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S1: Theil-Sen median analysis and Mann-Kendalltrend test (Sen-MK)  

Theil-Sen median analysis is a robust non-parametric trend estimation method for 

estimating the median slope of a set of sample points. Especially when the data contains 

outliers, it is more accurate than traditional least squares regression methods and is highly 

suitable for trend analysis of long-term time series data. 

 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛（
𝑦𝑗 − 𝑦𝑖
𝑥𝑗 − 𝑥𝑖

） (5) 

 

Among these, 𝛽 denotes the slope between points (𝑥𝑗 ,𝑦𝑗 ) and (𝑥𝑖 ,𝑦𝑖 ) in the time 

series,  𝑀𝑒𝑑𝑖𝑎𝑛 as well as the median value. 

The Mann-Kendall (M-K) test is a non-parametric time series trend test method that does 

not require measurement values to follow a normal distribution and is unaffected by missing 

or outliers. It is appropriate for trend significance assessment on lengthy time series data. 

 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗−𝑖+

𝑛−1

𝑖−1

 (6) 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1, 𝑥𝑗 − 𝑥𝑖 > 0

0, 𝑥𝑗 − 𝑥𝑖 = 0

−1, 𝑥𝑗 − 𝑥𝑖 < 0
 (7) 

𝑍 =

{
 
 
 

 
 
 

𝑆

√𝑛(𝑛 − 1)(2𝑛 + 5)
18

, 𝑆 > 0

0, 𝑆 = 0
(𝑆 + 1)

√𝑛(𝑛 − 1)(2𝑛 + 5)
18

, 𝑆 < 0

 (8) 

Among them, 𝑥𝑗、𝑥𝑖 are the corresponding research years, N is the number of samples, 

S represents an upward trend in regular representation, while negative values indicate a 

downward trend. In this test, a bilateral trend test is used to find the critical value  " 𝑍1－
𝑎

2
 "  

in the normal distribution table at a given level of significance. When |Z| ≤  𝑍1－
𝑎

2
  , accept 

the null hypothesis that the trend is not significant; If |Z|>  𝑍1－
𝑎

2
 , reject the null hypothesis 

and assume that the trend is significant. This article takes "significance level α=0.05 , The 

condition of Z =± 1.96 "is given as the criterion for significant judgment. When the absolute 



values of Z are greater than 1.65, 1.96, and 2.58, it indicates that the trend has passed the 

significance tests with reliability of 90%, 95%, and 99%, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S2: Random Forest Model (RF) and Result Interpretation Methods 

⚫ Model Introduction: 



In 2001, Leo Breiman developed the Random Forest (RF) model, an advanced 

methodological paradigm grounded in the Classification and Regression Tree (CART) 

framework, capable of performing both classification and regression tasks. This model 

adeptly integrates the Bagging algorithm within the CART decision tree structure. Central to 

its methodology is bootstrap sampling, entailing repeated random selections with replacement, 

to construct a robust ensemble of decision trees. The efficacy of the RF model is achieved by 

either averaging the predictions from these diverse trees or applying a majority voting 

mechanism. The computational formula for this model is as follows: 

 

𝐻(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∑𝐼(ℎ𝑖(𝑋) = 𝑌)

𝑘

𝑖=1

 (9) 

 

In this context, 𝐻(𝑥) represents the final classification outcome of the model. I stands 

for the indicator function. Each individual decision tree is represented by ℎi , while 𝑌 

denotes the target variable under consideration. 

Relative to other machine learning models, the RF minimizes the impact of 

multicollinearity in data and demonstrates robust performance with high-dimensional and 

nonlinear problems. It also allows for the ranking of predictor importance. The 

generalizability and robustness of RF significantly reduce the risk of overfitting when 

processing large datasets. 

 

⚫ Model evaluation 

The RF model is adept for both regression and classification tasks. In classification 

scenarios, this study employs a combination of the confusion matrix, Receiver Operating 

Characteristic (ROC) curve, and Area Under the Curve (AUC) to assess model performance.  

①Confusion Matrix:  

This matrix comprises accuracy, precision, recall, and the F1 score.  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (11) 



𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (12) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑟𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (13) 

 

In the formula, True Positives (TP) and True Negatives (TN) represent the correctly 

identified positive and negative classes, respectively, while False Positives (FP) and False 

Negatives (FN) denote the incorrectly identified positive and negative classes. The F1 score is 

the harmonic mean of precision and recall, ranging between 0 and 1. A value closer to 1 

indicates superior performance of the classifier.  

②The ROC curve:  

This is a vital tool for assessing a model's predictive accuracy at varying classification 

thresholds. It is constructed with the True Positive Rate (TPR) on the vertical axis and the 

False Positive Rate (FPR) on the horizontal axis. The AUC of the ROC, frequently used in 

evaluating binary classifiers, quantitatively reflects the classifier's effectiveness. A model is 

considered more proficient if its ROC curve is nearer to the upper left corner. The calculation 

of the ROC curve is as follows:  

 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (14) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (15) 

𝐴𝑈𝐶 =
∑ 𝑟𝑎𝑛𝑘𝑖 −𝑀(𝑀 + 1)𝐼𝜖𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝐶𝑙𝑎𝑠𝑠

2 ×𝑀 ×𝑁
 (16) 

 

M and N denote the counts of positive and negative samples, respectively, and 𝑟𝑎𝑛𝑘𝑖 is 

the ranked probability score for the 𝑖𝑡ℎ positive sample. 

To evaluate the performance of the RF regression model, four commonly used accuracy 

metrics were introduced: Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 

Mean Absolute Error (MAE), and the coefficient of determination (R2). The relevant formulas 

for these metrics are as follows: 

 

𝑀𝑆𝐸 =
1

𝑚
∑（𝑦𝑖 − ŷ

𝑖
）

2
𝑚

𝑖=1

 (17) 



 

In these calculations, m represents the total number of samples (dependent variables),  

denotes the actual value of each sample, ŷ𝑖  is the predicted value, and ȳ𝑖 is the average of 

the actual values of the samples. The MSE measures the expected value of the squared 

differences between actual and predicted values, assessing the variability of the data. The 

RMSE is the square root of MSE, indicating the degree of deviation in the predictions. The 

MAE is the average of the absolute errors. Lower values for MSE, RMSE, and MAE indicate 

higher model accuracy. 𝑅2  represents the goodness of fit of the model; values closer to 1 

signify greater predictive accuracy. 

 

⚫ Model interpretation 

The importance of features reflects the contribution of each variable to model prediction. 

It is measured by the percentage increase in the mean square error (IncMSE%) of the Out of 

Bag Data (OOB). Since IncMSE% represents the degree to which the accuracy of model 

predictions decreases after removing variables, the more important the variables are, the 

higher the IncMSE%. Assuming there is a tree in the forest, the IncMSE% of K tree can be 

expressed as: 

 

 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (18) 

𝑀𝐴𝐸 =
1

𝑚
∑|𝑦𝑖 − ŷ

𝑖
|

𝑚

𝑖=1

 (19) 

𝑅2 = 1 −
∑ （𝑦𝑖 − ŷ

𝑖
）

2
𝑚
𝑖=1

∑ （ȳ
𝑖
− 𝑦𝑖）

2
𝑚
𝑖=1

 (20) 

𝐼𝑛𝑐𝑀𝑆𝐸 ％（𝑖） =∑
(𝑂𝑂𝐵𝑘2 − 𝑂𝑂𝐵𝑘1）

𝑂𝑂𝐵𝑘1

𝑁

𝐾=1
× 100％ (21) 



IncMSE%(i) represents the importance of feature variable i. 𝑂𝑂𝐵𝑘1  and 𝑂𝑂𝐵𝑘2 

represent the OOB errors before and after interference, respectively. For example, if the 

difference in IncMSE% is small after shuffling the OOB data, it can be considered that 

variable i is not important. In other words, the lower the IncMSE%, the less important the 

feature variable i is in the prediction results. 

The Partial Dependency Diagram (PDP) illustrates how specific attributes affect model 

prediction outcomes at various values. By fixing other non-specified input variables to their 

marginal distributions, it helps ascertain whether the relationship between features and 

outcomes is linear, monotonic, or more complex. 

The following is the methodology used to calculate PDP: 

 

 

In the above formula, 𝑓𝑥𝑐 is the partial function of the average marginal effect of 

variable 𝑥𝑠 on the predicted variable. 𝑥𝑠 is a collection of target features. 𝑥𝑐 represents the 

complementary set of features used in machine learning model. The expected value of 𝑓(𝑥) 

is 𝐸[𝑓(𝑥)]. While 𝑥𝑠  is fixed, 𝑥𝑐 changes according to its marginal distribution 𝑑𝑝(𝑥𝑐). 

In practice, part of function 𝑓𝑥𝑠(𝑥𝑠) is the average of all training data. 

 

𝑥𝑐
𝑖  is the feature in the 𝑖𝑡ℎ sample, excluding 𝑥𝑠; N is the number of observation 

samples in the dataset. 

 

 

 

 

 

 

 

 

 

𝑓𝑥𝑠(𝑥𝑠) = 𝐸𝑋𝐶[𝑓(𝑥𝑠, 𝑥𝑐)] = ∫𝑓(𝑥𝑠, 𝑥𝑐)𝑑𝑝(𝑥𝑐) (22) 

𝑓𝑥𝑠(𝑥𝑠) =
1

𝑛
∑ 𝑓(𝑥𝑠, 𝑥𝑐

𝑖)
𝑛

𝑖=1
 (22) 



S3: Multivariate geographic regression model (MGWR) 

Scale is a critical dimension in understanding and describing urban phenomena. The 

evolution of each phenomenon is often determined by spatial processes operating at multiple 

scales. As Goodchild aptly noted, "Scale is among the most significant issues in the study of 

geographic matters. Studies have shown that implementing policies based solely on a singular, 

average, globally applicable perspective may lead to misleading outcomes. In the pursuit of 

high-quality development, it is imperative to explore the future of cities from a nuanced, 

multi-scaled perspective and to formulate corresponding policies.  

In spatially related analyses, the feature values of observational entities are often derived 

from their geographic locations, which serve as sampling units. The inherent non-stationarity 

of spatial data imparts unique characteristics to it. Prior to 1996, studies of geographic spatial 

relationships predominantly employed the Ordinary Least Squares (OLS) method. However, 

as a global regression model, OLS is based on the assumption of spatial homogeneity and 

tends to overlook the nuanced characteristics of actual spatial contexts. The advent of 

Geographically Weighted Regression (GWR), introduced by Fotheringham, marked a 

significant shift. GWR transcends the limitations of OLS by utilizing locally weighted least 

squares for individual parameter estimation. This method adeptly captures the diversity and 

variability of variables in geographic space by incorporating locally varying parameters. The 

formulation of GWR is as follows: 

 

 

In this model, (𝑢𝑖 , 𝑣𝑖) represents the centroid coordinates of the ith grid in the study 

area. 𝑦𝑖 denotes the observed values (dependent variables) of the objects of interest within 

the ith grid. 𝑥𝑖𝑟 refers to the rth influencing factor (independent variable) within the ith grid 

that affects the characteristics of the observed objects. 𝛽𝑟  signifies the regression coefficient 

of the rth independent variable in the ith grid, and 𝜀𝑖 accounts for the random error term.  

Although GWR considers the influence of spatial scales on variables, the spatial 

non-stationarity of inter-element relationships often manifests across different scales. A 

𝑦𝑖 =∑𝛽𝑟(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑟
𝑟

+ 𝜀𝑖 (23) 



uniform, global bandwidth in GWR can lead to increased regression bias. To address these 

scale effects, Fotheringham et al. innovatively developed the Multiscale Geographically 

Weighted Regression (MGWR) model in 2017, building upon the foundations of GWR and 

generalized additive models. This model allows for variable-specific spatial smoothing levels, 

enabling each variable to undergo regression with its distinct bandwidth. This approach 

significantly reduces noise in parameter estimation and enhances the accuracy of spatial 

process simulations. The smaller the bandwidth assigned to a variable, the greater its spatial 

heterogeneity. Following enhancements by Yu et al. in 2020, MGWR has been extensively 

utilized in a variety of empirical research. The precise computational formula is delineated as 

follows: 

 

In the formula, bwj represents the bandwidth used for the regression coefficient of the jth 

variable; 𝛽𝑏𝑤𝑗  denotes the regression coefficient of this independent variable within the ith 

grid at this bandwidth. 𝑦𝑖  signifies the feature value of the observational entity in the ith grid; 

(𝑢𝑖 , 𝑣𝑖) represents the centroid coordinates of the ith grid; 𝑥𝑖𝑗 signifies the factor within the ith 

grid that influences the characteristic values of observation objects associated with the jth  

variable; k denotes the number of observation samples; 𝜀𝑖 represents the observational error 

value and 𝛽0(𝑢𝑖 , 𝑣𝑖) represents the intercept term; The Akaike Information Criterion (AIC) 

or the Akaike Information Criterion Corrected (AICc), along with the R2 value, are commonly 

employed standards for assessing the goodness of fit of regression models. Lower AIC and 

AICc values, coupled with a higher R2, indicate a better fit of the model. 

 

 

 

 

𝑦𝑖 = 𝛽0(𝑢𝑖 , 𝑣𝑖) +∑𝛽𝑏𝑤𝑗(𝑢𝑖 , 𝑣𝑖)𝑥𝑖𝑗

𝑘

𝑗=1

+ 𝜀𝑖 (24) 


