Research on Multi-Parameter Error Model of Backcalculated Modulus Using Abaqus Finite Element Batch Modeling Based on Python Language
Abstract
:1. Introduction
2. Typical Parameter Composition of Modulus Backcalculation Model
3. Statistical Distribution of Actual Measurement Errors in Model Parameters
3.1. Statistical Distribution of Errors in Pavement Structural Layer Thickness
3.2. Statistical Distribution of Errors in Pavement Structural Layer Modulus
3.3. Load Characteristics and the Statistical Distribution
4. Construction of Finite Element Batch Processing Model Based on Python Language
4.1. Standard Model of Pavement Structure
4.2. Batch Parameterized Modeling Method
4.2.1. Construction of Error Parameter Sequence
4.2.2. Batch Parameterization Modeling Process
4.2.3. Effects of Batch Parameterization Modeling Using Python Language
- (1)
- Accuracy. Taking the standard model in Table 5 as the research object, the differences between the deflections obtained by the batch analysis method and those obtained by manual interaction modeling and manual extraction are compared. The results obtained by the Python method are completely consistent with those obtained by the manual interaction method.
- (2)
- Application efficiency. Taking the standard model in Table 5 as the research object, directly modeling and analyzing in ABAQUS software (version 2021) using manual interaction takes about 20 min per model. If considering errors during operation, rework, and rest time, with an effective daily work time of 12 h, completing 5000 models would take over 140 days. In contrast, using the Python batch parameterization modeling method, running on a computer equipped with an AMD Ryzen 9 5900X 12-Core Processor at 3.70 GHz, each model takes only about 1 min, and it can achieve 24 h of uninterrupted automatic calculation with zero rework. The actual total time to complete the modeling and analysis of 5000 models is only about 3.5 days, which can improve the time efficiency by more than 40 times.
5. Multi-Parameter Error Model
5.1. Orthogonal Experimental Design
5.2. Multivariate Regression and Analysis of Variance
6. Theoretical Limitations of Modulus Error
6.1. Theoretical and Actual Error Levels of Typical Parameters
6.2. Modulus Errors Under the Level of Multiple Parameter Errors
6.2.1. Theoretical Modulus Errors Under Specific Combinations of Multiple Parameter Errors
6.2.2. Theoretical Modulus Error Under General Combinations of Multiple Parameter Errors
- (1)
- Monte Carlo reliability method
- (2)
- Level and probability of modulus error under random combination of multiple parameter errors
- (3)
- Impact of multi-parameter error range on modulus error
7. Conclusions
- (1)
- The errors in layer thickness, load amplitude, and load frequency follow a normal distribution, while the distribution of errors in backcalculated moduli follows approximate mixed Gaussian distribution exhibit characteristics such as unimodal, bell shape bimodal and multimodal. This provides the real parameters needed for large-scale, high-volume pavement structure simulation calculations, which will effectively improve the accuracy of pavement structure simulation calculations.
- (2)
- The computational results of the ABAQUS finite element batch modeling and processing method based on Python are consistent with those of human–computer interaction, and the efficiency is increased by more than 40 times. This will provide a new computational tool for the large amount of pavement structure simulation analysis.
- (3)
- The theoretical modulus error caused by random combinations of multiple parameter errors ranges from −100% to 595% and exhibits randomness. The probability of modulus errors being less than ±15% is the highest for the asphalt surface layer at 9.5%, followed by the subgrade at 6.7%, base layer at 5.5%, and subbase layer at 4.2%. Under the same error range (measurement accuracy control standards), the modulus error exhibits randomness. However, under different error ranges, the overall level of modulus error is directly proportional to the size of the error ranges.
- (4)
- Compared to thickness, load amplitude, and load frequency, the deflection error has a highly contribution rate on the modulus errors exceeding 99%, which indicates that when applying modulus backcalculation techniques, special attention should be paid to controlling the errors in deflection measurement.
Future Works
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Uzan, J. Dynamic linear back calculation of pavement material parameters. J. Transp. Eng. 1994, 120, 109–126. [Google Scholar] [CrossRef]
- Zaabar, I.; Chatti, K.; Lee, H.S.; Lajnef, N. Backcalculation of asphalt concrete modulus master curve from field-measured falling weight deflectometer data: Using a new time domain viscoelastic dynamic solution and genetic algorithm. Transp. Res. Rec. 2014, 2457, 80–92. [Google Scholar] [CrossRef]
- Fujita, Y.; Shimada, K.; Ichihara, M.; Hamamoto, Y. A method based on machine learning using hand-crafted features for crack detection from asphalt pavement surface images. In Proceedings of the Thirteenth International Conference on Quality Control by Artificial Vision 2017, Tokyo, Japan, 14–16 May 2017; SPIE: Tokyo, Japan, 2017; pp. 117–124. [Google Scholar]
- Ghanizadeh, A.R.; Heidarabadizadeh, N.; Khalifeh, V. Developing a Hybrid ANN-Jaya Procedure for Backcalculation of Flexible Pavements Moduli. Civ. Eng. Infrastruct. J. 2022, 55, 89–108. [Google Scholar]
- Chatti, K.; Kutay, M.E.; Lajnef, N.; Zaabar, I.; Varma, S.; Lee, H.S. (Turner-Fairbank Highway Research Center). In Enhanced Analysis of Falling Weight Deflectometer Data for Use with Mechanistic-Empirical Flexible Pavement Design and Analysis and Recommendations for Improvements to Falling Weight Deflectometers; Turner-Fairbank Highway Research Center: McLean, VA, USA, 2017. [Google Scholar]
- Sangghaleh, A.; Pan, E.; Green, R.; Wang, R.; Liu, X.; Cai, Y. Backcalculation of pavement layer elastic modulus and thickness with measurement errors. Int. J. Pavement Eng. 2014, 15, 521–531. [Google Scholar] [CrossRef]
- Kheradmandi, N.; Modarres, A.J.C.; Materials, B. Precision of back-calculation analysis and independent parameters-based models in estimating the pavement layers modulus-Field and experimental study. Constr. Build. Mater. 2018, 171, 598–610. [Google Scholar] [CrossRef]
- Yu, J.; Xiong, C.; Zhang, X.; Li, W.J.C.; Materials, B. More accurate modulus back-calculation by reducing noise information from in situ–measured asphalt pavement deflection basin using regression model. Constr. Build. Mater. 2018, 158, 1026–1034. [Google Scholar] [CrossRef]
- Uzan, J.; Lytton, R.L.; Germann, F.P. General Procedure for Backcalculating Layer Moduli. In Nondestructive Testing of Pavements and Backcalculation of Moduli; ASTM International: West Conshohocken, PA, USA, 1989; pp. 217–228. [Google Scholar]
- Lee, H.S.; Ayyala, D.; Von Quintus, H. Dynamic backcalculation of viscoelastic asphalt properties and master curve construction. Transp. Res. Rec. 2017, 2641, 29–38. [Google Scholar] [CrossRef]
- Varma, S.; Emin Kutay, M. Backcalculation of viscoelastic and nonlinear flexible pavement layer properties from falling weight deflections. Int. J. Pavement Eng. 2016, 17, 388–402. [Google Scholar] [CrossRef]
- Zhang, I.Y.; Logsdail, A.J.; Ren, X.; Levchenko, S.V.; Ghiringhelli, L.; Scheffler, M. Main-group test set for materials science and engineering with user-friendly graphical tools for error analysis: Systematic benchmark of the numerical and intrinsic errors in state-of-the-art electronic-structure approximations. New J. Phys. 2019, 21, 013025. [Google Scholar] [CrossRef]
- Wolf, R.L.; Ehman, R.L.; Riederer, S.J.; Rossman, P.J. Analysis of systematic and random error in MR volumetric flow measurements. Magn. Reson. Med. 2005, 30, 82–91. [Google Scholar] [CrossRef]
- Irwin, L.H.; Yang, W.S.; Stubstad, R.N. Deflection Reading Accuracy and Layer Thickness Accuracy in Backcalculation of Pavement Layer Moduli. In Nondestructive Testing of Pavements and Backcalculation of Moduli; ASTM International: West Conshohocken, PA, USA, 1989; pp. 229–244. [Google Scholar]
- Jooste, F.; Kekwick, S.V.; Muthen, M. Effect of Allowable Thickness Variation on Backcalculated Moduli. Transp. Res. Rec. J. Transp. Res. Board 1998, 1639, 43–52. [Google Scholar] [CrossRef]
- Zhang, R.; Ren, T.; Khan, M.A.; Teng, Y.; Zheng, J. Back-Calculation of Soil Modulus from PFWD Based on a Viscoelastic Model. Adv. Civ. Eng. 2019, 2019, 1316341. [Google Scholar] [CrossRef]
- Nielsen, C.P. Visco-elastic back-calculation of traffic speed deflectometer measurements. Transp. Res. Rec. 2019, 2673, 439–448. [Google Scholar] [CrossRef]
- Liang, B.; Mahadevan, S. Error and uncertainty quantification and sensitivity analysis in mechanics computational models. Int. J. Uncertain. Quantif. 2011, 1, 147–161. [Google Scholar]
- Saltan, M.; Terzi, S.; Küçüksille, E.U. Backcalculation of pavement layer moduli and Poisson’s ratio using data mining. Expert Syst. Appl. 2011, 38, 2600–2608. [Google Scholar] [CrossRef]
- Germann, F.P.; Lytton, R.L. Temperature, Frequency, and Load Level Correction Factors for Backcalculated Moduli Values. In Nondestructive Testing of Pavements and Backcalculation of Moduli; ASTM International: West Conshohocken, PA, USA, 1989; pp. 431–451. [Google Scholar]
- Barugahare, J.; Amirkhanian, A.N.; Xiao, F.; Amirkhanian, S.N. ANN-based dynamic modulus models of asphalt mixtures with similar input variables as Hirsch and Witczak models. Int. J. Pavement Eng. 2022, 23, 1328–1338. [Google Scholar] [CrossRef]
- Georgouli, K.; Loizos, A.; Plati, C.J.C.; Materials, B. Calibration of dynamic modulus predictive model. Constr. Build. Mater. 2016, 102, 65–75. [Google Scholar] [CrossRef]
- Wu, W.; Shen, L.; Jin, W.; Liu, R. Density-based mixed platoon dispersion modelling with truncated mixed Gaussian distribution of speed. Transp. B Transp. Dyn. 2014, 3, 114–130. [Google Scholar] [CrossRef]
- Michalowicz, J.V.; Nichols, J.M.; Bucholtz, F. Calculation of Differential Entropy for a Mixed Gaussian Distribution. Entropy 2008, 10, 200–206. [Google Scholar] [CrossRef]
- Fu, G.; Zhao, Y.; Zhou, C.; Liu, W. Determination of effective frequency range excited by falling weight deflectometer loading history for asphalt pavement. Constr. Build. Mater. 2020, 235, 117792. [Google Scholar] [CrossRef]
- Yusoff, N.I.M.; Hardwiyono, S.; Ismail, N.N.; Taha, M.R.; Rosyidi, S.A.P.; Nayan, K.A.M. Measurements of the elastic modulus of pavement subgrade layers using the SASW and FWD test methods. Balt. J. Road Bridge Eng. 2015, 10, 174–181. [Google Scholar] [CrossRef]
- Leiva-Villacorta, F. Advanced Computing Techniques in Structural Evaluation of Flexible Pavements Using the Falling Weight Deflectometer; Auburn University: Auburn, AL, USA, 2012. [Google Scholar]
- Kuo, H.-C.; Wu, J.-L. A new approach with orthogonal array for global optimization in design of experiments. J. Glob. Optim. 2009, 44, 563–578. [Google Scholar] [CrossRef]
- Burnos, P.; Rys, D.J.S. The effect of flexible pavement mechanics on the accuracy of axle load sensors in vehicle weigh-in-motion systems. Sensors 2017, 17, 2053. [Google Scholar] [CrossRef] [PubMed]
- Pandya, H.I.; Ali, A.A.; Mehta, Y.A. Evaluation. Enhancing Falling Weight Deflectometer (FWD) Testing: Comprehensive Review and Development of Robust Procedure in the United States. J. Test. Eval. 2024, 52, 2039–2054. [Google Scholar] [CrossRef]
- Simonin, J.-M.; Geffard, J.-L.; Hornych, P. Performance of deflection measurement equipment and data interpretation in France. In Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering (NDT-CE), Berlin, Germany, 15–17 September 2015; pp. 15–17. [Google Scholar]
- Bezina, Š.; Stančerić, I.; Domitrović, J.; Rukavina, T. Spatial Representation of GPR Data—Accuracy of Asphalt Layers Thickness Mapping. Remote Sens. 2021, 13, 864. [Google Scholar] [CrossRef]
- Rubinstein, R.Y.; Kroese, D.P. Simulation and the Monte Carlo Method; John Wiley & Sons: New York, NY, USA, 2016. [Google Scholar]
- Metropolis, N.; Ulam, S. The monte carlo method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
Layer | ||
---|---|---|
Asphalt layer | [−0.50 cm, 1.03 cm] | [0.35 cm, 3.44 cm] |
Cement stabilized base layer | [−1.48 cm, 1.11 cm] | [0.58 cm, 1.11 cm] |
Crushed stone layer | [−1.45 cm, 2.95 cm] | [1.07 cm, 1.98 cm] |
SHRP ID | Layer | Pass Rate/% | Cumulative Sieve Residue/% | /% | /% | /106 Poise | /°C | / MPa | |||
---|---|---|---|---|---|---|---|---|---|---|---|
60 °C | 135 °C | ||||||||||
31-0116 | HMAC in base layer | 2.2 | 50.0 | 32.0 | 5.0 | 8.35 | 4.80 | 3376.0 | 4.9 | 34.2 | 3663 |
39-0105 | AC in surface layer | 5.9 | 48.0 | 12.0 | 0.0 | 4.67 | 4.27 | 4949.0 | 5.1 | 28.5 | 15,663 |
48-0117 | AC in surface layer | 6.7 | 56.0 | 29.0 | 2.0 | 6.03 | 3.70 | 2286.0 | 3.7 | 34.0 | 6275 |
SHRP ID | 31-0116 | 48-0114 | 48-0121 | 48-7165 | 87-2811 |
---|---|---|---|---|---|
Type of pavement | Flexible | Semi-rigid | Semi-rigid | Composite | Composite |
PCC slab | / | / | / | 44,818 | 40,508 |
Semi-rigid base layers | / | 159.1 | 148.4 | / | / |
Granular base layers | 178.6 | 175.7 | 174.1 | / | / |
Subgrade | 97.1 | / | 54.5 | 95.3 | 62.0 |
Layer | Number of Valid Data | SHRP ID | Distribution | Distribution Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shape Test | Chi-Square Test | ||||||||||||
Asphalt layer | 56 | 31-0116 | Bimodal | passed | −2371.5 | 455.8 | 0.47 | 1193.5 | 1583.7 | 0.53 | / | / | / |
41 | 39-0105 | Trimodal | passed | 6661.0 | 2053.8 | 0.42 | −8296.9 | 1869.2 | 0.39 | −2372.6 | 2236.9 | 0.18 | |
32 | 48-0117 | Unimodal | failed | −508.0 | 2525.9 | 1.00 | / | / | / | / | / | / | |
PCC slab | 24 | 48-7165 | Bimodal | passed | 1500.9 | 8100.8 | 0.77 | −8164.9 | 702.9 | 0.23 | / | / | / |
48 | 87-2811 | Unimodal | passed | −17,930.8 | 6726.1 | 1.00 | / | / | / | / | / | / | |
Granular base | 32 | 31-0116 | Unimodal | passed | −89.8 | 26.5 | 1.00 | / | / | / | / | / | / |
56 | 48-0114 | Unimodal | failed | 301.5 | 84.3 | 1.00 | / | / | / | / | / | / | |
56 | 48-0121 | Bimodal | failed | 326.6 | 63.6 | 0.87 | 651.6 | 91.2 | 0.13 | / | / | / | |
Semi-rigid base | 56 | 48-0114 | Bimodal | failed | 338.2 | 60.1 | 0.53 | 526.6 | 116.8 | 0.47 | / | / | / |
56 | 48-0121 | Bimodal | failed | 313.3 | 28.0 | 0.69 | 538.5 | 71.6 | 0.31 | / | / | / | |
Subgrade | 32 | 31-0116 | Unimodal | passed | 71.7 | 20.3 | 1.00 | / | / | / | / | / | / |
56 | 48-0121 | Unimodal | failed | 266.9 | 18.3 | 1.00 | / | / | / | / | / | / | |
24 | 48-7165 | Unimodal | passed | 54.4 | 10.7 | 1.00 | / | / | / | / | / | / | |
36 | 87-2811 | Bimodal | failed | 60.3 | 73.4 | 1.00 | / | / | / | / | / | / |
Parameters | Asphalt Layer | Cement Stabilized Base Layer | Cement Stabilized Subbase Layer | Subgrade | |||||
---|---|---|---|---|---|---|---|---|---|
Thickness/cm | 18 | 40 | 20 | - | |||||
Modulus/MPa | 12,500 | 8500 | 5000 | 70 | |||||
Poisson’s ratio | 0.3 | 0.25 | 0.25 | 0.40 | |||||
Damping coefficient | 0.9 | 0.04 | 0.04 | 0.06 | |||||
Density/kg/m3 | 2400 | 2300 | 2200 | 1800 | |||||
Viscoelastic parameters (Prony series) | |||||||||
tau_i_Prony | 10−5 | 10−4 | 10−3 | 10−2 | 10−1 | 1 | 10 | 100 | 1000 |
g_i_Prony | 0.0689 | 0.0954 | 0.1917 | 0.2808 | 0.2177 | 0.0877 | 0.028 | 0.0089 | 0.0042 |
Sensors | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 |
---|---|---|---|---|---|---|---|---|---|
Distance from load center | 0 | 20 | 30 | 60 | 90 | 120 | 150 | 180 | 210 |
Level | /MPa | /m | /MPa | /m | /MPa | /m | /MPa | /kN | /Hz |
---|---|---|---|---|---|---|---|---|---|
1 | 11,278 | 0.182 | 6454 | 0.385 | 4444 | 0.184 | 44 | 47.8 | 33.6 |
2 | 11,753 | 0.192 | 7499 | 0.392 | 4744 | 0.189 | 56 | 48.0 | 34.1 |
3 | 11,987 | 0.199 | 7594 | 0.399 | 4812 | 0.199 | 59 | 49.0 | 34.2 |
4 | 12,033 | 0.207 | 7979 | 0.401 | 4916 | 0.205 | 68 | 49.3 | 34.3 |
5 | 12,338 | 0.208 | 8195 | 0.407 | 4956 | 0.207 | 76 | 50.0 | 35.1 |
6 | 12,812 | 0.209 | 8353 | 0.408 | 5028 | 0.209 | 80 | 50.4 | 35.2 |
7 | 14,035 | 0.211 | 8449 | 0.409 | 5074 | 0.217 | 87 | 51.3 | 35.5 |
8 | 14,081 | 0.212 | 9102 | 0.413 | 5242 | 0.223 | 87 | 51.8 | 35.7 |
9 | 14,458 | 0.215 | 10314 | 0.417 | 5353 | 0.231 | 107 | 51.9 | 37.0 |
Parameters | p Value | p Value | p Value | p Value | ||||
---|---|---|---|---|---|---|---|---|
0.007 | 0.032 | 0.008 | 0.189 1 | −0.004 | 0.560 1 | 0.027 | 0.013 | |
−1.381 | 0.000 | −0.414 | 0.012 | −0.549 | 0.010 | 0.077 | 0.788 1 | |
0.251 | 0.028 | −0.825 | 0.000 | −2.308 | 0.000 | −1.185 | 0.003 | |
0.110 | 0.023 | −0.276 | 0.003 | −1.010 | 0.000 | −0.459 | 0.005 | |
1.160 | 0.000 | 1.339 | 0.000 | 0.857 | 0.001 | 2.639 | 0.000 | |
−0.447 | 0.001 | −0.824 | 0.001 | −0.019 | 0.949 1 | −3.222 | 0.000 | |
−41.650 | 0.000 | 58.500 | 0.000 | −63.300 | 0.001 | 27.600 | 0.275 1 | |
−0.100 | 0.996 1 | −49.700 | 0.072 1 | 24.500 | 0.490 1 | 9.300 | 0.849 1 | |
17.900 | 0.249 1 | −23.900 | 0.411 1 | 101.300 | 0.010 | −90.700 | 0.088 1 | |
28.600 | 0.039 | −25.500 | 0.316 1 | −28.100 | 0.396 1 | 86.000 | 0.065 1 | |
27.600 | 0.126 1 | −13.300 | 0.689 1 | −17.100 | 0.694 1 | −68.600 | 0.257 1 | |
−61.600 | 0.013 | 133.900 | 0.004 | −92.100 | 0.121 1 | 122.600 | 0.136 1 | |
43.200 | 0.048 | −94.700 | 0.022 | 76.200 | 0.149 1 | −52.700 | 0.467 1 | |
−19.500 | 0.116 1 | 15.600 | 0.499 1 | −17.400 | 0.561 1 | −112.500 | 0.009 | |
4.380 | 0.536 1 | −2.400 | 0.855 1 | 15.300 | 0.378 1 | 76.100 | 0.003 | |
0.979 | 0.967 | 0.656 | 0.968 |
0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.007 | 0.008 | 0.008 | 0.008 | |
−0.115 | −0.104 | −0.098 | −0.085 | −0.075 | −0.071 | −0.068 | −0.066 | −0.064 | |
−0.354 | −0.334 | −0.328 | −0.309 | −0.285 | −0.268 | −0.253 | −0.238 | −0.227 | |
−0.217 | −0.218 | −0.217 | −0.207 | −0.190 | −0.170 | −0.153 | −0.138 | −0.126 | |
−0.634 | −0.643 | −0.648 | −0.653 | −0.641 | −0.616 | −0.581 | −0.542 | −0.499 | |
−0.171 | −0.173 | −0.174 | −0.176 | −0.173 | −0.167 | −0.156 | −0.145 | −0.133 | |
−0.244 | −0.247 | −0.249 | −0.251 | −0.247 | −0.237 | −0.223 | −0.206 | −0.188 | |
−0.169 | −0.174 | −0.177 | −0.189 | −0.205 | −0.222 | −0.237 | −0.253 | −0.267 | |
0.967 | 0.967 | 0.967 | 0.968 | 0.970 | 0.972 | 0.973 | 0.970 | 0.971 | |
−0.623 | −0.628 | −0.633 | −0.648 | −0.671 | −0.696 | −0.722 | −0.742 | −0.758 | |
0.977 | 0.977 | 0.977 | 0.975 | 0.974 | 0.973 | 0.972 | 0.971 | 0.969 |
Parameters | Thickness | Load Amplitude | Load Frequency | Deflections |
---|---|---|---|---|
Error range | −5.02~5.02% | −2.30~2.30% | −4.13~4.13% | −3.2~3.2% |
Modulus Error | ||||
---|---|---|---|---|
) | 7292 | 6093 | 10,000 | 6556 |
Error range | −100~297% | −100~595% | −40.6~402% | −100~459% |
Average of errors | 69.4% | 191.9% | 180.7% | 136.2% |
692 | 333 | 421 | 438 | |
Safety probability of limit state | 9.5% | 5.5% | 4.2% | 6.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, C.; Yu, J.; Zhang, X.; Luo, C. Research on Multi-Parameter Error Model of Backcalculated Modulus Using Abaqus Finite Element Batch Modeling Based on Python Language. Buildings 2024, 14, 3454. https://doi.org/10.3390/buildings14113454
Xiong C, Yu J, Zhang X, Luo C. Research on Multi-Parameter Error Model of Backcalculated Modulus Using Abaqus Finite Element Batch Modeling Based on Python Language. Buildings. 2024; 14(11):3454. https://doi.org/10.3390/buildings14113454
Chicago/Turabian StyleXiong, Chunlong, Jiangmiao Yu, Xiaoning Zhang, and Chuanxi Luo. 2024. "Research on Multi-Parameter Error Model of Backcalculated Modulus Using Abaqus Finite Element Batch Modeling Based on Python Language" Buildings 14, no. 11: 3454. https://doi.org/10.3390/buildings14113454
APA StyleXiong, C., Yu, J., Zhang, X., & Luo, C. (2024). Research on Multi-Parameter Error Model of Backcalculated Modulus Using Abaqus Finite Element Batch Modeling Based on Python Language. Buildings, 14(11), 3454. https://doi.org/10.3390/buildings14113454