Study of the Structure and Properties of Concrete Modified with Nanofibrils and Nanospheres
Abstract
:1. Introduction
- −
- Development of experimental compositions of concrete mixtures, taking into account the actual properties of the raw materials.
- −
- Production of experimental samples of cement pastes and concretes of control composition and compositions modified with nanofibrils from synthesized wollastonite and hollow nanospheres from corundum in various dosages.
- −
- Conducting experimental studies of cement pastes and concretes, including an assessment of compressive and flexural strength for cement pastes and assessment of density, compressive and flexural strength, water absorption, phase composition, and microstructure for concrete.
- −
- Comparison of nanofibrils and nanospheres according to the criterion of the effectiveness of their influence on the properties of cement composites.
- −
- Analysis of the experimental results obtained and determination of the most effective type of additive and optimal ranges of its dosages, as well as comparison of the results obtained according to the criterion of efficiency of nanofibrils and nanospheres with other types of nanoadditives used in the technology of cement composites.
- −
- Development of real recommendations for the concrete industry.
2. Materials and Methods
2.1. Materials
- −
- Portland cement CEM I 42.5N (PC) produced by CEMROS (Moscow, Russia);
- −
- Crushed sandstone (CrS) produced by Solntsedar-Don (Rostov-on-Don, Russia);
- −
- Quartz sand (QS) and polyfractional sand (PS) produced by Don-Resource (Kagalnik, Russia);
- −
- Nanofibrils from synthesized wollastonite (NF) and nanospheres from corundum (NS) produced by LLC NPK Nanosystems (Rostov-on-Don, Russia).
2.2. Methods
3. Results and Discussion
- −
- The use of NF and NS additives has a positive effect on the compressive strength and flexural strength of cement pastes. The NF additive provides a greater increase in compressive and flexural strength compared to the NS additive. For both types of additives, the most optimal dosage is fixed at 0.3%. The maximum values of increases in compressive and flexural strength of cement pastes modified with 0.3% NF were 6.87% and 6.90%, respectively. The maximum values of increases in compressive and flexural strength of cement pastes modified with 0.3% NS were 2.42% and 2.86%, respectively.
- −
- Modification of concrete with NF and NS additives does not have a significant effect on the change in concrete density. The maximum density value was recorded for concrete with 0.3% NF—2467 kg/m3.
- −
- NF and NS additives provide an increase in the strength properties of concrete. The maximum values of increases in compressive and flexural strength of concrete with 0.3% NF were 7.22% and 7.04%, respectively. For concrete with 0.3% NS, the increases in compressive and flexural strength were 2.71% and 2.48%, respectively.
- −
- NF and NS additives slightly reduce the water absorption of concrete, NF to a greater extent than NS (4.7% versus 1.96%, respectively), and maximum reductions were also recorded with an additive dosage of 0.3%.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gil, L.; Bernardo, J. An approach to energy and climate issues aiming at carbon neutrality. Renew. Energy Focus. 2020, 33, 37–42. [Google Scholar] [CrossRef]
- Udumulla, D.; Ginigaddara, T.; Jayasinghe, T.; Mendis, P.; Baduge, S. Effect of Graphene Oxide Nanomaterials on the Durability of Concrete: A Review on Mechanisms, Provisions, Challenges, and Future Prospects. Materials 2024, 17, 2411. [Google Scholar] [CrossRef]
- Georgiev, S.V.; Mailyan, D.R.; Solovyeva, A.I. Determining the Most Efficient Method of Strengthening the Reinforced Concrete Columns under Different Loading Levels. Mod. Trends Constr. Urban Territ. Plan. 2024, 3, 7–14. [Google Scholar] [CrossRef]
- Soloviev, A.N.; Binh, D.T.; Chebanenko, V.A.; Lesnyak, O.N.; Kirillova, E.V. Vibration analysis of a composite magnetoelectroelastic bimorph depending on the volume fractions of its components based on applied theory. Adv. Eng. Res. (Rostov-on-Don) 2022, 22, 4–13. [Google Scholar] [CrossRef]
- Mohtasham Moein, M.; Rahmati, K.; Saradar, A.; Moon, J.; Karakouzian, M. A Critical Review Examining the Characteristics of Modified Concretes with Different Nanomaterials. Materials 2024, 17, 409. [Google Scholar] [CrossRef]
- Guangcong, N.; Tiraturyan, A.N.; Uglova, E.V.; Vorobev, A.V. Study on Dynamic Response Characteristics of Different Asphalt Pavement Structures Based on ALF Test. Adv. Eng. Res. (Rostov-on-Don) 2023, 23, 241–256. [Google Scholar] [CrossRef]
- Al-Noaimat, Y.A.; Chougan, M.; Al-kheetan, M.J.; Al-Mandhari, O.; Al-Saidi, W.; Al-Maqbali, M.; Al-Hosni, H.; Ghaffar, S.H. 3D printing of limestone-calcined clay cement: A review of its potential implementation in the construction industry. RINENG 2023, 18, 101115. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Varavka, V. Nanomodification of Lightweight Fiber Reinforced Concrete with Micro Silica and Its Influence on the Constructive Quality Coefficient. Materials 2021, 14, 7347. [Google Scholar] [CrossRef]
- Wan, L.; Zhao, Y.; Maopei Yu, M.; Tian, Y.; Yipeng Wang, Y. Durability and Mechanical Properties of Nano-SiO2 and Polyvinyl Alcohol Fiber-Reinforced Cementitious Composites Subjected to Saline Freeze–Thaw Cycles. Materials 2024, 17, 2542. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhuang, J.; Lin, W.; Xu, W.; Hu, R. Creep and Shrinkage Properties of Nano-SiO2-Modified Recycled Aggregate Concrete. Materials 2024, 17, 1904. [Google Scholar] [CrossRef]
- Golewski, G.L. Determination of Fracture Mechanic Parameters of Concretes Based on Cement Matrix Enhanced by Fly Ash and Nano-Silica. Materials 2024, 17, 4230. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wang, S.; Quan, X.; Xu, J.; Li, J.; Liu, K.; Xu, F.; Hong, Z. Nano-SiO2 Recycled Concrete Anti-Sulfate Performance and Damage Mechanism Research. Buildings 2023, 13, 1429. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Z.; Cui, J. Carbonation Resistance of Marine Concrete Containing Nano-SiO2 under the Action of Bending Load. J. Mar. Sci. Eng. 2023, 11, 637. [Google Scholar] [CrossRef]
- Wang, K.; Guo, J.; Zhang, P.; Meng, Q. The Counterbalance of the Adverse Effect of Abrasion on the Properties of Concrete Incorporating Nano-SiO2 and Polypropylene Fiber Based on Pore Structure Fractal Characteristics. Fractal Fract. 2022, 6, 392. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Jay Kim, J.-H.; Kim, J.-S.; Jo, J.-B. Effect of Carbon Nanotubes on Chloride Diffusion, Strength, and Microstructure of Ultra-High Performance Concrete. Materials 2024, 17, 2851. [Google Scholar] [CrossRef]
- Wu, H.; Liu, X.; Ma, X.; Liu, G. Effects of Multi-Walled Carbon Nanotubes and Recycled Fine Aggregates on the Multi-Generational Cycle Properties of Reactive Powder Concrete. Sustainability 2024, 16, 2084. [Google Scholar] [CrossRef]
- Zhu, F.; Wu, X.; Lu, Y.; Huang, J. Strength Estimation and Feature Interaction of Carbon Nanotubes-Modified Concrete Using Artificial Intelligence-Based Boosting Ensembles. Buildings 2024, 14, 134. [Google Scholar] [CrossRef]
- AlAraj, R.R.; Tamimi, A.K.; Hassan, N.M.; Fattah, K.P. Mechanical Performance of Cementitious Materials Reinforced with Polyethylene Fibers and Carbon Nanotubes. Fibers 2024, 12, 1. [Google Scholar] [CrossRef]
- Moses Karakouzian, M.; Visar Farhangi, V.; Ramezani Farani, M.; Joshaghani, A.; Zadehmohamad, M.; Ahmadzadeh, M. Mechanical Characteristics of Cement Paste in the Presence of Carbon Nanotubes and Silica Oxide Nanoparticles: An Experimental Study. Materials 2021, 14, 1347. [Google Scholar] [CrossRef]
- Kolour, H.H.; Ashraf, W.; Landis, E.N. Hydration and Early Age Properties of Cement Pastes Modified with Cellulose Nanofibrils. Transp. Res. Rec. 2020, 2675, 9. [Google Scholar] [CrossRef]
- Goncalves, J.; El-Bakkari, M.; Boluk, Y.; Bindiganavile, V. Cellulose nanofibres (CNF) for sulphate resistance in cement based systems. Cem. Concr. Compos. 2019, 99, 100–111. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, C.; Li, Z.; Zhang, A.; Zhao, W.; Zhang, W.; Xu, J.; Guo, P. Effect of Cellulose Nanofibrils on the Physical Properties and Frost Resistance of Pervious Concrete. Materials 2022, 15, 7906. [Google Scholar] [CrossRef] [PubMed]
- Mejdoub, R.; Hammi, H.; Boufi, S. Nanofibrillated cellulose as nanoreinforcement in Portland cement: Thermal, mechanical and microstructural properties. J. Compos. Mater. 2016, 51, 17. [Google Scholar] [CrossRef]
- Onuaguluchi, O.; Panesar, D.K.; Sain, M.M. Properties of nanofibre reinforced cement composites. Constr. Build. Mater. 2014, 63, 119–124. [Google Scholar] [CrossRef]
- Goncalves, J.R.A.; Boluk, Y.; Bindiganavile, V.S. Cellulose nanofibres mitigate chloride ion ingress in cement-based systems. Cem. Concr. Compos. 2020, 114, 103780. [Google Scholar] [CrossRef]
- Guo, A.; Sun, Z.; Sathitsuksanoh, N.; Feng, H. A Review on the Application of Nanocellulose in Cementitious Materials. Nanomaterials 2020, 10, 2476. [Google Scholar] [CrossRef]
- Nair, N.A.; Sairam, V. Research initiatives on the influence of wollastonite in cement-based construction material—A review. J. Clean. Prod. 2021, 283, 124665. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Yücel, H.E.; Yıldızhan, F. Evaluation of the Performance of Different Types of Fibrous Concretes Produced by Using Wollastonite. Materials 2022, 15, 6904. [Google Scholar] [CrossRef]
- Lee, D.; Lee, S.-C.; Kwon, O.-S.; Yoo, S.-W. Shear Behavior of High-Strength and Lightweight Cementitious Composites Containing Hollow Glass Microspheres and Carbon Nanotubes. Buildings 2024, 14, 2824. [Google Scholar] [CrossRef]
- Kalla, P.; Misra, A.K.; Gupta, R.C.; Csetényi, L.J.; Gahlot, V.K.; Arora, A. Mechanical and durability studies on concrete containing wollastonite–fly ash combination. Constr. Build. Mater. 2013, 40, 1142–1150. [Google Scholar] [CrossRef]
- Gouse Mohiuddin, M.D.; Malagavelli, V.; Balguri, P.K. Influence of wollastonite—GGBS on properties of ternary blended self compacting concrete. Mater. Today Proc. 2022, 62, 3027–3032. [Google Scholar] [CrossRef]
- Mandrawalia, A.K.; Gaur, A. Compressive and sorptivity characteristic of concrete modified with wollastonite fibre and waste granite fines. Mater. Today Proc. 2021, 42, 1012–1016. [Google Scholar] [CrossRef]
- Zhou, L.; Yin, J.; Wang, W.; Liu, F.; Xiao, M.; Yang, Y.; Cui, H. Effect of Vibration Mixing on the Mechanical Properties of Carbon Nanotube-Reinforced Ultra-High-Performance Concrete. Buildings 2024, 14, 2545. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Q.; Zhang, W. Optimizing ecological ultra-high performance concrete prepared with incineration bottom ash: Utilization of Al2O3 micro powder for improved mechanical properties and durability. Constr. Build. Mater. 2024, 426, 136152. [Google Scholar] [CrossRef]
- Meddah, M.S.; Praveenkumar, T.R.; Vijayalakshmi, M.M.; Manigandan, S.; Arunachalam, R. Mechanical and microstructural characterization of rice husk ash and Al2O3 nanoparticles modified cement concrete. Constr. Build. Mater. 2020, 255, 119358. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S. Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Mater. Sci. Eng. A 2011, 528, 1183–1191. [Google Scholar] [CrossRef]
- Li, C.; Cao, Y.; Li, G.; Liang, Q.; Wu, X.; Wu, G.; Wang, F.; Du, Q.; Wang, Y.; Qi, S.; et al. Modified cementitious materials incorporating Al2O3 and SiO2 nanoparticle reinforcements: An experimental investigation. Case Stud. Constr. Mater. 2023, 19, e02542. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Razveeva, I.; Kozhakin, A.; Pembek, A.; Kondratieva, T.N.; Elshaeva, D.; Chernil’nik, A.; Beskopylny, N. Prediction of the Properties of Vibro-Centrifuged Variatropic Concrete in Aggressive Environments Using Machine Learning Methods. Buildings 2024, 14, 1198. [Google Scholar] [CrossRef]
- Bhojaraju, C.; Di Mare, M.; Ouellet-Plamondon, C.M. The impact of carbon-based nanomaterial additions on the hydration reactions and kinetics of GGBS-modified cements. Constr. Build. Mater. 2021, 303, 124366. [Google Scholar] [CrossRef]
- Antunes, M.; Santos, R.L.; Horta, R.B.; Colaço, R. Influence of Silica Modulus on the Activation of Amorphous Wollastonitic Hydraulic Binders with Different Alumina Content: Study of Hydration Reaction and Paste Performance. Materials 2024, 17, 3200. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, L.; Deng, M.; Lu, S.; Guo, Z.; Yan, L.; Wang, Y. Influence of Different Types of Fillers on the Performance of PMMA-Based Low-Temperature Rapid Repair Mortar. Materials 2024, 17, 2871. [Google Scholar] [CrossRef] [PubMed]
- Dieguez, M.; Ruiz, A.I.; Cuevas, J.; Alonso, M.C.; García-Lodeiro, I.; Fernández, R. Evaluation of Fillers for Magnesium Potassium Phosphate Cement (MKPC) for the Encapsulation of Low and Intermediate Level Metallic Radioactive Wastes. Materials 2023, 16, 679. [Google Scholar] [CrossRef]
- Pan, J.; Zou, R.; Jin, F. Experimental Study on Specific Heat of Concrete at High Temperatures and Its Influence on Thermal Energy Storage. Energies 2017, 10, 33. [Google Scholar] [CrossRef]
- GOST 6139; Sand for Testing Cement. Specifications. Standartinform: Moscow, Russia, 2020. Available online: https://docs.cntd.ru/document/1200174753 (accessed on 17 June 2024).
- GOST 30744; Cements. Methods of Testing with Using Polyfraction Standard Sand. State Construction Committee of Russia, GUP CPP: Moscow, Russia, 2001. Available online: https://docs.cntd.ru/document/1200011363 (accessed on 17 June 2024).
- EN 12390-7:2019; Testing Hardened Concrete—Part 7: Density of Hardened Concrete. iTeh Standards: Etobicoke, ON, Canada, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/811a0cf3-55e3-495a-b06e-5c302d5f2806/en-12390-7-2019 (accessed on 17 June 2024).
- EN 12390-1:2021; Testing Hardened Concrete—Part 1: Shape, Dimensions and Other Requirements of Specimens and Moulds. iTeh Standards: Etobicoke, ON, Canada, 2021. Available online: https://standards.iteh.ai/catalog/standards/cen/d1c9ccee-2e5a-425e-a964-961da95d2f99/en-12390-1-2021 (accessed on 17 June 2024).
- EN 12390-2:2019; Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests. iTeh Standards: Etobicoke, ON, Canada, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/ae7e6a86-1cbc-455e-8b2a-8964be9087f9/en-12390-2-2019 (accessed on 17 June 2024).
- EN 12390-3:2019; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. iTeh Standards: Etobicoke, ON, Canada, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/7eb738ef-44af-436c-ab8e-e6561571302c/en-12390-3-2019 (accessed on 17 June 2024).
- EN 12390-4:2019; Testing Hardened Concrete—Part 4: Compressive Strength—Specification for Testing Machines. iTeh Standards: Etobicoke, ON, Canada, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/10b1c613-819b-42d7-8f94-480cd37a666a/en-12390-4-2019 (accessed on 17 June 2024).
- EN 12390-5:2019; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. iTeh Standards: Etobicoke, ON, Canada, 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/5653c2c7-55a9-4bcb-8e13-5b1dfb0e3baf/en-12390-5-2019 (accessed on 17 June 2024).
- GOST 12730.3; Concretes. Method of Determination of Water Absorption. Gost Standard: Moscow, Russia, 2020. Available online: https://docs.cntd.ru/document/100177301 (accessed on 17 June 2024).
- BS 1881-122:2011+A1:2020; Testing Concrete Method for Determination of Water Absorption. European Standards: Plzen, Czech Republic, 2020. Available online: https://www.en-standard.eu/bs-1881-122-2011-a1-2020-testing-concrete-method-for-determination-of-water-absorption/ (accessed on 17 June 2024).
- Peng, X.; Wang, Q.; Wu, J. Effect of Nanosilica on the Strength and Durability of Cold-Bonded Fly Ash Aggregate Concrete. Sustainability 2023, 15, 15413. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Elshaeva, D.M.; Kotenko, M. The Investigation of Compacting Cement Systems for Studying the Fundamental Process of Cement Gel Formation. Gels 2022, 8, 530. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Varavka, V.; Beskopylny, N.; Dotsenko, N. Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. J. Compos. Sci. 2022, 6, 268. [Google Scholar] [CrossRef]
- Klyuev, A.V.; Kashapov, N.F.; Klyuev, S.V.; Zolotareva, S.V.; Shchekina, N.A.; Shorstova, E.S.; Lesovik, R.V.; Ayubov, N.A. Experimental studies of the processes of structure formation of composite mixtures with technogenic mechanoactivated silica component. Constr. Mater. Prod. 2023, 6, 5–18. [Google Scholar] [CrossRef]
- Volodchenko, A.A. Efficient Silicate Composites of Dense Structure using hollow microspheres and Unconventional Aluminosilicate Raw Materials. Constr. Mater. Prod. 2023, 6, 19–34. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Beskopylny, A.N.; Smolyanichenko, A.S.; Chernil’nik, A.A.; Elshaeva, D.M.; Beskopylny, N.A. Structure and Properties of Variatropic Concrete Combined Modified with Nano- and Micro-silica. Constr. Mater. Prod. 2024, 7, 3. [Google Scholar] [CrossRef]
- Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Beskopylny, N.; Chernil’nik, A.; El’shaeva, D. Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics. Polymers 2022, 14, 4401. [Google Scholar] [CrossRef]
- Gordienko, P.S.; Yarusova, S.B.; Kozin, A.V.; Ivin, V.V.; Silant’ev, V.E.; Lizunova, P.Y.; Shornikov, K.O. Synthetic wollastonite-based material and its effect on the functional properties of fine-grained concrete. Perspekt. Mater.—Adv. Mater. 2017, 9, 40–48. [Google Scholar]
- Kuldasheva, A.H. Experimental studies toughness characteristic concrete on base vollastone cheese. Vestn. MGSU 2011, 7, 627–630. [Google Scholar]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica. Gels 2022, 8, 346. [Google Scholar] [CrossRef]
- Doner, S.; Lyngdoh, G.A.; Nayak, S.; Das, S. Fracture response of wollastonite fiber-reinforced cementitious composites: Evaluation using micro-indentation and finite element simulation. Ceram. Int. 2022, 48, 15493–15503. [Google Scholar] [CrossRef]
- Balotiya, G.; Gaur, A.; Somani, P.; Sain, A. Investigating mechanical and durability aspects of concrete incorporating Wollastonite and bottom ash. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Jindal, A.; Ransinchung, R.N.G.D.; Jindal, A. Behavioral study of self-compacting concrete with wollastonite microfiber as part replacement of sand for pavement quality concrete (PQC). IJTST 2020, 9, 170–181. [Google Scholar] [CrossRef]
- Soliman, A.M.; Nehdi, M.L. Effects of shrinkage reducing admixture and wollastonite microfiber on early-age behavior of ultra-high performance concrete. Cem. Concr. Compos. 2014, 46, 81–89. [Google Scholar] [CrossRef]
- Ransinchung, G.D.N.D.; Kumar, B.; Kumar, V.G. Assessment of water absorption and chloride ion penetration of pavement quality concrete admixed with wollastonite and microsilica. Constr. Build. Mater. 2009, 23, 1168–1177. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, Y.; Luo, Q. Exploring synergistic effects and hydration mechanisms in metakaolin-blended cement system with varying metakaolin and wollastonite content. Constr. Build. Mater. 2024, 425, 135962. [Google Scholar] [CrossRef]
- Xu, B.; Cau Dit Coumes, C.; Lambertin, D.; Lothenbach, B. Compressive strength and hydrate assemblages of wollastonite-blended magnesium potassium phosphate cements exposed to different pH conditions. Cem. Concr. Compos. 2023, 143, 105255. [Google Scholar] [CrossRef]
- Chu, H.; Wang, Q.; Gao, L.; Jiang, J.; Wang, F. An Approach of Producing Ultra-High-Performance Concrete with High Elastic Modulus by Nano-Al2O3: A Preliminary Study. Materials 2022, 15, 8118. [Google Scholar] [CrossRef]
- Li, C.; Li, G.; Chen, D.; Gao, K.; Mao, Y.; Fan, S.; Tang, L.; Jia, H. Influencing mechanism of nano-Al2O3 on concrete performance based on multi-scale experiments. Constr. Build. Mater. 2023, 384, 131402. [Google Scholar] [CrossRef]
Raw Materials | Indicator | Actual Value |
---|---|---|
PC | Specific surface area (m2/kg) | 340 |
Setting times (min) - start - end | 140 220 | |
Standard consistency of cement paste (%) | 28.3 | |
Compressive strength at 28 days (MPa) | 48.1 | |
Bending strength at 28 days (MPa) | 5.9 | |
C3S (%) | 72.3 | |
C2S (%) | 8.1 | |
C3A (%) | 5.2 | |
C4AF (%) | 12.9 | |
CaOfr. (%) | 1.5 | |
CrS | Particle size (mm) | 5–20 |
Bulk density (kg/m3) | 1458 | |
Apparent density (kg/m3) | 2571 | |
Resistance to fragmentation (wt %) | 12.0 | |
The content of lamellar and acicular grains (wt %) | 9.5 | |
QS | Fineness modulus | 1.81 |
Bulk density (kg/m3) | 1387 | |
The content of dust and clay particles (%) | 0.03 | |
Content of clay in lumps (%) | 0.11 | |
Organic and contaminant content (%) | No | |
PS | Silicon oxide content SiO2 (%) | 99.0 |
Humidity (%) | 0 |
Composition | PC (g) | PS (g) | W * (mL) | NF (g) |
---|---|---|---|---|
CP0 | 450 | 1350 | 225 | 0 |
CPNF0.1 | 450 | 1350 | 225 | 0.45 |
CPNF0.2 | 450 | 1350 | 225 | 0.90 |
CPNF0.3 | 450 | 1350 | 225 | 1.35 |
CPNF0.4 | 450 | 1350 | 225 | 1.80 |
CPNF0.5 | 450 | 1350 | 225 | 2.25 |
Composition | PC (g) | PS (g) | W * (mL) | NS (g) |
---|---|---|---|---|
CP0 | 450 | 1350 | 225 | 0 |
CPNS0.1 | 450 | 1350 | 225 | 0.45 |
CPNS0.2 | 450 | 1350 | 225 | 0.90 |
CPNS0.3 | 450 | 1350 | 225 | 1.35 |
CPNS0.4 | 450 | 1350 | 225 | 1.80 |
CPNS0.5 | 450 | 1350 | 225 | 2.25 |
Composition | Concrete Mixture Proportion per 1 m3 | |||||
---|---|---|---|---|---|---|
PC (kg/m3) | W (L/m3) | CrS (kg/m3) | QS (kg/m3) | NF (kg/m3) | NS (kg/m3) | |
C | 358 | 780 | 1090 | 190 | - | - |
CNF0.2 | 358 | 780 | 1090 | 190 | 0.72 | - |
CNF0.25 | 358 | 780 | 1090 | 190 | 0.90 | - |
CNF0.30 | 358 | 780 | 1090 | 190 | 1.07 | - |
CNF0.35 | 358 | 780 | 1090 | 190 | 1.25 | - |
CNF0.4 | 358 | 780 | 1090 | 190 | 1.43 | - |
CNS0.2 | 358 | 780 | 1090 | 190 | - | 0.72 |
CNS0.25 | 358 | 780 | 1090 | 190 | - | 0.90 |
CNS0.30 | 358 | 780 | 1090 | 190 | - | 1.07 |
CNS0.35 | 358 | 780 | 1090 | 190 | - | 1.25 |
CNS0.4 | 358 | 780 | 1090 | 190 | - | 1.43 |
Reference Number | Additive Name | Best Dosage | Result Obtained |
---|---|---|---|
[63,64] | Wollastonite microfibers | 10% | Replacing part of the cement with wollastonite fibers improves composite fracture toughness by up to 33%, mechanical properties and durability. |
[65] | 30% | The introduction of wollastonite microfiber up to 30% instead of part of the fine aggregate helps improve the properties of the mixtures, making them more fluid, and also improves the strength properties of the composites themselves. | |
[66,67] | Up to 15% | Modification of concrete with wollastonite microfibers improved their strength properties and water absorption. | |
[68,69] | The introduction of wollastonite microfiber increases the resistance of concrete to aggressive acids and alkalis | ||
[70] | Nano-Al2O3 | 1% | Modification of UHPC with the addition of nano-Al2O3 improves the fluidity of concrete mixtures and the strength of hardened composites. |
[37,71] | The introduction of nano-Al2O3 particles provides an increase in compressive strength of up to 20%, increases resistance to aggressive environments and reduces water absorption. | ||
[72] | Micro-powder Al2O3 | Up to 10% | Increases compressive strength, reduces shrinkage and chloride migration. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Varavka, V.; Meskhi, B.; Mailyan, L.R.; Kovtun, M.; Kurlovich, S.; El’shaeva, D.; Chernil’nik, A. Study of the Structure and Properties of Concrete Modified with Nanofibrils and Nanospheres. Buildings 2024, 14, 3476. https://doi.org/10.3390/buildings14113476
Beskopylny AN, Stel’makh SA, Shcherban’ EM, Varavka V, Meskhi B, Mailyan LR, Kovtun M, Kurlovich S, El’shaeva D, Chernil’nik A. Study of the Structure and Properties of Concrete Modified with Nanofibrils and Nanospheres. Buildings. 2024; 14(11):3476. https://doi.org/10.3390/buildings14113476
Chicago/Turabian StyleBeskopylny, Alexey N., Sergey A. Stel’makh, Evgenii M. Shcherban’, Valery Varavka, Besarion Meskhi, Levon R. Mailyan, Maksim Kovtun, Sergei Kurlovich, Diana El’shaeva, and Andrei Chernil’nik. 2024. "Study of the Structure and Properties of Concrete Modified with Nanofibrils and Nanospheres" Buildings 14, no. 11: 3476. https://doi.org/10.3390/buildings14113476
APA StyleBeskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Varavka, V., Meskhi, B., Mailyan, L. R., Kovtun, M., Kurlovich, S., El’shaeva, D., & Chernil’nik, A. (2024). Study of the Structure and Properties of Concrete Modified with Nanofibrils and Nanospheres. Buildings, 14(11), 3476. https://doi.org/10.3390/buildings14113476