Integration of Photovoltaic Shading Device and Vertical Farming on School Buildings to Improving Indoor Daylight, Thermal Comfort and Energy Performance in Three Different Cities in China
Abstract
:1. Introduction
2. Literature Review
2.1. PVSD (Photovoltaic Shading Devices)
2.2. Vertical Farming on Facades
2.3. Criteria for Selecting Evaluation Metrics
2.3.1. Daylight Environment Evaluation Metrics
2.3.2. Thermal Environment Evaluation Metrics
2.3.3. Resource Output Evaluation Index
3. Methodology
3.1. Research Framework
3.2. Selection of Typical Cities and Typical School Building Models
3.3. Parameter Types and Variable Settings
- PV type: Common types on the market include crystalline silicon PV and thin-film PV.
- PV panel angle: Given that an inclined PV setup can produce 20–40% more electricity than a flat vertical layout [84], angles of 20°, 30°, and 40° are chosen for the PV panels.
- PV panel layers: Options of single or double layers are considered based on size, and three arrangement modes are selected (horizontal tilt, vertical east tilt, vertical west tilt).
- PV panel size: Common sizes include 156 mm, 166 mm, 182 mm, and 210 mm [85]. Panel sizes should be multiples of solar cell sizes; therefore, the smallest solar panel unit size is set at 0.4 m × 0.4 m, with a comparison size of 0.8 m × 0.8 m.
- PV panel arrangement: Considering the operational space required for both systems on the building facade, a 0.5 m distance is maintained between the shading system and the external wall of the building.
- Crop size and row: The dimensions of the crop type planting containers must be determined based on the crop’s own needs and the specifications of the building’s windows. In this study, the part dimensions of the planting containers are set at 0.2 m × 0.2 m to correspond to the window size modules.
- Crop spacing: Set at 0.25 m, planting containers can be placed continuously in multiple layers along the vertical plane, with a vertical distance exceeding 400 mm to achieve maximum efficiency.
3.4. Selection of Optimization Method
- UDI = average effective natural daylight illuminance (i.e., the percentage of the area with illuminance values between 200 and 3000 lx).
- PMV = predicted mean vote
- P = power output of the photovoltaic shading system.
3.5. Simulation Methods and Parametric Modelling
4. Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs. 2018 Revision of World Urbanization Prospects. Retrieved Sept. 2018, 18, 2024. Available online: https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (accessed on 1 October 2024).
- Kim, M.; Leigh, S.-B.; Kim, T.; Cho, S. A Study on External Shading Devices for Reducing Cooling Loads and Improving Daylighting in Office Buildings. J. Asian Archit. Build. Eng. 2015, 14, 687–694. [Google Scholar] [CrossRef]
- Peng, Z.; Yu, Y.; Guan, R. Demand-Oriented Review of a Dynamic Energy-Loss Monitoring System for Primary School Buildings through Micro-Environmental Data Monitoring and Occupant Behavior Analysis. Buildings 2023, 13, 2694. [Google Scholar] [CrossRef]
- Ghanbaripour, A.N.; Talebian, N.; Miller, D.; Tumpa, R.J.; Zhang, W.; Golmoradi, M.; Skitmore, M. A Systematic Review of the Impact of Emerging Technologies on Student Learning, Engagement, and Employability in Built Environment Education. Buildings 2024, 14, 2769. [Google Scholar] [CrossRef]
- Habibi, S.; Valladares, O.P.; Pena, D. New sustainability assessment model for Intelligent Façade Layers when applied to refurbish school buildings skins. Sustain. Energy Technol. Assess 2020, 42, 100839. [Google Scholar] [CrossRef]
- Heschong, L.; Wright, R.L.; Okura, S. Daylighting Impacts on Human Performance in School. J. Illum. Eng. Soc. 2002, 31, 101–114. [Google Scholar] [CrossRef]
- Zeiler, W.; Boxem, G. Effects of thermal activated building systems in schools on thermal comfort in winter. Build. Environ. 2009, 44, 2308–2317. [Google Scholar] [CrossRef]
- Hänninen, O.; Haverinen-Shaugnessy, U. School Environment: Policies and Current Status; WHO Regional Office for Europe: Geneva, Switzerland, 2015; Available online: https://www.julkari.fi/handle/10024/126880 (accessed on 1 October 2024).
- Zhang, A.; Bokel, R.; Van Den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and daylight performance of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy Build. 2017, 139, 371–384. [Google Scholar] [CrossRef]
- de Dear, R.; Kim, J.; Candido, C.; Deuble, M. Adaptive thermal comfort in Australian school classrooms. Build. Res. Inf. 2015, 43, 383–398. [Google Scholar] [CrossRef]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef]
- Küller, R.; Lindsten, C. Health and behavior of children in classrooms with and without windows. J. Environ. Psychol. 1992, 12, 305–317. [Google Scholar] [CrossRef]
- Edwards, L.; Torcellini, P.; Laboratory, N.R.E. A Literature Review of the Effects of Natural Light on Building Occupants; National Renewable Energy Lab.: Golden, CO, USA, 2002. [CrossRef]
- Droutsa, K.G.; Kontoyiannidis, S.; Balaras, C.A.; Lykoudis, S.; Dascalaki, E.G.; Argiriou, A.A. Unveiling the existing condition and energy use in Hellenic school buildings. Energy Build. 2021, 247, 111150. [Google Scholar] [CrossRef]
- Mohelníková, J.; Novotnỳ, M.; Mocová, P. Evaluation of school building energy performance and classroom indoor environment. Energies 2020, 13, 2489. [Google Scholar] [CrossRef]
- Lakhdari, K.; Sriti, L.; Painter, B. Parametric optimization of daylight, thermal and energy performance of middle school classrooms, case of hot and dry regions. Build. Environ. 2021, 204, 108173. [Google Scholar] [CrossRef]
- Ghosh, A. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building’s skin: A comprehensive review. J. Clean. Prod. 2020, 276, 123343. [Google Scholar] [CrossRef]
- Belussi, L.; Barozzi, B.; Bellazzi, A.; Danza, L.; Devitofrancesco, A.; Fanciulli, C.; Ghellere, M.; Guazzi, G.; Meroni, I.; Salamone, F. A review of performance of zero energy buildings and energy efficiency solutions. J. Build. Eng. 2019, 25, 100772. [Google Scholar] [CrossRef]
- Environment and Health EURO. (n.d.). Available online: https://www.who.int/europe/health-topics/environmental-health (accessed on 23 August 2024).
- Ma, H.; Du, N.; Yu, S.; Lu, W.; Zhang, Z.; Deng, N.; Li, C. Analysis of typical public building energy consumption in northern China. Energy Build. 2017, 136, 139–150. [Google Scholar] [CrossRef]
- Tablada, A.; Zhao, X. Sunlight availability and potential food and energy self-sufficiency in tropical generic residential districts. Sol. Energy 2016, 139, 757–769. [Google Scholar] [CrossRef]
- Tablada, A.; Chaplin, I.; Huang, H.; Kosoric, V.; Siu Kit, L.; Chao, Y.; Lau, S. Assessment of Solar and Farming Systems Integration on Tropical Building Facades. In Proceedings of the SWC2017/SHC2017, Abu Dhabi, United Arab Emirates, 29 October–2 November 2017; International Solar Energy Society: Abu Dhabi, United Arab Emirates, 2017; pp. 1–11. [Google Scholar]
- Tablada, A.; Kosoric, V.; Lau, S.K.; Yuan, C.; Lau, S. Productive facade systems for energy and food harvesting: A prototype optimisation framework. In Proceedings of the 33rd Passive Low Energy Architecture Conference (PLEA), Edinburgh, UK, 3–5 July 2017. [Google Scholar]
- Tablada, A.; Kosorić, V.; Huang, H.; Chaplin, I.K.; Lau, S.-K.; Yuan, C.; Lau, S.S.-Y. Design Optimization of Productive Façades: Integrating Photovoltaic and Farming Systems at the Tropical Technologies Laboratory. Sustainability 2018, 10, 3762. [Google Scholar] [CrossRef]
- Ordenes, M.; Marinoski, D.L.; Braun, P.; Rüther, R. The impact of building-integrated photovoltaics on the energy demand of multi-family dwellings in Brazil. Energy Build. 2007, 39, 629–642. [Google Scholar] [CrossRef]
- Li, X.; Peng, J.; Li, N.; Wu, Y.; Fang, Y.; Li, T.; Wang, M.; Wang, C. Optimal design of photovoltaic shading systems for multi-story buildings. J. Clean. Prod. 2019, 220, 1024–1038. [Google Scholar] [CrossRef]
- Yi, H.; Kim, M.-J.; Kim, Y.; Kim, S.-S.; Lee, K.-I. Rapid Simulation of Optimally Responsive Façade during Schematic Design Phases: Use of a New Hybrid Metaheuristic Algorithm. Sustainability 2019, 11, 2681. [Google Scholar] [CrossRef]
- Valladares-Rendón, L.G.; Schmid, G.; Lo, S.L. Review on energy savings by solar control techniques and optimal building orientation for the strategic placement of façade shading systems. Energy Build. 2017, 140, 458–479. [Google Scholar] [CrossRef]
- Liu, J.; Bi, G.; Gao, G.; Zhao, L. Optimal design method for photovoltaic shading devices (PVSDs) by combining geometric optimization and adaptive control model. J. Build. Eng. 2023, 69, 106101. [Google Scholar] [CrossRef]
- Vatistas, C.; Avgoustaki, D.D.; Bartzanas, T. A Systematic Literature Review on Controlled-Environment Agriculture: How Vertical Farms and Greenhouses Can Influence the Sustainability and Footprint of Urban Microclimate with Local Food Production. Atmosphere 2022, 13, 1258. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; Solé, C.; Castell, A.; Cabeza, L.F. New Green Facades as Passive Systems for Energy Savings on Buildings. Energy Procedia 2014, 57, 1851–1859. [Google Scholar] [CrossRef]
- Stec, W.J.; Van Paassen AH, C.; Maziarz, A. Modelling the double skin façade with plants. Energy Build. 2005, 37, 419–427. [Google Scholar] [CrossRef]
- Ng, P.K.; Mithraratne, N.; Kua, H.W. Energy analysis of semi-transparent BIPV in Singapore buildings. Energy Build. 2013, 66, 274–281. [Google Scholar] [CrossRef]
- Fath, K.; Stengel, J.; Sprenger, W.; Wilson, H.R.; Schultmann, F.; Kuhn, T.E. A method for predicting the economic potential of (building-integrated) photovoltaics in urban areas based on hourly Radiance simulations. Sol. Energy 2015, 116, 357–370. [Google Scholar] [CrossRef]
- Freitas, S.; Catita, C.; Redweik, P.; Brito, M. Modelling solar potential in the urban environment: State-of-the-art review. Renew. Sustain. Energy Rev. 2015, 41, 915–931. [Google Scholar] [CrossRef]
- Gautam, B.R.; Li, F.; Ru, G. Assessment of urban roof top solar photovoltaic potential to solve power shortage problem in Nepal. Energy Build. 2015, 86, 735–744. [Google Scholar] [CrossRef]
- Wong, N.H.; Tan, A.Y.K.; Chen, Y.; Sekar, K.; Tan, P.Y.; Chan, D.; Chiang, K.; Wong, N.C. Thermal evaluation of vertical greenery systems for building walls. Build. Environ. 2010, 45, 663–672. [Google Scholar] [CrossRef]
- Elgizawy, E.M. The Effect of Green Facades in Landscape Ecology. Procedia Environ. Sci. 2016, 34, 119–130. [Google Scholar] [CrossRef]
- Treado, S.; Gillette, G.; Kusuda, T. Daylighting with windows, skylights, and clerestories. Energy Build. 1984, 6, 319–330. [Google Scholar] [CrossRef]
- Aries, M.B.C. Human Lighting Demands: Healthy Lighting in an Office Environment; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Jani, D.B. Desiccant cooling as an alternative to traditional air conditioners in green cooling technology. Instant. J. Mech. Eng. 2011, 1, 1–13. [Google Scholar] [CrossRef]
- Bloem, J.J.; Colli, A.; Strachan, P. Evaluation of PV technology implementation in the building sector. In Proceedings of the International Conference on Passive and Low Energy Cooling for the Built Environment, Santorini, Greece, 19–21 May 2005. [Google Scholar]
- Priatman, J.; Soegihardjo, O.; Loekita, S. Towards energy efficient facade through solar-powered shading device. Procedia-Soc. Behav. Sci. 2015, 179, 266–275. [Google Scholar] [CrossRef]
- Gago, E.J.; Muneer, T.; Knez, M.; Köster, H. Natural light controls and guides in buildings. Energy saving for electrical lighting, reduction of cooling load. Renew. Sustain. Energy Rev. 2015, 41, 1–13. [Google Scholar] [CrossRef]
- Manzan, M.; Padovan, R. Multi-criteria energy and daylighting optimization for an office with fixed and moveable shading devices. Adv. Build. Energy Res. 2015, 9, 238–252. [Google Scholar] [CrossRef]
- Salameh, T.; Assad, M.E.H.; Tawalbeh, M.; Ghenai, C.; Merabet, A.; Öztop, H.F. Analysis of cooling load on commercial building in UAE climate using building integrated photovoltaic façade system. Sol. Energy 2020, 199, 617–629. [Google Scholar] [CrossRef]
- Bellia, L.; Marino, C.; Minichiello, F.; Pedace, A. An overview on solar shading systems for buildings. Energy Procedia 2014, 62, 309–317. [Google Scholar] [CrossRef]
- Karthick, A.; Kalidasa Murugavel, K.; Kalaivani, L.; Saravana Babu, U. Performance study of building integrated photovoltaic modules. Adv. Build. Energy Res. 2018, 12, 178–194. [Google Scholar] [CrossRef]
- Gholami, H.; Røstvik, H.N. Economic analysis of BIPV systems as a building envelope material for building skins in Europe. Energy 2020, 204, 117931. [Google Scholar] [CrossRef]
- Alassaf, Y. Comprehensive Review of the Advancements, Benefits, Challenges, and Design Integration of Energy-Efficient Materials for Sustainable Buildings. Buildings 2024, 14, 2994. [Google Scholar] [CrossRef]
- Hwang, T.; Kang, S.; Kim, J.T. Optimization of the building integrated photovoltaic system in office buildings—Focus on the orientation, inclined angle and installed area. Energy Build. 2012, 46, 92–104. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Zhang, Y.; Zhang, H.; Xiong, B.; Shi, X. Multi-Objective Analysis of Visual, Thermal, and Energy Performance in Coordination with the Outdoor Thermal Environment of Productive Façades of Residential Communities in Guangzhou, China. Buildings 2023, 13, 1540. [Google Scholar] [CrossRef]
- Konstantoglou, M.; Tsangrassoulis, A. Dynamic operation of daylighting and shading systems: A literature review. Renew. Sustain. Energy Rev. 2016, 60, 268–283. [Google Scholar] [CrossRef]
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Safikhani, T.; Abdullah, A.M.; Ossen, D.R.; Baharvand, M. A review of energy characteristic of vertical greenery systems. Renew. Sustain. Energy Rev. 2014, 40, 450–462. [Google Scholar] [CrossRef]
- Douglas, A.N.; Morgan, A.L.; Rogers, E.I.; Irga, P.J.; Torpy, F.R. Evaluating and comparing the green wall retrofit suitability across major Australian cities. J. Environ. Manag. 2021, 298, 113417. [Google Scholar] [CrossRef]
- Appolloni, E.; Orsini, F.; Specht, K.; Thomaier, S.; Sanyé-Mengual, E.; Pennisi, G.; Gianquinto, G. The global rise of urban rooftop agriculture: A review of worldwide cases. J. Clean. Prod. 2021, 296, 126556. [Google Scholar] [CrossRef]
- Tablada, A.; Kosorić, V. Vertical farming on facades: Transforming building skins for urban food security. In Rethinking Building Skins; Woodhead Publishing: Sawston, UK, 2022; pp. 285–311. [Google Scholar]
- Mir, M.S.; Naikoo, N.B.; Kanth, R.H.; Bahar, F.A.; Bhat, M.A.; Nazir, A.; Mahdi, S.S.; Amin, Z.; Singh, L.; Raja, W. Vertical farming: The future of agriculture: A review. Pharma Innov. J. 2022, 11, 1175–1195. [Google Scholar]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the roots of aeroponic indoor farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef] [PubMed]
- Palliwal, A.; Song, S.; Tan, H.T.W.; Biljecki, F. 3D city models for urban farming site identification in buildings. Comput. Environ. Urban. Syst. 2021, 86, 101584. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Yohannes, H. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Chang. 2016, 7, 335. [Google Scholar]
- Munoz, H.; Joseph, J. Hydroponics: Home-Based Vegetable Production System; Instituto Interamericano de Cooperación Para la Agricultura (IICA): Turrialba, Costa Rica, 2010. [Google Scholar]
- Kosorić, V.; Huang, H.; Tablada, A.; Lau, S.-K.; Tan, H.T. Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore. Renew. Sustain. Energy Rev. 2019, 111, 197–214. [Google Scholar] [CrossRef]
- Ghazal, I.; Mansour, R.; Davidová, M. AGRI|gen: Analysis and Design of a Parametric Modular System for Vertical Urban Agriculture. Sustainability 2023, 15, 5284. [Google Scholar] [CrossRef]
- Skarning, G.C.J.; Hviid, C.A.; Svendsen, S. The effect of dynamic solar shading on energy, daylighting and thermal comfort in a nearly zero-energy loft room in Rome and Copenhagen. Energy Build. 2017, 135, 302–311. [Google Scholar] [CrossRef]
- Majdalani, N.; Aelenei, D.; Lopes, R.A.; Silva, C.A.S. The potential of energy flexibility of space heating and cooling in Portugal. Util. Policy 2020, 66, 101086. [Google Scholar] [CrossRef]
- James, J.P.; Yang, X. Healthy and energy-efficient housing in hot and humid climates: A model design. J. Harbin Inst. Technol. 2007, 14, 310–313. [Google Scholar]
- Ascione, F.; De Rossi, F.; Vanoli, G.P. Energy retrofit of historical buildings: Theoretical and experimental investigations for the modelling of reliable performance scenarios. Energy Build. 2011, 43, 1925–1936. [Google Scholar] [CrossRef]
- Santamouris, M.; Pavlou, C.; Doukas, P.; Mihalakakou, G.; Synnefa, A.; Hatzibiros, A.; Patargias, P. Investigating and analysing the energy and environmental performance of an experimental green roof system installed in a nursery school building in Athens, Greece. Energy 2007, 32, 1781–1788. [Google Scholar] [CrossRef]
- Sesana, M.M.; Salvalai, G.; Brutti, D.; Mandin, C.; Wei, W. ALDREN: A methodological framework to support decision-making and investments in deep energy renovation of non-residential buildings. Buildings 2020, 11, 3. [Google Scholar] [CrossRef]
- Akbari Paydar, M. Optimum design of building integrated PV module as a movable shading device. Sustain. Cities Soc. 2020, 62, 102368. [Google Scholar] [CrossRef]
- Krstić-Furundžić, A.; Kosić, T. Assessment of energy and environmental performance of office building models: A case study. Energy Build. 2016, 115, 11–22. [Google Scholar] [CrossRef]
- Reddy, P.; Gupta, M.V.N.S.; Nundy, S.; Karthick, A.; Ghosh, A. Status of BIPV and BAPV System for Less Energy-Hungry Building in India—A Review. Appl. Sci. 2020, 10, 2337. [Google Scholar] [CrossRef]
- GhaffarianHoseini, A. Intelligent Facades in Low-Energy Buildings. Br. J. Environ. Clim. Chang. 2013, 2, 437–464. [Google Scholar] [CrossRef]
- Chaiwiwatworakul, P. Adjustable PV Slats for Energy Efficiency and Comfort Improvement of a Radiantly Cooled Office Room in Tropical Climate. Buildings 2024, 14, 3282. [Google Scholar] [CrossRef]
- Giovannini, L.; Verso, V.R.L.; Karamata, B.; Andersen, M. Lighting and Energy Performance of an Adaptive Shading and Daylighting System for Arid Climates. Energy Procedia 2015, 78, 370–375. [Google Scholar] [CrossRef]
- Mahmoud, A.H.A.; Elghazi, Y. Parametric-based designs for kinetic facades to optimize daylight performance: Comparing rotation and translation kinetic motion for hexagonal facade patterns. Sol. Energy 2016, 126, 111–127. [Google Scholar] [CrossRef]
- Tabadkani, A.; Shoubi, M.V.; Soflaei, F.; Banihashemi, S. Integrated parametric design of adaptive facades for user’s visual comfort. Autom. Constr. 2019, 106, 102857. [Google Scholar] [CrossRef]
- Shi, S.; Sun, J.; Liu, M.; Chen, X.; Gao, W.; Song, Y. Energy-Saving Potential Comparison of Different Photovoltaic Integrated Shading Devices (PVSDs) for Single-Story and Multi-Story Buildings. Energies 2022, 15, 9196. [Google Scholar] [CrossRef]
- Jeong, K.; Hong, T.; Koo, C.; Oh, J.; Lee, M.; Kim, J. A prototype design and development of the smart photovoltaic system blind considering the photovoltaic panel, tracking system, and monitoring system. Appl. Sci. 2017, 7, 1077. [Google Scholar] [CrossRef]
- Freitas, S.; Brito, M.C. Maximizing the Solar Photovoltaic Yield in Different Building Facade Layouts. In Proceedings of the European Photovoltaic Solar Energy Conference and Exhibition, Hamburg, Germany, 14–18 September 2015; pp. 14–18. [Google Scholar]
- Beinert, A.J.; Romer, P.; Heinrich, M.; Mittag, M.; Aktaa, J.; Neuhaus, D.H. The effect of cell and module dimensions on thermomechanical stress in PV modules. IEEE J. Photovolt. 2019, 10, 70–77. [Google Scholar] [CrossRef]
- Bay, J.H.P.; Owen, L.C.W.; Singh, S. Food production and density: The design of a high-rise housing development in Singapore. In Growing Compact: Urban Form, Density and Sustainability; Bay, J.H.P., Lehmann, S., Eds.; Routledge: Abingdon, UK, 2017. [Google Scholar]
- Dardir, M.; Berardi, U. Development of microclimate modeling for enhancing neighborhood thermal performance through urban greenery cover. Energy Build. 2021, 252, 111428. [Google Scholar] [CrossRef]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Sadeghipour Roudsari, M.; Pak, M.; VIOLA, A. Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. In Proceedings of the Building Simulation 2013: 13th Conference of IBPSA, Chambéry, France, 25–28 August 2013; Volume 13, pp. 3128–3135. [Google Scholar]
- Romero, R.; Simon, J.; Ryan, T.; Peterson, Z.; Torcellini, P.; Kandt, A.; Young, M.; Rothgeb, S.; Colgan, C. US Department of Energy Solar Decathlon Competition Guide: 2021 Design Challenge and 2023 Build Challenge (No. NREL/BK-7A40-78944); National Renewable Energy Lab. (NREL): Golden, CO, USA, 2021.
- Ward, G.J. The RADIANCE lighting simulation and rendering system. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, FL, USA, 24–29 July 1994; pp. 459–472. [Google Scholar]
- Reinhart, C.F.; Walkenhorst, O. Validation of dynamic RADIANCE-based daylight simulations for a test office with external blinds. Energy Build. 2001, 33, 683–697. [Google Scholar] [CrossRef]
Metrics | Definition | Source | |
---|---|---|---|
Daylight factor metrics (DFMs) | Daylight factor metrics (DFMs) | Evaluate the distribution and intensity of daylight within a space. | [68] |
Vertical daylight factor (VDF) | VDF assesses the distribution of daylight on vertical surfaces within a space | [68] | |
Climate-based daylight metrics (CBDMs) | Daylight autonomy (DA) | Measures the percentage of occupied hours during which a target illuminance level is met using daylight alone. | [69] |
Annual sunlight exposure (ASE) | ASE quantifies the amount of direct sunlight entering a space over a course of a year. | [69] | |
Useful daylight illuminance (UDI) | UDI measures the proportion of occupied hours during which a certain target illuminance level is met. | [69] |
Material | Specific Heat | Density | Thickness (m) | Conductivity |
---|---|---|---|---|
150 mm wall | 1200 | 840 | 0.15 | 0.23 |
Material | Visible Transmittance | Solar heat gain coefficient | Thickness (m) | U-Value (W/m2 K) |
Single 6 mm glass | 0.88 | 0.65 | 0.006 | 5.5 |
Material | R Transmittance | G Transmittance | B Transmittance | Roughness | Specularity |
---|---|---|---|---|---|
Glass | 0.7 | 0.7 | 0.7 | 0.05 | 0 |
Material | R Reflectance | G Reflectance | B Reflectance | Roughness | Specularity |
Wall material | 0.7 | 0.7 | 0.7 | 0.05 | 0 |
Thin film solar cell | 0 | 0.039 | 0.195 | 0.05 | 0.61 |
Ceiling material | 0.8 | 0.8 | 0.8 | 0.05 | 0 |
Mono solar cell | 0.3 | 0.3 | 0.3 | - | - |
Floor material | 0.4 | 0.4 | 0.4 | 0.05 | 0 |
Surround building | 0.2 | 0.2 | 0.2 | 0.05 | 0 |
Region | Panel Size | Interface Partition | Axis Direction | PV Type | VF Rows | Electricity Production (Annual) |
---|---|---|---|---|---|---|
Shenzhen | 0.8 M | Upper: √ Middle: √ Lower: √ | 40° | Monocrystalline | 2 | 1477.18 kWh |
Beijing | 0.4 M | Upper: √ Middle: √ Lower: √ | 40° | Monocrystalline | 2 | 1658.36 kWh |
Shanghai | 0.8 M | Upper: √ Middle: √ Lower: √ | 30° | Monocrystalline | 3 | 1243.60 kWh |
Region | Panel Size | Interface Partition | Axis Direction | PV Type | VF Rows | Electricity Production (Annual) |
---|---|---|---|---|---|---|
Shenzhen | 0.8 M | Upper: √ Middle: √ Lower: √ | 30° | Monocrystalline | 2 | 1505.68 kWh |
Beijing | 0.4 M | Upper: √ Middle: √ Lower: √ | 30° | Monocrystalline | 2 | 1617.81 kWh |
Shanghai | 0.8 M | Upper: √ Middle: √ Lower: √ | 40° | Monocrystalline | 0 | 1256.93 kWh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, W.; Xu, J.; Zhao, F.; Sohn, D.-W.; Shi, X. Integration of Photovoltaic Shading Device and Vertical Farming on School Buildings to Improving Indoor Daylight, Thermal Comfort and Energy Performance in Three Different Cities in China. Buildings 2024, 14, 3502. https://doi.org/10.3390/buildings14113502
Hao W, Xu J, Zhao F, Sohn D-W, Shi X. Integration of Photovoltaic Shading Device and Vertical Farming on School Buildings to Improving Indoor Daylight, Thermal Comfort and Energy Performance in Three Different Cities in China. Buildings. 2024; 14(11):3502. https://doi.org/10.3390/buildings14113502
Chicago/Turabian StyleHao, Weihao, Jiahua Xu, Feiyu Zhao, Dong-Wook Sohn, and Xuepeng Shi. 2024. "Integration of Photovoltaic Shading Device and Vertical Farming on School Buildings to Improving Indoor Daylight, Thermal Comfort and Energy Performance in Three Different Cities in China" Buildings 14, no. 11: 3502. https://doi.org/10.3390/buildings14113502
APA StyleHao, W., Xu, J., Zhao, F., Sohn, D. -W., & Shi, X. (2024). Integration of Photovoltaic Shading Device and Vertical Farming on School Buildings to Improving Indoor Daylight, Thermal Comfort and Energy Performance in Three Different Cities in China. Buildings, 14(11), 3502. https://doi.org/10.3390/buildings14113502