the aim of the

control is to adjust the humidity dnp of point np to the original value d
np
0 , i.e., ∆dnp = 0.

Therefore, the humidity of the air supply must be changed. If there are NS air supply inlets
in total, which are recorded as 1...nS...NS, the humidity of the nSth air supply inlet will be
changed from dnS

S to dnS ,*
S

∆dnS
S = dnS ,*

S − dnS
S (5)

dnS
S : the original humidity value of the nSth air supply inlet, kg/kg.

dnS ,*
S : the adjusted humidity value of the nSth air supply inlet, kg/kg.

∆dnS
S : the change in humidity of the nSth air supply inlet, kg/kg.

The objective of control is that there is a change in the emission rate ∆JnC of moisture
source nC to recover the change in humidity of control point np to the setting value, which
means ∆dnp = 0 or an arbitrary constant value, and the adjustment for the air supply
humidity ∆dnS

S of each air inlet nS will be determined.
Considering that the indoor flow field is steady and that the walls are vapor-impermeable

boundaries, there are a total of NC moisture sources, NS air supply inlets, and NP humidity
control points in the room.

According to Equation (2), when the emission rate of each moisture source changes
and that change is ∆JnC , if the air supply humidity does not change it is equivalent to
superimposing an extra moisture source with an emission rate of ∆JnC from the existing
steady source. Thus, the humidity of control point nP in the room at moment τ can be
expressed as

dnP =
NS

∑
nS=1

[
dnS

S anS ,nP
S

]
+

NC

∑
nC=1

[
JnC

Q
anC ,nP

C

]
+

NC

∑
nC=1

[
∆JnC

Q
anC ,nP

C

]
. (6)
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When the air supply humidity changes ∆dnS
S simultaneously, the humidity and change

in control point nP can be calculated as

dnP =
NS

∑
nS=1

[
dnS

S anS ,nP
S

]
+

NC

∑
nC=1

[
JnC

Q
anC ,nP

C

]
+

NS

∑
nS=1

[
∆dnS

S anS ,nP
S

]
+

NC

∑
nC=1

[
∆JnC

Q
anC ,nP

C

]
, (7)

∆dnP =
NS

∑
nS=1

[
∆dnS

S anS ,nP
S

]
+

NC

∑
nC=1

[
∆JnC

Q
anC ,nP

C

]
. (8)

In order to maintain operational state, it is necessary to restore the parameters of each
control point to their original state, the average value of which is represented by ∆dnp = 0.
A set of matrix equations can be used to represent all NP, as shown below.

∆d1
S

...
∆dnS

S
...

∆dNS
S


= −QS−1·C



∆J1

...
∆JnC

...
∆JNC

,

S =



a1,1
S · · · anS ,1

S · · · aNS ,1
S

...
. . .

...
a1,nP

S anS ,nP
S aNS ,nP

S
...

. . .
...

a1,NP
S · · · anS ,NP

S · · · aNS ,NP
S


.

C =



a1,1
C · · · anC ,1

C · · · aNC ,1
C

...
. . .

...
a1,nP

C anC ,nP
C aNC ,nP

C
...

. . .
...

a1,NP
C · · · anC ,NP

C · · · aNC ,NP
C


.

(9)

Considering the emission rate of each moisture source, ∆JnC are known and C can be
obtained in advance. By solving these equations, the adjustment of the air humidity ∆dnS

S
of each air supply inlet can be calculated and the control target can be achieved.

There are NP independent equations and NS unknown variables in Equation (9); the
solutions are listed below.

(1) NP = NS, the number of equations is equal to the number of unknown variables.
Therefore, these equations have unique solutions. This indicates that there is a unique
set of air supply humidity values to guarantee the humidity control requirements of all
control points.

(2) NP ̸= NS, S is transferred to a noninvertible matrix. When the NP < NS, the
equations are indefinite; therefore, there are multiple solutions, which implies that there
are multiple combinations of air supply humidity. Conversely, when NP > NS, the equa-
tions are over-determined; therefore, there is no solution, which implies that the control
requirements of all control points cannot be guaranteed at the same time.

The above model shows that if NP ≤ NS, the equations have at least one set of feasible
solutions; thus, the target humidity of each control point can be achieved independently.
Obviously, when the number of air supply inlets is not smaller than the number of control
points, every control point can be guaranteed simultaneously. However, if NP > NS, the
precise requirements of every control point will not be met simultaneously. Considering
that the target parameters of some control points allow for a certain range of errors, it is
possible to maintain the humidity of each control point within a certain range. In this case,
the problem of solving the linear equations becomes a linear programming problem.
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The preceding section outlines a rapid calculation method for obtaining air supply
parameters. Once the parameters at the control points have reached a steady state, the
aforementioned method can be employed to rapidly calculate the variables for each air
supply parameter in the event of a change in operational procedure or moisture source. A
schematic representation of the aforementioned method is presented in Figure 1.

The aforementioned method may be employed for the purpose of parameter opti-
mization during the design phase, or alternatively, for real-time adjustment during the
operational phase. It should be noted, however, that the actual operating scenarios are
inherently complex, and as a result, a multitude of factors must be taken into consideration.
These include the diversity of optimization objectives, the error range, economic impacts,
predictable or unpredictable malfunction, and so forth. In instances where multiple factors
are coupled, the process illustrated in the above figure is not applicable.
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The following section will present a generalized scheme for the rapid optimization of
air supply parameters from a control perspective, which will take into account a compre-
hensive range of operating conditions and objectives.

2.3. Optimal Regulation Strategy of Different Objective Functions

As previously discussed, when NP ≥ NS, the equation has a unique solution or
no solution. Consequently, it is impossible to compare and choose optimal air supply
parameters for different objectives. If there exists an allowable adjustment range for control
point nP, which can be labeled as ±δdnP , the linear constraint function can be expressed as

s.t. ∆dnS
S − δdnP ≤ ∑NS

nS=1

[
∆dnS

S anS ,nP
S

]
+ ∑NC

nC=1

[
∆JnC

Q
anC ,nP

C

]
≤ ∆dnS

S + δdnP . (10)
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By establishing constraint functions in accordance with the permissible error range of
control points, it becomes evident that there exists the potential for a multitude of solutions
to the matrix equations. By defining distinct objective functions, the matrix equations can be
transformed into a linear programming problem. There are various options for the objective
function according to different regulation strategies. For example, for dehumidification
conditions, the air supply control strategy has the minimum energy consumption as the
target function to maximize the sum of the air supply humidity of each air supply inlet:

max ∑NS
nS=1 dnS ,*

S . (11)

Alternatively, if the adjustability of each independent air supply is considered, the
minimum parameter change in each air supply inlet is set as follows:

min ∑NS
nS=1

∣∣∆dnS
S

∣∣. (12)

Similarly, when the other specific control objective function is considered, the opti-
mization of the linear programming problem can be solved.

Therefore, by solving the equation above, the adjustment of the air supply humidity
∆dnS

S of each air supply inlet can be obtained.
In light of the actual operational scenarios, a comprehensive calculation method is

proposed in order to guarantee the different parameter requirements at different positions.
The diagrammatic representation of this method is provided below (Figure 2).
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This method intuitively clarifies the control logic of the number of control points and
number of adjustable air inlets and simply reveals the relationship between the changes in
supplies and changes in needs. Thus, it can be applied to guarantee the control target and
optimizes the control strategy.
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3. Case Study: Parameter Optimization for Various Objectives

By the above method, the air supply parameters that need to be adjusted can be easily
obtained when the control scene changes so as to quickly achieve the control goal and
save the adjustment time. In this section, the application of the method for optimizing the
parameters of air supply under different control objectives is presented using a case study.

3.1. Case Description

A geometric model of the ventilated room is shown in Figure 3. The room had
dimensions of 13.6 m (L) × 3 m (H) × 6 m (W). The air conditioning was serviced by four
fan coil units (FCUs), assuming the air supply parameter of each FCU could be adjusted
independently. The four air supply inlets and four exhaust air outlets were labeled as S1 to
S4 and R1 to R4, respectively, with dimensions of 0.3 m × 0.3 m (each). There were three
pieces of equipment, as the moisture sources, labeled as C1 to C3, in the room; the emission
rate of each source was 0.11 g/s. For simplicity, the moisture sources were treated as point
sources. There were no other heat or contaminant sources in the room. The parameters for
each air supply and moisture source are listed in Table 1. There were three control points,
labeled as P1 to P3, in the room. The moisture sources and control points were in the same
plane (Y = 1 m), as shown in Figure 4. The specific positions are listed in Table 2.
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Figure 3. Geometric model of the ventilated room.

Table 1. Parameters of boundary conditions.

Air Supply/Moisture
Source

Velocity
(m/s)

Volume
(kg/s)

Humidity
(g/kg)

Emission Rate
(g/s)

S1 1.0 0.108 9.85 —
S2 1.0 0.108 9.85 —
S3 1.0 0.108 9.85 —
S4 1.0 0.108 9.85 —
C1 — — — 0.11
C2 — — — 0.11
C3 — — — 0.11
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Figure 4. Location of moisture sources and control points (Y = 1 m).

Table 2. Positions of moisture sources and control points.

Point X (m) Y (m) Z (m)

C1 1.7 1 1.5
C2 5.1 1 1.5
C3 8.5 1 1.5
P1 1.7 1 4.5
P2 5.1 1 4.5
P3 8.5 1 4.5

When the operation scenario switched, the humidity source C3 ceased operation,
resulting in a rapid decline in the emission rate from 0.11 g/s to 0 g/s. The control target
was to maintain the humidity of each control point at the steady state unchanged. The
initial parameters of the case calculation are listed below (Table 3).

Table 3. Initial parameters of case calculation.

Source ∆JnC (g/s) Control Point ∆dnp (g/kg)

C1 0 P1 0
C2 0 P2 0
C3 −0.11 P3 0

According to the calculation method proposed in this paper, in the first step, the acces-
sibility of each air supply inlet and moisture source could be obtained by CFD simulation
in advance, and then the changes in the humidity of each air supply inlets were calculated
with different scenarios, respectively, in the following steps.

The computational fluid dynamic (CFD) software STACH-3 was used to determine the
indoor flow field and accessibility indices. An indoor zero-equation turbulence model [14]
was selected to account for turbulent flow indoors. The Reynolds-averaged Navier–Stokes
(RANS) equations, together with the averaged energy and mass conservation equations,
were discretized using the finite-volume method (FVM). The difference scheme was a
power-law scheme. The SIMPLE algorithm was employed. Momentum equations were
solved on non-uniform staggered grids [32]. The simulation tool was well validated by
Zhao et al. [33].

CFD was used to calculate the flow field of the room in Figure 3 as well as the
accessibility of the air supply and moisture sources. After the grid-independence study, the
room was discretized by 20,250 structured hexahedral meshes.

3.2. Non-Uniform Airflow Filed and Accessibility

The simulated steady flow field is shown in Figure 5. The humidities of the control
points were 10.83 g/kg for P1, 10.81 g/kg for P2, and 10.59 g/kg for P3.
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The accessibility values of each air supply inlet moisture source on the control points
at the steady state are listed in Table 4.

Table 4. Accessibility of the air supply and moisture source on the control points at the steady state.

S1 S2 S3 S4 C1 C2 C3

P1 0.73 0.20 0.06 0.01 2.82 0.91 0.11
P2 0.24 0.55 0.19 0.02 1.05 2.14 0.59
P3 0.02 0.19 0.55 0.24 0.17 0.59 2.14

In this case, the number of air inlets was greater than the number of control points.
According to Equation (9), there were several air supply parameters that could meet the
humidity requirements of the three control points. Four different scenarios were set for the
solution to achieve different control strategies as listed in Table 5.

Table 5. Four different scenarios.

Scenario Solution Objective

I NP < NS Minimization of the dehumidify consumption

II NP < NS
Minimization of the adjustment value of air supply

humidity

III NP = NS
Limitation of the adjustable air supply inlets: number of

adjustable air inlets equal to control points

IV NP > NS
Limitation of the adjustable air supply inlets: number of

adjustable air inlets less than control points

3.3. Scenario I Minimization of the Dehumidify Consumption

According to the objective function in Equation (11), the air supply humidity of each
inlet was calculated, as listed in Table 6. The minimal total increase in the air supply
humidity of the air inlets was 1.56 g/kg.

Table 6. Humidity of the air supply for Scenario I.

S1 S2 S3 S4

Original humidity (g/kg) 9.85 9.85 9.85 9.85
Adjusted humidity (g/kg) 9.82 9.92 10.40 10.82

Figure 6 shows the humidity distribution of the room at the steady state after the
adjustment of the air supply parameters. The humidity at each control point remains
unchanged compared with the original values.
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3.4. Scenario II Minimization of the Adjustment Value of Air Supply Humidity

According to the objective function in Equation (12), the air humidity of each air
supply inlet was calculated, as listed in Table 7. The sum of the humidity increments in
the air supply inlets was 0.99 g/kg. Compared with Case 1, the value was lower, which
indicated a higher energy consumption.

Table 7. Humidity of the air supply for Scenario II.

S1 S2 S3 S4

Original humidity (g/kg) 9.85 9.85 9.85 9.85
Adjusted humidity (g/kg) 9.82 9.80 10.82 9.95

3.5. Scenario III Limitation of Adjustable Air Supply Inlets: Number of Adjustable Air Inlets Equal
to Control Points

It was assumed that the air supply humidity at inlet S2 was not able to be adjusted;
thus, the number of adjustable air inlets was equal to that of control points. According to
Equation (9), the solution was unique, as listed in Table 8, and a precise control of each
control point could be achieved. The sum of humidity increments in the air supply inlets
was 1.24 g/kg. Compared with Scenario I and II, the value was between them, which also
implied that the energy consumption was in the middle.

Table 8. Humidity of the air supply of Scenario III.

S1 S2 S3 S4

Original humidity (g/kg) 9.85 9.85 9.85 9.85
Adjusted humidity (g/kg) 9.82 9.85 10.63 10.34

3.6. Scenario IV Limitation of Adjustable Air Supply Inlets: Number of Adjustable Air Inlets Less
than Control Points

In the above three scenarios, the number of air inlets was larger than or equal to
the number of control points. However, in some engineering projects, the number of air
supply inlets whose supply parameters could be independent-adjusted was less than the
positions that needed to be guaranteed. According to the previous analysis of this study, it
is impossible to accurately guarantee every control point simultaneously unless the control
point allows some error range.

In this scenario, the air supply inlet S4 was unable to adjust the humidity owing to
some faults, and its air supply humidity was maintained at 9.85 g/kg. A new control point
labeled as P4 was added, which was located on the same plane as the other control points;
the specific position is listed in Table 9. In this scenario, the number of air inlets was three,
while the number of control points was four.
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Table 9. Position of control point P4.

Position X (m) Y (m) Z (m)

P4 11.9 1 4.5

According to the above calculation, the humidity of P4 at the steady state was
10.11 g/kg. In this scenario, the control target parameters of P1 to P4 could not be met
simultaneously and precisely by adjusting the humidity of the air supply inlets S1 to S3.
Setting the allowable humidity range of each control point as ±0.2 g/kg, multiple sets of
air supply humidities satisfying the control requirements could be obtained by solving
the equations. Tables 10 and 11 list the results that correspond to the minimum energy
consumption at the control target. The sum of humidity increments in the air supply inlets
was 1.40 g/kg. Figure 7 shows the indoor humidity distribution after adjustment. The
humidities of the various control points were within the allowable range.

Table 10. Humidity of the air supply for Scenario IV.

S1 S2 S3 S4

Original humidity (g/kg) 9.85 9.85 9.85 9.85
Adjusted humidity (g/kg) 10.05 10.08 10.82 9.85

Table 11. Humidities of control points with the minimum energy consumption for Scenario IV.

P1 P2 P3 P4

Target humidity (g/kg) 10.83 10.81 10.59 10.11
Actual humidity (g/kg) 10.95 10.94 10.75 10.29

Deviation (g/kg) +0.12 +0.13 +0.14 +0.18
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In addition, considering that there were multiple solutions in the accuracy range of
this scenario, it was indicated that the humidity adjustment range of the control point could
be further narrowed, thereby improving the control accuracy.

4. Discussion

The comprehensive method for indoor humidity control presented above was based on
the calculation of indoor moisture distribution. The algebraic expression had been validated
and demonstrated in previous work. Ma et al. verified the expression by comparing the
predicted value with the experimental measurements of several points in a ventilated room.
The data of the humidity predicted by the analytical expression agreed acceptably with the
experimental measurements [25].

To reveal the availability of this method for indoor parameter control, a humidity
adjustment process in an experimental room with traditional feedback control methods and
the new method proposed in this paper were measured and compared. In order to provide
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a clear demonstration of the characteristics of the adjustment process and to take into
account the limitations of the measurement conditions, a single-control-point experiment
was conducted for comparison.

The experimental platform was located at Beijing Union University, which included
the test chamber and air conditioning system, as shown in Figure 8. The overall size of the
test chamber was 6.5 m (L) × 2.5 m (H) × 4 m (W) and enclosed with foam-polyurethane
material which could be treated as heat and moisture isolation. The air conditioning system
of this experiment consisted of a system with complete air circulation (fresh air and exhaust
air were both closed).
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Figure 8. Indoor climate experimental platform.

The initial temperature of the experimental test chamber was 25 ◦C and the relative
humidity was 40%. The supplied air volume was 940 m3/h (~15 air exchanges) and the
air speed of the inlet was 1.85 m/s. A calibrated ultrasonic humidifier with a strength of
700 g/h was utilized as the moisture source. One measurement point was arranged in the
artificial climate chamber. Specific information of the test equipment is listed in Table 12 as
well as the experimental setting in Table 13. The temperature and humidity were recorded
every 10 s. The moisture source and control points were located on the symmetrical surface
of the room, as shown in Figure 9.
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Table 12. Specification parameters of the experimental equipment.

Instrument Name Role Measurement Range Accuracy

RHLOG-T-H temperature and
humidity self-reporter Monitor indoor humidity 0~100% RH

−30~+70 ◦C

±3% RH
Indoor environment: ±0.5 ◦C
Outdoor environment: ±1 ◦C

HMP110 ambient temperature
and humidity sensor

Monitor indoor temperature
and humidity

0~100% RH
−40~+80 ◦C

± 1.5% RH
−40~0 ◦C: ±0.4 ◦C
0~40 ◦C: ±0.2 ◦C
40~80 ◦C: ±0.4 ◦C

Table 13. The control setting of the experimental procedure.

Time (s) 0 150

Emission rate of moisture
source (g/h) 700 0

Setting value of relative
humidity (%RH) 40 40Buildings 2024, 14, x FOR PEER REVIEW 14 of 17 
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Figure 9. Location of the moisture source and control point.

Setting the moisture sources emission rate as 700 g/h at the beginning of measurement,
the indoor humidity pattern remained relatively stable at a value of 40% RH. When the
indoor moisture source suddenly stopped at 150 s, under the traditional feedback control
strategy, the indoor humidity rapidly dropped, reaching a trough at a value of 33.1% RH,
which is shown in Figure 10a. The control loop of the traditional method was needed to
compare the indoor measured value with the set value, thereby explaining the long reaction
time. At a time of 360 s, the feedback signal caused the humidifier to work so that the
indoor humidity began to rise and approach the set value of 40% RH at 630 s. At 720 s, a
steady state was achieved. Since the PID control algorithm was used in the control of the
actuator, there was no overshooting during the process.

With the new control method, since the required air supply parameters could be
quickly calculated according to the change in the humidity source, the humidifier could
directly adjust the amount of humidification without sensor feedback. Figure 10b presents
the experimental results and confidence interval of these two different control methods. It
can be seen that when the humidity source suddenly disappeared, the indoor humidity
began to drop, and the lowest humidity of 37.1% RH was achieved at 260 s. Then, the
humidity value began to rise and achieved a steady state at 470 s.
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Figure 10. Experimental results of two different control methods.

Comparing the humidity changes under the two adjustment processes, it can be seen
that the humidity reduction in the traditional method took more time to reach the minimum,
and the humidity reduction (6.9% RH) was greater than the reduction with the new method
(2.9% RH). When the humidity was close to the set value (40% RH), the humidity of the
new method control also approached the set value and rapidly achieved a steady state.

Also, Figure 10 indicates that the curve using the new method exhibited an obvious
jump due to the great change in the humidity value compared with the previous moment,
and the confidence interval was wider. Overall, from the analysis of the data error, the error
of the result was within the allowable range and the experimental results are thus reliable.

The proposed optimization method can be used to rapidly determine the air supply pa-
rameters of each air outlet that meet different control objectives. The followed step-by-step
implementation process was used as a guide for indoor moisture control in real projects:

Step 1: Calculate the accessibility indices of each air supply and moisture source based
on the physical characteristics, manufacturing processes, and indoor airflow properties of
the room.

Step 2: Input the change in moisture sources, which can either be pre-set according
to different production scenarios or detected online during operation. Then, establish a
matrix equation system and set the target function for regulation.

Step 3: Set the allowable adjustment range for the humidity values at each control
point; it may be set to zero for precise control or to an appropriate value for loose control.

Step 4.1: Solve linear programming equations to obtain the variation of air supply
parameters for each air supply outlet. This marks the conclusion of the calculation process
and the generation of the output values.

Step 4.2: In the event that the variation of each air supply outlet is unable to meet
the control requirements of each control point or the optimization goals of regulation, the
allowable adjustment range of each control point must be reset and the process must be
returned to Step 3.

5. Conclusions

Based on the algebraic expression of indoor air humidity distribution under steady
flow field, a comprehensive optimization method for indoor non-uniform moisture en-
vironment control was developed in this study. With a case analysis, the method was
applied to guarantee the indoor multi-location humidity with different objectives. The
main conclusions of this paper are drawn as follows.

(1) This paper presents a comprehensive method for multi-location demands under
different objectives in an indoor moisture environment with varying control error ranges.
By rapidly calculating with a matrix equation, the variations of air supply parameters can
be timely determined for different control scenarios. The matrix equations in this paper
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reveal the relationship between the number of adjustable air supply inlets and the number
of controllable locations. When the air supply humidity can be adjusted independently,
the proposed method is used to determine the air supply humidity parameters to satisfy
the requirements of each control point. The corresponding solutions may be optimized
for different control objectives by setting the humidity adjustment range of control points
within an allowable range.

(2) Using the case study, the application of the proposed method for indoor non-
uniform moisture environment guarantee was illustrated. With different objective condi-
tions, which include minimization of the dehumidify consumption, minimization of the
adjustment value of air supply humidity, and limitation of adjustable air supply inlets, the
strategies of the air supply parameters under different control targets were analyzed. Opti-
mization of the control strategy according to different objective functions can be achieved
using this method.

(3) Compared with traditional feedback regulation methods, the proposed method
shows an advantage in adjusting indoor environment parameters. This study involved
the establishment of an experimental setup for a typical regulation process in which two
different control methods were used to measure the change in humidity. The results showed
that the method proposed in this paper is more effective in the reaction and recovery time
of the control system and the amplitude of deviation from the set value.

Based on the discussions of availability and feasibility of the proposed method, a
step-by-step implementation process is drawn as the guideline for control optimization
in real projects. The method can be applied for the control of indoor air humidity to meet
different multi-location demands. It is of significant value for the adjustment and control
of indoor environment in high-precision buildings.
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