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Abstract: Digital Twin (DT) technology, as the evolution of Building Information Modeling (BIM), has
emerged to address global concerns regarding the environmental impacts of the construction industry
and to meet sustainability indicators. Despite numerous studies targeting the integration of DT and
sustainability, there is a noticeable gap in creating a comprehensive overview of the efforts and future
directions in this field. Therefore, this research aims to provide both a scientometric analysis and
a thematic review of 235 papers extracted from the Scopus database. These papers, all published
between 2017 and 2024, focus on previous efforts, current trends, and future directions of using
the Digital Twin for construction sustainability. In addition, 34 papers that were cited more than
20 times were classified by the application into four categories: simulation, technology integration,
smart systems, and literature review. Furthermore, regarding the application of smart systems in
sustainability, the authors discussed applications of BIM-DT in smart construction, smart buildings,
smart infrastructures, and smart cities based on the most-cited papers. Subsequently, five research
gaps were identified and suggested for future investigation. The research gives a holistic insight into
the current trend of DT among researchers, previous achievements, and future directions.
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1. Introduction

Global warming and the rapid, human-driven destruction of the environment have
led to a surge in attention on producing corrective solutions. One of the pivotal industries
exacerbating ecosystems is the construction industry, which is a major source of urban
pollution [1]. This industry accounts for 40% of energy consumption, one-third of carbon
emissions, and a quarter of global waste generation [2,3], with construction and demolition
waste (CDW) being its most pollutant byproduct [1]. Therefore, the construction industry
has been compelled to find solutions to mitigate its negative effects. In the 1970s, automa-
tion was introduced to the construction industry through building information modeling
(BIM) [4]. Since 1950, discussions in certain strains of thought have grown in popularity,
including population growth, resource use, and pressure on the environment, all of which
revolve around “sustainability” [5]. The United Nations have promoted the use of the term
“sustainable development” since 1987, describing it as an idea that “meets the needs of
the present generation without compromising the ability of future generations to meet
their own needs” [6]. Incidentally, in recent years, sustainability has widely been related to
environmental factors, and other dimensions should be considered in this regard, including
economic and social indicators.

In the 1970s, Finland introduced a new approach to digitizing the construction in-
dustry [4], the n-dimensional (nD) model, including 3Dmodeling, 4D scheduling, 5D
estimating, 6D sustainability, 7D operation and 8D safety [7]. Digital Twin (DT), the evo-
lution of BIM, has been innovated to streamline construction project tasks during the
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entire project lifecycle and enhance sustainability [8]. DTs were initially used to simulate
physical assets digitally, providing a platform for processing and managing information.
Originally, DTs functioned primarily as monitoring tools but have since evolved to support
control, optimization, and automation. Continuous improvements in learning and digital
representation have enhanced DT capabilities. Today, DTs can integrate with advanced
technologies such as artificial intelligence (AI), data analytics, the Internet of Things (IoT),
and augmented reality (AR), revolutionizing engineering processes [9]. AI assists in mod-
eling complex systems by leveraging data gathered from IoT sensors. With emerging
technologies enhancing decentralized processes and reducing reliance on human tasks,
while significantly minimizing errors, these innovations are now at the forefront of DT
technological research. Although academic trends have primarily focused on the applica-
tion of DTs in manufacturing and supply chain management, the construction industry
is seeing an increasing number of studies in this area. These studies emphasize reducing
errors and ensuring as-designed construction [10], which directly contributes to improving
sustainability indicators.

BIM aimed to reduce the environmental impact while simultaneously reducing the
associated time, costs, and risks [11]. Governments have collaborated with industry and
academia to develop roadmaps for implementing and mandating BIM in the industry.
BIM is a virtual representation of a built environment, covering the engineering and
construction phases [12]. The evolution of BIM during the construction phase has led to
the development of DT technology [13], which provides real-time feedback on structural,
mechanical, and electrical elements using sensors [14]. The widespread utilization of BIM in
the construction industry has led researchers to promote BIM integrated with sustainability,
known as the 6D of BIM. During the engineering phase, BIM enables accurate energy
consumption simulation. In the construction phase, it helps anticipate and measure energy
usage. During the Operation and Maintenance (O&M) phase, DT technology provides
occupant comfort and optimized energy consumption [15].

BIM could be used in sustainable construction through robust information delivery and
better energy modeling [16]. Additionally, BIM contributes to reducing carbon emissions
and material waste, thereby developing the principles of sustainable construction [17]. The
endeavor to integrate BIM within the building lifecycle has yielded promising outcomes.
The BIM-based design demonstrates efficiency in sustainable construction, with various
research studies highlighting its positive impact on design and the concurrent reduction
in environmental footprints. In a compelling case study, the application of BIM during
building form design showcased a substantial 20% reduction in embodied carbon from
construction materials [18]; this is in stark contrast with conventional design approaches,
which, as evidenced, result in 2–3 times higher carbon and energy production compared
to their BIM-based counterparts [19]. A proposed framework encompasses a sustainable
BIM model, addressing aspects of retrofitting and improvement for both new and existing
buildings [20]. The pivotal work of Ata et al. introduces a groundbreaking concept—the
materials digital passport, meticulously structured to seamlessly integrate with BIM in the
pursuit of sustainable construction. This tool serves as an invaluable resource for designers,
providing qualitative and quantitative information about materials. In the qualitative
realm, it imparts insights into circularity and disassembly practices, while the quantitative
dimension precisely delineates destructibility, recovery, and environmental scores [21].
Several studies have explored models and approaches to reduce CDW and greenhouse
gas (GHG) emissions. For instance, BIM implementation in case studies reduced waste by
4.3% to 15.2%, demonstrating the positive impact of engineering improvements [22]. Jalaei
et al. developed a BIM plugin that successfully reduced CDW in high-rise building walls
by 42.4%, emphasizing the potential of innovative tools in waste reduction [1]. A 2022
study proposed a framework to minimize CDW at the early design stage by addressing
rework, design faults, and redesign possibilities [23]. Through a study focused on the
Chinese construction market, 206 buildings and a construction project were investigated
to develop a predictive model for waste generation across three phases: understructure,
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superstructure, and the finished stage. Waste types were categorized into five groups:
inorganic nonmetallic, organic, metal, composite, and hazardous waste. Leveraging Big
Data collected from this comprehensive study, the model effectively predicts the quantity
of waste generated in each phase [24]. Despite the advancements and proven benefits of
BIM to the construction industry, research shows that BIM still needs further developments
to be exhaustively employed [11]. A critical issue is real-time data exchange between
construction assets and the model, which prevents simultaneous monitoring. However,
most recent research efforts have been allocated to integrating BIM with other technologies,
including Radio Frequency Identification (RFID), AR, and Geographical Information Sys-
tems (GISs). Moreover, BIM lacks interoperability, which would aid in software utilization
and data transfer for the engineering, construction, and operation phases [25]. Neverthe-
less, efforts are being applied to proposing innovations that provide project teams with
real-time data exchange and condition monitoring of the built environment. The virtual
counterpart [26], later called the DT, is created to not only provide a seamless flow of
real-time information but also enhance the sustainability of the construction. Therefore,
considering the progressive trend of studies emphasizing sustainability in the construction
industry, it is crucial to have a clear vision of current trends and future directions. Therefore,
this study is dedicated to providing information about the application of DT technolo-
gies in enhancing sustainability throughout the lifecycle of built environments. Several
recent reviews have focused on DTs [14,27–29]. Among these, Albalkhy et al. reviewed
228 publications and classified DT applications into six categories: (1) sustainability and
environmental performance; (2) facility management; (3) safety, health, and risk manage-
ment; (4) structural performance; (5) construction management; and (6) architecture- and
urban-related applications [27]. Various attempts conducted during the last five years have
reviewed the effects of digitalization, specifically DTs, from different lenses. Huang et al.
provided an extensive literature review and explored how DTs enhance sustainability in
civil engineering in structural health monitoring (SHM) and full project lifecycle [30]. For
successful DT implementation in the construction industry, several challenges need to be
addressed. IT infrastructure must be enhanced to ensure a seamless flow of information.
Data exchange must be reliable, with trustworthy data transmitted without interference
or network failures. Security and privacy regulations must also be met, particularly con-
cerning data sharing. Furthermore, organizations and end-users need to be informed about
the benefits of DTs, and professionals require training to develop realistic expectations. A
standardized modeling approach is currently lacking, and the domain of IoT data exchange
during model development and maintenance must be improved to ensure reliable data
analysis in a common data environment [31].

While the integration of DT technology with sustainability is progressing, further
advancements are required to meet global needs. Emerging technologies such as AI
and IoT are generating new forms of DTs, including cyber-physical twins, AI-driven
DTs, and urban DTs, necessitating in-depth research to address sustainability concerns.
Although the aforementioned reviews have explored DT applications, there remains a
gap in focusing both qualitatively and quantitatively on how DTs function in promoting
sustainability. To address this gap, this study reviews all published articles, encompassing
235 conference and journal articles published between 2017 and 2024, both qualitatively
and quantitatively. The critical review applied in this research aims to extract current trends
and future directions. The paper is organized as follows: In Section 2, the authors present
their review methodology and strengthen the research methodology that is applied in
this research. In Section 3, a quantitative analysis is performed. Section 4, the proposed
definitions for DTs are reviewed, and previous endeavors on DT applications in sustainable
built environment lifecycles are thematically discussed. Eventually, future research topics
are proposed in Section 5.

The current research, therefore, emphasizes the importance of DT implementation in
achieving a sustainable built environment. In doing so, the authors review the most-cited
articles, DT applications, and the advancements that have been made in smart buildings
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over the past two years. Additionally, recent research efforts on smart infrastructures and
smart cities are discussed using an extensive literature review. The paper is the first to
profoundly consider advancements and practices in DTs within a single source.

2. Research Methodology

A systematic literature review was selected for this research as it is an effective method
that provides a comprehensive perspective on previous research efforts [32,33] and builds
upon the PRISMA checklist. This method also enhances our understanding of research
trends and strengthens knowledge structures [34]. The research protocol, based on previ-
ous review-building development efforts [15,35–38], is presented in Figure 1. Initially, a
preliminary search was performed on the database, followed by a double-screen review.
The scientometric analysis in the second stage aimed to develop bibliographic networks.
In the final stage, the lifecycle of built environments was divided into four phases, which
were thematically discussed.
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2.1. Bibliometric Analysis

Preliminary Search
The preliminary search was conducted to understand the boundaries of the research.

The Scopus database is a primary source of abstracts; it indexes publications from more than
7000 publishers, including more than 91 million records from more than 17 million authors
across the globe. The initial search encompassed “Digital Twin” as the keyword with
unlimited timespan, language, and publishing stage. The search resulted in the retrieval of
25,257 publications (Table 1).

Double Screen Check
The double screen check was used with the aim of limiting the timespan, the type

of publication, and the stage of publication, utilizing keywords that reflect the research
goals. Related studies were exported through an extensive search, using the keyword
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“Digital Twin” in journal articles and conference proceedings in the engineering subject
area. The preliminary search resulted in 25,527 papers. Performing the double screen
check, we limited the search through the use of the following keywords: “sustainability”
OR “sustainable” AND “construction” OR “building” OR “built”. These keywords were
required to appear in the paper title, the keywords, or the abstract. Duplicates were
removed. English language was required, and there was no limitation on publication
time span. With these measures, 235 papers were found (after the removal of duplicates)
(Table 1). This result was achieved on 7 July 2024.

Table 1. Bibliometric search criteria and results.

Stages String and Filter No. of Document

Preliminary Search

Database: Scopous
Subject area: Engineering

Keyword: “Digital Twin” (Title)
Document type: journal article,

conference proceedings

25,257

Double Screen Check

Keyword: Sustainability OR Sustainable
AND Construction OR Building OR

Infrastructure (title, abstract, keyword)
Language: English

Time span: All years (2017–2024)

235

Removing duplicates 235

As illustrated in Figure 2, the trend of publications shows a surge across all types of
papers starting from 2017 and peaking in 2023, where 36.6% of the total publications (86 out
of 235) were recorded. Furthermore, 80% of all 235 published papers were produced during
the last three years. Before 2017, research had especially been focused on developing DTs
and the transformation of BIM into DTs and the principles of these technologies; meanwhile,
research concentrating on sustainability was lacking. Therefore, this review covers almost
all the research efforts on DT applications in sustainable built environments.
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2.2. Systematic Review

A systematic review analysis is defined as “a quantitative study of research on the
development of science” [39]. This approach evaluates the impact of research and measures
relationships between citations to construct a knowledge map using information extracted
from academic databases. In this study, the Scopus database was selected as the primary
source. While a manual literature review allows for a comprehensive mapping of a specific
research area, there are debates concerning subjective interpretation [40]. Therefore, the
systematic review technique was employed in this study to analyze DT projects within the
architecture, engineering, and construction (AEC) industry and to construct a knowledge
map of the area. This perspective on the DT field through a network helps researchers to
understand the current research patterns and trends.

The bibliometric search scrutinized the title, abstract, and keywords to conduct a
comprehensive review of the literature on Digital Twin and sustainability. The following
analyses, as depicted in Figure 1, were performed to validate the research patterns: co-
authors’ citation network, co-authors’ country network, and journal network. Before
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discussing future research directions, a keyword co-occurrence analysis was performed
to identify trending research areas. This comprehensive approach helps in understanding
the landscape of Digital Twin research within the context of sustainability and provides
insights into emerging trends and collaborative networks.

3. Scientometric Analysis

VOS viewer software 1.6.18 was employed for the scientometric analysis to create a
network among the 235 publications identified in the Scopus database. All publications
were defined within the software to facilitate a comprehensive bibliometric analysis. This
approach allows for the visualization of relationships and patterns among research papers
based on citations, co-authorships, keywords, and other relevant factors.

3.1. Most-Cited Papers

Table 2 presents the first five most-cited papers; these were all journal articles, col-
lectively accounting for 846 citations, which constitutes approximately 27.3% of the total
citations analyzed. This indicates a significant impact of these journal papers within the
field under study.

Table 2. Top five most-cited publications.

N Author and
Year Type Article Title Journal/Conference Cited Ref.

1 Zaheer et al.,
2022 Article

The Metaverse as a Virtual Form of
Smart Cities: Opportunities and
Challenges for Environmental,
Economic, and Social Sustainability in
Urban Futures

Smart Cities 237 [41]

2 Shim et al., 2019 Article
Development of a bridge maintenance
system for prestressed concrete bridges
using 3D Digital Twin model

Structure and
Infrastructure
Engineering

174 [42]

3 Kaewunruen
and Lian, 2019 Article

Digital Twin aided sustainability-based
lifecycle management for railway
turnout systems

Journal of Cleaner
Production 164 [43]

4 Li et al., 2020 Article
Sustainability assessment of intelligent
manufacturing supported by
Digital Twin

IEEE Access 151 [44]

5 Xia et al., 2022 Article

Study on city Digital Twin technologies
for sustainable smart city design: A
review and bibliometric analysis of
geographic information system and
building information
modeling integration

Sustainable Cities
and Society 120 [45]

3.2. Co-Authors’ Country Analysis

A co-authorship country network (Figure 3) was developed to discuss the countries
with the highest contribution to knowledge in the field. Countries with more than five
published conference and journal papers were explored without specific restrictions on
citation numbers. A total of 20 countries were identified to have contributed to the con-
struction of the network. In this network visualization, each node represents a country, and
the links depict collaborations between countries. The size of each node reflects its contri-
bution, with larger nodes indicating a higher number of published papers. Additionally,
the analysis revealed that the University of Cambridge has published 13 papers focusing
on Digital Twin–sustainability integration, making it the most prominent organization in
this area. Following closely are Politecnico di Milano, the University of Birmingham, and
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Rheinisch-Westfälische Technische Hochschule Aachen, each with six publications. The
University of Hong Kong follows with five publications (Figure 4).
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Table 3 provides detailed information about each country’s achievements in terms
of citations and documents related to Digital Twin–sustainability knowledge. The United
Kingdom emerges as the most active country in developing this knowledge domain, with
40 publications, 839 citations, and a total link strength of 23. Following closely are the next
four active countries, including China (32 documents, 744 citations, and a total link strength
of 22), the United States (30 documents, 172 citations, and a total link strength of 14), Italy
(27 documents, 90 citations, and a total link strength of 12), and Germany (22 documents,
165 citations, and a total link strength of 7).

Table 3. Countries’ contributions to the knowledge area.

Country Documents Citations Total Link
StrengthCount Percentage Count Percentage

Total 301 100% 4978 100%

United Kingdom 40 13.29% 839 16.85% 9
China 32 10.63% 744 14.95% 12

United States 30 9.97% 172 3.46% 1
Italy 27 8.97% 90 1.81% 0

Germany 22 7.31% 165 3.31% 0
Australia 11 3.65% 389 7.81% 4

Hong Kong 11 3.65% 315 6.33% 4
Others 128 42.53% 2264 45.48%

“Others” advocates the countries that published equal to and less than 10 papers.
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3.3. Journal Network

Table 4 provides a report on the journals that have achieved the most significant
number of citations in this context.

Table 4. Productive journals and conferences arranged by the number of citations.

Source Citations Percentage Total Link Strength

Total 5449 100%

Sustainability 200 3.67% 3696
Automation in Construction 153 2.81% 4028

IEEE Access 145 2.66% 1313
Sustainable Cities and Society 105 1.93% 2050

Buildings 98 1.80% 2006
Automation in Construction 78 1.43% 1452

Energies 77 1.41% 1590
Energy and Buildings 75 1.38% 2508

Sensors 74 1.36% 990
Energy 70 1.28% 2455

Journals with citations < 70 4374 80.27%

Among the most impactful journals, Sustainability is cited 200 times, equal to 3.67%,
with a total link strength of 3696. Automation in Construction has 153 citations, 2.81% of
the total, and it has the highest total link strength (4028). The next highest-ranking cited
journals are IEEE Access (citation: 145; 2.66%; total link strength: 1313), Sustainable Cities
and Society (citation: 105; 1.93%; total link strength: 2050), and Buildings (citation: 98; 1.80%;
total link strength: 2006).

Table 5 lists the journals and conferences that have hosted the highest number of papers
in the field of Digital Twin applications in sustainability. The Scimago Journal & Country
Rank was used to determine the H-Index of these journals and conferences. Journals with
more than three publications and conferences with more than two publications are included
in the table. The five selected journals collectively published 21 papers, contributing
24.7% of the total publications. Additionally, the three conferences featured in the table
contributed 7.4% of the publications, making up 32.1% of the overall total. Specifically, the
Sustainable Cities and Society journal hosted six papers (12.5%), and the Buildings journal
hosted five papers (10.4%). These findings highlight the significant contribution of these
journals and conferences to the dissemination of research on Digital Twin applications
in sustainability.

Table 5. Productive journals and conferences arranged by the number of published papers.

Source Publications Host Country Count Percentage H-Index

Regular journals (Total) 133 41.96%

Sustainable Cities and Society The Netherlands 14 10.5% 130
Buildings Switzerland 11 8.3% 55

Frontiers in Built Environment Switzerland 6 4.5% 35
Journal of Cleaner Production UK 6 4.5% 268

Energies Switzerland 5 3.8% 152
Energy and Buildings The Netherlands 5 3.8% 232

IEEE Access United States 5 3.8% 242
Others (number of publications < 5) 81 60.9%
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Table 5. Cont.

Source Publications Host Country Count Percentage H-Index

Conference proceedings (Total) 101 31.86%

IET Conference Proceedings UK 5 5.0% 47
Procedia CIRP The Netherlands 3 60.0% 103

Proceedings—2023 IEEE International
Conference on Big Data, BigData 2023 Italy 3 3.0% NA

Others (number of publications < 3) 90 89.1%

H-Index extracted from Scimago Journal & Country Rank “https://www.scimagojr.com/” (Accessed on 7 July
2024). NA: Not available.

3.4. Keyword Co-Occurrence Analysis

A total of 889 keywords were identified across the explored papers, with 49 of them
appearing three times or more. Figure 5 illustrates the relationships between keywords
used by authors, showing each node and their co-occurrence in papers. According to
Figure 5, the keyword “Digital Twin” has the highest frequency, appearing 90 times and
having a total link strength of 115.
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Based on Table 6, which provides information about the occurrence of each keyword
and their network parameters, “Digital Twin” stands out with the highest frequency at
90 occurrences and a total link strength of 115. Following this, the next most frequent
keywords are “Sustainability” (occurrence: 27; total link strength: 49), “Digital Twins”
(occurrence: 26; total link strength: 31), “BIM” (occurrence: 19; total link strength: 39),
and “Industry 4.0” (occurrence: 14; total link strength: 30). However, “Digital Twin”
emerged in different terms, including “Digital Twins” and “Digital Twin (DT)”, and “BIM”
was repeated through the phrasing of “building information modelling (BIM)”, “building
information modeling (BIM)”, and “building information modelling”, emphasizing the
leverage of the keywords.

https://www.scimagojr.com/


Buildings 2024, 14, 3613 10 of 33

Table 6. Highly occurring keywords with network parameters.

Keyword Occurrences Total Link
Strength Keyword Occurrences Total Link

Strength

Digital Twin 90 115 Technology 4 7
Sustainability 27 49 Virtual Reality 4 7
Digital Twins 26 31 Asset Management 3 9

BIM 19 39 Building Information
Modeling (BIM) 3 4Industry 4.0 14 30

Artificial Intelligence 11 19 Building Information
Modelling 3 5Blockchain 10 20

Internet of Things 10 8 Buildings 3 4
IoT 9 24 Built Environment 3 12

Machine Learning 8 15 Climate Change 3 5
Digitalization 7 12 Construction 3 12

Energy Efficiency 7 8 Cybersecurity 3 4
Infrastructure 7 16 Data 3 12

Circular Economy 6 14 Deep Learning 3 6
Resilience 6 18 Demand Response 3 2
Smart City 6 11 Digital Transformation 3 9

Building Information
Modelling (BIM) 5 7

Interoperability 3 9
Maintenance 3 2

Sustainable Construction 5 8 Metaverse 3 9
AI 4 7 Operations 3 6

Digital Technologies 4 7 Optimization 3 4
Digital Twin (DT) 4 2 Sensors 3 5

Forecasting 4 11 Smart Building 3 5
GIS 4 4 Smart Campus 3 4

Predictive Maintenance 4 9 Smart Cities 3 6
Simulation 4 4 Smart Infrastructure 3 8

4. Content Analysis
4.1. Digital Twin Definitions

In 2012, the term “Digital Twin” was first utilized in the context of the NASA Apollo
13 mission, as described in the following quote: “An integrated multiphysics, multiscale,
probabilistic simulation of an as-built vehicle or system that uses the best available physical
models, sensor updates, fleet history, etc., to mirror the life of its corresponding flying
twin” [46]. However, since then, scientists and researchers have not reached a consensus on
a unique definition of “Digital Twin”. Various definitions of DTs have been proposed across
different industries. A comprehensive table of DT definitions is available in Appendix A
(Table A1), along with the corresponding references in the text.

Since the introduction of DTs in 2002 [47], DTs have been demonstrated to have ad-
vanced applications through integration with emerging technologies and systems, ranging
from preventive decision-making to the development of autonomous systems.

DTs represent an evolution from BIM, as they simulate the physical condition of
a project within a virtual environment. They can also integrate with IoT technologies,
enabling efficient energy consumption through optimized energy modeling during the
engineering phase. This optimization leads to efficient energy management and enhanced
occupant comfort during the operational phase [14]. Consequently, developments in DTs
are significant advancements for the industry.

Adding the automated decision-making feature to DTs, which enables real-time data
collection of the state of a built environment to provide accurate predictions of future
states and take reliable actions, is interpreted as a cyber-physical twin [48]. This innovation
facilitates intelligent and automated processes by employing computing technologies
such as sensing, analyzing, predicting, and understanding, along with communication
strategies that include interaction and interface management and control mechanisms like
interoperability, evolution, and evidence-based certification [49].
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4.2. Digital Twin Applications

Considering the 235 papers explored with the mentioned keywords, all papers cited
more than 20 times until 7 July 2024 were selected for review, totaling 40 papers. Articles
are categorized based on application in simulation, technology integration, smart systems,
and literature review. Six papers that were deemed to be irrelevant to the construction
industry were excluded, leaving a total of 34 papers for review that are categorized by
application in Table 7.

Table 7. Highly cited DT papers divided by applications.

No Title Ref. Application

1 The Metaverse as a Virtual Form of Smart Cities Opportunities and Challenges for
Environmental, Economic, and Social Sustainability in Urban Futures [41] Simulation

2 Development of a Bridge Maintenance System for Prestressed Concrete Bridges
Using 3D Digital Twin Model [42] Simulation

3 Digital Twin Aided Sustainability-Based Lifecycle Management for Railway
Turnout Systems [43] Simulation

4 Sustainability Assessment of Intelligent Manufacturing Supported by Digital Twin [44] Smart systems

5
Study on City Digital Twin Technologies for Sustainable Smart City Design: A
Review and Bibliometric Analysis of Geographic Information System and
Building Information Modeling Integration

[45] Simulation

6 Circular Digital Built Environment: An Emerging Framework [50] Technology
integration

7 Digital Twin for Sustainability Evaluation of Railway Station Buildings [51] Simulation

8 Developing a Dynamic Digital Twin at a Building Level: Using Cambridge
Campus as Case Study [52] Technology

integration

9 Digital Twin Models for Optimization and Global Projection of
Building-Integrated Solar Chimney [53] Simulation

10 Urban Digital Twin Challenges: A Systematic Review and Perspectives for
Sustainable Smart Cities [54] Simulation

11 Interoperability Between Building Information Modelling (BIM) and Building
Energy Model (BEM) [55] Simulation

12 Design and Assembly Automation of the Robotic Reversible Timber Beam [56] Technology
integration

13 Unpacking Data-Centric Geotechnics [57] Technology
integration

14 Digital Twin Enabled Sustainable Urban Road Planning [58] Technology
integration

15
Future Landscape Visualization Using a City Digital Twin: Integration of
Augmented Reality and Drones with Implementation of 3D Model-Based
Occlusion Handling

[59] Technology
integration

16 Metaverse Supply Chain and Operations Management [60] Simulation

17 Digital Twin Simulation Tools, Spatial Cognition Algorithms, and Multi-Sensor
Fusion Technology in Sustainable Urban Governance Networks [61] Technology

integration

18 AI-Based Physical and Virtual Platform With 5-Layered Architecture for
Sustainable Smart Energy City Development [62] Smart system

19 Renewable Energy System Controlled by Open-Source Tools and Digital Twin
Model: Zero Energy Port Area in Italy [63] Simulation

20 Hybrid Learning-Based Digital Twin for Manufacturing Process: Modeling
Framework and Implementation [64] Technology

integration
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Table 7. Cont.

No Title Ref. Application

21 An Initial Model for Zero Defect Manufacturing [65] Smart systems

22 Efficient Container Virtualization-Based Digital Twin Simulation of Smart
Industrial Systems [66] Smart systems

23 Digital Twin-Enabled Smart Modular Integrated Construction System for
On-Site Assembly [67] Technology

integration

24 Blockchain-Enabled Cyber-Physical Smart Modular Integrated Construction [68] Smart systems

25 A BIM-IoT and Intelligent Compaction Integrated Framework for Advanced Road
Compaction Quality Monitoring and Management [69] Smart systems

26 A Framework for Using Data as an Engineering Tool for Sustainable
Cyber-Physical Systems [70] Simulation

27 Adoption of Blockchain Technology Through Digital Twins in the Construction
Industry 4.0: A PESTELS Approach [71] Technology

integration

28 Project Data Categorization, Adoption Factors, and Non-Functional Requirements
for Blockchain Based Digital Twins in the Construction Industry 4.0 [7] Technology

integration

29 Digital Twins in Infrastructure: Definitions, Current Practices, Challenges
and Strategies [72] Smart systems

30 Collaboration and Risk in Building Information Modelling (BIM): A Systematic
Literature Review [73] Technology

integration

31
Digital Twin Framework for Automated Fault Source Detection and Prediction for
Comfort Performance Evaluation of Existing Non-Residential
Norwegian Buildings

[74] Smart systems

32 Digital Twins for Managing Railway Bridge Maintenance, Resilience, and Climate
Change Adaptation [75] Simulation

33 Design and Implementation of a Smart Infrastructure Digital Twin [76] Smart systems

34 Digital Twin with Machine Learning for Predictive Monitoring of CO2 Equivalent
from Existing Buildings [77] Technology

integration

Reviews conducted recently show further developments are required in Digital Twin
applications and their integration with other technologies; the infancy level of DTs’ devel-
opments is also highlighted, encouraging researchers to delve into the subject.

5. Simulation

DTs have emerged as powerful tools in both lifecycle management and urban de-
velopment, offering simulation capabilities that provide insights into current conditions
and future projections. As a part of Building Management Systems (BMSs), DTs enable
stakeholders to access real-time data for better decision-making in long-term maintenance
and operational prioritization. For example, studies have demonstrated the value of DTs in
railroad turnout lifecycle management by integrating field data like time, cost, and sustain-
ability metrics into a 3D BIM model, which enhances decision-making efficiency [42,43].
However, while these examples show potential, they often remain siloed in their application,
focusing on specific domains without addressing broader, cross-functional opportunities.
For instance, DT models that incorporate cost, scheduling, and carbon emission metrics
(6D) have shown promise in improving sustainability and resilience for existing infrastruc-
ture [51,75], but there is limited discussion on how these methods could be standardized or
scaled for widespread adoption in diverse infrastructure contexts.

This gap extends to the digital transformation of existing districts into zero-energy
zones [63]. Although simulations demonstrate the feasibility of integrating renewable
energy technologies, such as solar chimneys, to improve energy efficiency in both low-
income and developed countries [53], questions remain about the scalability of such models
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across different climate zones and socioeconomic contexts. Furthermore, despite advance-
ments in energy optimization using BIM-to-BEM simulations during the design phase,
challenges like BIM-BEM interoperability in complex buildings persist, often resulting in
errors (e.g., missing or incompatible data) [55]. These technical and interoperability issues
highlight a critical need for more robust frameworks that can handle the complexity of
real-world applications.

At the urban management level, DTs show significant potential for improving city
planning and infrastructure management. By simulating networks of transportation sys-
tems, such as bridges and railways, DT can facilitate more sustainable decision-making [70].
Moreover, virtual sustainable city models are being explored within the Metaverse, with
studies highlighting their potential to enhance governance, social interactions, and cli-
mate change mitigation efforts [41]. This concept is also beneficial for optimizing supply
chains, further improving efficiency and sustainability [60]. However, the current litera-
ture highlights fragmentation, especially in the integration of GIS and BIM for smart city
design. While some scholars emphasize the importance of developing holistic platforms
with semantic attributes for real-time city lifecycle management [45], the path toward
achieving this remains unclear, particularly given the barriers related to interoperability,
infrastructure needs, and governance [54].

The existing literature clearly demonstrates the utility of DTs in simulating various
aspects of infrastructure and urban management, yet significant gaps remain in the stan-
dardization, scalability, and integration of these technologies across different domains.

6. Technology Integration

The integration of various technologies with BIM and DTs has shown significant
potential in enhancing efficiency, especially through the use of real-time data for decision-
making and predictive maintenance. For example, incorporating BIM with IoT, BMS,
and asset tagging platforms creates dynamic DT systems that improve asset tracking and
enable predictive maintenance [52]. While such integration offers clear benefits, there
are ongoing challenges related to data management and interoperability across these
diverse technologies.

A growing body of research explores how these technologies can also contribute to
sustainability and circularity in the built environment. For instance, material passports
and BIM are emerging as key technologies to promote circular construction practices, with
DTs providing critical support [50]. However, despite their promise, the practical imple-
mentation of these systems on a large scale is limited, particularly in the standardization of
workflows and data-sharing protocols across projects. This is an area where future research
could focus on harmonizing digital platforms to better support sustainable construction
processes [56].

Other studies highlight the potential of DTs in modular construction. Jiang et al., for
example, introduced the Digital-Twin-Enabled Smart Modular Integrated Construction
System (DT-SMiCS) by combining DTs with RFID and ultra-wide band (UWB) devices,
enabling real-time, multi-dimensional data collection [67]. This research points to a growing
trend of making construction components “smart,” but more work is needed to address how
such systems can be generalized to different construction types and materials. Similarly,
while blockchain integration with DT promises enhanced trust, information management,
and automation [71], the complexity of these systems, particularly in relation to cybersecu-
rity and data governance, remains an open challenge that requires further exploration. The
integration of DTs and blockchain has also been shown to enhance collaboration, automate
processes through smart contracts, and improve data exchange [7].

When it comes to achieving sustainability goals, digital technologies are proving to
be transformative. Arsiwala et al. developed a framework combining BIM, IoT, and AI to
predict and measure carbon emissions in existing buildings, showing promising results for
net-zero renovations [77]. Their work highlights the potential of digital tools to optimize sus-
tainability, but the lack of standardized data models and the need for high-level stakeholder
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engagement pose significant barriers to widespread adoption. Similarly, Ali et al. empha-
sized the critical role of DTs in overcoming barriers to integrating BIM with sustainability
goals [73], yet there is limited discussion in the literature about how these systems can be
made accessible to smaller construction firms with limited technological infrastructure.

At the urban management level, DTs continue to show transformative potential. For
instance, combining city-level DT models with AR and drone technologies improves urban
planning by allowing stakeholders to visualize complex construction environments in
real time [59]. However, while visualization enhances decision-making, issues related to
data accuracy and the integration of various technologies remain critical. Similarly, the
integration of DTs with AI and BIM in geotechnical engineering has improved lifecycle
management by offering more data for informed decision-making [57], yet scalability across
different infrastructure types and geographies is still a challenge.

Research into sustainable infrastructure development has also benefitted from DT
applications. For example, a DT-based approach integrating multi-criteria decision-making
(MCDM) and GIS was validated in a case study for sustainable road development, where it
helped balance stakeholder demands with environmental constraints such as air quality
and noise pollution [58]. Nica et al. demonstrated how DTs can be integrated with other
technologies for urban management and governance [61]. This type of multi-technology
integration shows significant promise for urban management, but more work is needed to
develop frameworks that can consistently address diverse stakeholder requirements and
environmental considerations.

In the manufacturing sector, the integration of DTs with AI has proven to be highly
effective in managing sustainable processes. A hybrid-learning-based DT system has been
shown to enhance reliability and adaptability, particularly when handling uncertain condi-
tions, leading to more efficient and resilient operations [64]. This integration underscores
the potential of combining real-time data analysis with predictive capabilities to optimize
resource use and operational decision-making.

While existing studies demonstrate the potential of integrating technologies such as
IoT, AI, blockchain, and AR with BIM and DTs, significant gaps remain in terms of scala-
bility, interoperability, and real-world implementation. Many of the current applications
are highly specialized, and there is a need for more holistic frameworks that can support a
wider range of construction practices and urban management scenarios.

Given the importance of emerging technologies in sustainable built environment
lifecycle management, particularly in reducing costs, time, workforce requirements, and
minimizing errors, further investigation has been conducted to analyze the application of
various technologies integrated with DTs across different types of built environments.

6.1. Emerging Technologies in Building Lifecycle Management

Before the construction phase begins, BIM is employed for cost–benefit analysis and
energy consumption predictions, contributing to sustainable design and LCA, with a focus
on material carbon emissions. BIM also facilitates Integrated Project Delivery (IPD) imple-
mentation and the transition to Integrated Digital Delivery (IDD) in construction projects.
Additionally, during the construction phase, BIM helps reduce design issues, costs, and
time, and improve energy usage. The progress and processes of the construction phase
can be monitored through BIM-IoT integration, allowing for risk prediction by simulating
the project [78]. BIM–blockchain integration provides a reliable platform for recording
project progress and resource consumption [79]. Data exchange via wireless and wired
IoT sensors and actuators ensures high-quality services, enabling each component to main-
tain effectiveness and intelligence, contributing to occupant comfort, health, and efficient
energy consumption, while boosting productivity [80]. During the O&M phase, BIM-IoT
integration supports energy performance management, indoor environment monitoring,
thermal comfort control, space management, hazard monitoring, and community moni-
toring. DT-IoT–computational fluid dynamic (CFD) simulation is expected to streamline
resource planning and improve lifecycle monitoring. A Revit visualization interface, based
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on DT-IoT, enhances thermal comfort monitoring and estimation. Additionally, ANN (arti-
ficial neural network)-based DTs reduce the computational time required to predict thermal
comfort by 98%, and an ANN–support vector machine (SVM)-based DT can estimate the
future condition of MEP components. Machine learning (ML)-based DTs are projected to
predict facilities’ Life Cycle Cost (LCC) using real-time data [78]. Moreover, integrating
BIM and blockchain securely stores IoT sensor data during the O&M phase, particularly
ensuring the protection of private or confidential information [79].

Integrating BIM-based applications with cloud computing provides real-time access
to data and resources, helping to mitigate common BIM challenges. This integration allows
users to access information via Internet-based applications, enabling project stakeholders to
communicate more effectively on a single decentralized platform. Combining Big Data with
BIM/DT allows stakeholders to leverage data collected throughout the project lifecycle,
improving project delivery efficiency and identifying hazardous areas on construction sites,
thus reducing health, safety, and environment (HSE) risks. ML, a key Big Data mining
technology, benefits the construction industry by predicting project costs in the early stages
and identifying structural damage. BIM–unmanned aerial vehicle (UAV)– laser scanner
integration facilitates the 3D surface method without requiring attributions, providing
real-time updates on construction site conditions and work progression, which could
support the development of construction DTs. Moreover, virtual reality (VR) can be used
for risk assessments, layout, lighting, and landscape design; when integrated with BIM, VR
enhances project understanding through walkthrough simulations, offering a safe training
environment for workers and operators. Since AR provides better comprehension of the
surrounding environment, BIM-AR integration facilitates information exchange between
project team members and construction staff, improving overall project coordination and
communication [81].

6.2. Emerging Technologies in Road and Transportation Infrastructure Lifecycle Management

BIM-GIS integration forms the foundation of an infrastructure DT for lifecycle man-
agement, providing crucial information on geometry, engineering monitoring, project
timelines, costs, and energy consumption [82]. Additionally, BIM-GIS enhances the effi-
ciency and performance of roads by monitoring utilities, including structural, geotechnical,
and drainage data [83]. By installing IoT sensors, sensitive instruments, or other com-
munication tools on infrastructure elements, DTs can report real-time updates on current
conditions and changes in service loads [82]. To address the lack of IoT sensors and the
insufficient data for predicting bridge damages, an adaptive simulated annealing particle
swarm optimization (ASAPSO)–convolutional neural network (CNN) integration method
has been proposed, which accurately identifies bridge damages [84]. However, IoT sensor
malfunctions can cause missing data, as discussed by Zhang et al. [85], who reviewed and
compared recent developments in data recovery methods. To tackle this issue, an advanced
CNN–bidirectional gated recurrent unit (BiGRU)-based technique was proposed in [86],
which reconstructs lost data for SHM and enables effective damage detection. Light Detec-
tion and Ranging (LiDAR) technology is versatile and capable of detecting human-made
objects and transportation infrastructures. When combined with inertial measurement
unit (IMU) and GPR (ground-penetrating radar), it can detect road defects, and when
mounted on UAVs, it enhances surface inspections and facilitates comprehensive rehabilita-
tion solutions. LiDAR–GNSS (Global Navigation Satellite System) integration is also used
for pothole detection, revolutionizing maintenance management approaches [87]. LiDAR
and ML have transformed the manual DT development of railroads into an automated
process [82]. Although LiDAR provides accurate road surface scanning, red–green–blue
(RGB) photos can capture images of the inspected paths, identifying defects such as cracks.
RGB photos can be captured using less expensive tools and with minimal training, though
the data are limited to a 2D environment, offering color-based insights on cracks, holes [87],
and friction changes [82]. ML can process these photos, delivering a comprehensive report
that is more accurate and cost-effective than human inspections. Drones equipped with
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high-quality cameras can detect and categorize defects, while RGB-D cameras offer a more
precise perception of road surfaces by analyzing light pulses to calculate distances. For
subsurface analysis, thermal imaging or infrared thermography can be employed to cap-
ture thermal gradients in both asphalt and concrete, providing insights into underlying
conditions. Similarly, GPR uses electromagnetic waves to detect shallow subsurface con-
ditions [87]. UAVs and drones also contribute to SHM, while unmanned marine systems
(UMSs) are useful for post-disaster bridge inspections [83]. Furthermore, the effect of
temperature on bridge bearings, which is often overlooked in predicting the functionality
and potential defects of long-span bridges, can be accurately assessed using an integrated
deep convolutional neural network (DCNN)– long short-term memory (LSTM) neural
network [88].

6.3. Emerging Technologies in Underground Utilities Lifecycle Management

The use of IoT sensors in developing tunnel DTs during the construction phase en-
hances hazard prediction and warning capabilities, as demonstrated in a case study [89].
The Tunnels Defects Diagnosis System (TDDS), built upon BIM and semantic web technolo-
gies, automates defect detection and facilitates decision-making by identifying the causes
of defects [90]. While finite element method (FEM)-to-BIM integration allows engineers to
incorporate geotechnical information into BIM models, the reverse process, BIM-to-FEM,
still requires manual work [91]. BIM-GIS integration significantly improves the manage-
ment of underground infrastructure, both at the individual and network levels, as well as
supporting the decision-making process [92]. This integration also creates an underground
management system that optimizes designs and assists excavator operators with real-time
spatial information, ultimately transforming it into an as-built database [93]. Additionally,
BIM paired with AI-powered cameras for analyzing Big Data has proven to be a powerful
tool for inspecting underground utilities [94]. In another study, Hu et al. developed a DT of
a buried pipeline using mobile augmented reality and Brillouin fiber optic sensors, showing
that the framework can accurately measure unpredictable and significant deformations [95].

7. Smart Systems

DTSs have evolved into smart systems with advanced decision-making capabilities,
allowing them to autonomously manage operations and respond to real-time changes.
Various studies have demonstrated the value of integrating DTs into different industries,
highlighting their potential to enhance transparency, efficiency, and real-time monitoring.
For example, integrating blockchain with DT in modular construction projects enables
teams to automatically visualize and assess progress, while simultaneously measuring key
performance indicators (KPIs) in real time. This approach has been shown to improve
project reliability, transparency, and persistence [68]. However, despite the benefits, inte-
grating blockchain into construction workflows poses challenges related to scalability and
the complexity of adapting this technology to different types of projects.

Similarly, Lin et al. developed a DT simulator specifically tailored to improve construc-
tion processes by optimizing operations and decision-making [66]. While this innovation
advances the automation of construction workflows, its generalizability to larger, more
complex construction environments is still under exploration. In another study, researchers
proposed a framework for the real-time detection and identification of facility faults, fo-
cusing on enhancing occupant comfort [74]. Although the framework proved effective in
improving building management, further research is needed to address the data interoper-
ability challenges that often arise when integrating DT into existing facility management
systems, particularly in older buildings with legacy systems.

In the field of road construction, a BIM-IoT integration platform has been developed to
create a DT of road prototypes, providing precise monitoring throughout the construction
process and promoting sustainability [69]. Despite its advantages, such integration requires
significant resources and expertise, presenting challenges for widespread adoption in the
construction industry. Broo et al. [76] conducted a comprehensive review of literature
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and practice to identify the most effective DT architecture for smart infrastructures. Their
proposed architecture, applied in a real case study, demonstrated the practical application
of DTs in infrastructure projects, yet barriers related to technology adoption and the cultural
readiness of organizations remain significant obstacles.

The development of smart energy cities has also benefited from DT integration. Park
et al. introduced an AI-based digital platform designed to optimize energy consumption
across interconnected objects in urban environments [62]. While this demonstrates the
potential for improving energy efficiency, it also underscores the complexity of managing
large-scale urban systems, where obstacles such as technological expertise and cultural
resistance to change slow the adoption of DT technology [72].

In the manufacturing sector, Li et al. proposed an intelligent manufacturing assessment
framework supported by multi-criteria decision-making (MCDM) and DT technology; the
framework was designed with the aim of enhancing sustainability by streamlining decision-
making processes [44]. This aligns with broader efforts to optimize production systems.
Similarly, a zero-defect manufacturing (ZDM) model integrating physical and DT systems
has been used to monitor and detect faults in real time, boosting both sustainability and
operational efficiency [65]. Despite these advancements, the transferability of these systems
to more complex sectors like construction, which involve diverse data environments and
regulatory requirements, remains an open question.

Challenges related to scalability, interoperability, and technology adoption continue
to hinder broader applications of DTs in construction and infrastructure projects. For
example, although Broo et al. [76] made significant strides in identifying the optimal DT
architecture for smart infrastructure, the practical implementation of such models across
different sectors is still in its early stages. Similarly, while blockchain integration with
DTs has proven valuable for enhancing transparency and efficiency [68], questions remain
about its long-term sustainability, particularly in smaller or less technically advanced firms.

DT/BIM Integration for Sustainable and Smart Built Environments

As has been discussed, options provided by smart systems enable automated oper-
ations and reactive responses that enhance sustainability; this section also advocates for
various smart systems.

During the design phase, BIM equips sustainability measurement tools and facilitates
multidisciplinary data and information exchange. This integration allows for the superim-
position of various disciplines within a cohesive model, enabling effective sustainability
assessments that guide designers toward creating energy-efficient buildings. To achieve
sustainability, a range of BIM applications has been developed, including tools for analyz-
ing energy performance and carbon emissions, simulating lighting, and optimizing overall
building performance. BIM visualizes building performance during the early design phase.
BIM addresses several environmental issues associated with the construction industry,
including emissions, construction and demolition waste, noise pollution, and resource
consumption. The 3D BIM model optimizes construction time and costs, thereby enhancing
sustainability indicators in building construction. Notably, BIM’s role in circular economy
(CE) management has led to a 60% reduction in waste generated at the Shanghai Center
in China, and it also minimizes waste generation by preventing rework [96]. A Digital
Twin–BIM–Internet of Things–data mining framework has been proposed for advanced
project management, promoting a seamless flow of information, improved understanding,
and predictive optimization of construction processes. A BIM-IoT framework is discussed
in [97] that aims to support the assembly of modular construction by enhancing decision-
making, assisting stakeholders, and improving collaboration and supervision. Additionally,
a BIM-RFID integration framework has been modeled in [98], demonstrating improve-
ments in risk management and reductions in completion schedules. BIM has also been
utilized in automated contract and payment processes via blockchain, achieving successful
outcomes in real-world applications [99]. When applied to virtual construction, DTs enable
the testing of assumptions prior to actual construction. The integration of DTs and AR
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assists project teams in visualizing construction details in real time. When combined with
RFID technology, it enhances safety by providing real-time location data for workers and
alerts to potential hazards [100], as well as facilitating automated design reviews [101]. DT
leverages real-time data to evaluate various design options while ensuring compliance
with local regulations [102]. During the construction phase, BIM-GIS integration facili-
tates early project takeoff for procurement management and supports preparation and
decision-making for retrofitting initiatives [103].

Deng et al. summarized the applications of DT in buildings, emphasizing real-time
monitoring of the built environment, predictions derived from real-time data gathered
using IoT sensors to facilitate decision-making processes, and automatic feedback mecha-
nisms for identifying necessary interventions [78]. These applications significantly enhance
disaster response and management, helping to avoid human errors and accelerate evac-
uation procedures [104]. Investigations into the integration of BIM and GIS [103] reveal
applications in crisis and risk management, energy and facility management, and heritage
maintenance. The integration of IoT and BIM enhances the intelligence of existing buildings
through Big Data analysis, leading to optimized operations and the implementation of
BMS. By monitoring real-time data gathered from BMS, BIM enables energy analysis and
management, which optimizes energy consumption. Moreover, this integration reduces
the amount of waste generated in renovation projects compared to traditional on-site ap-
proaches [105]. A proposed BIM-IoT framework focuses on predicting energy consumption
and enhancing occupant comfort [106]. Additionally, a DT model comprising BIM, IoT, the
Internet, and SVM can detect the type and level of indoor dangers, as demonstrated in a
case study that validated its applicability [107]. A separate case study on the use of BIM in
LCA highlighted its effectiveness in accurately measuring emissions from various materials,
making it suitable for low-carbon design initiatives [108]. During the facility management
phase, DTs facilitate data-driven asset management by relying on data exchange between
the physical facility and its digital replica [102]. Similarly, DTs reflect real-time structural
and facility behavior through continuous data collection, enhancing predictive capabilities
and enabling informed decision-making [100]. In [109], smart electricity meter data are
utilized for real-time energy management in smart buildings. Alavi showed the utilization
of BIM during O&M; providing high-quality data reduces the effort required by an O&M
team to attain information and gather data. The proposed solutions were found to lead to
an increase in occupants’ satisfaction through integrating feedback into the BIM model. The
BIM model, therefore, mitigates serious defects and improves living quality. A BIM-based
facility management dashboard enables decision making [110].

DTs enhance infrastructure by gathering integrated data for intelligent building man-
agement and maintenance of these systems [72]. Edmondson et al. [111] proposed a
real-time performance monitoring system for sewer systems through the integration of
BIM and the IoT. A review of different DT architectures led to the development of a smart
infrastructure asset DT specifically for bridge management based on best practices [76].
The integration of BIM and GIS enables the monitoring of the current state and future
needs of infrastructure, both individually and as part of an interconnected network [112].
This integration also supports excavation and backfilling modeling, time management,
construction machinery management, safety assessment, and facility management [103].

On a city scale, Deng et al. [78] argue that DT technology should not only possess the
capabilities of a smart building but should also track individuals’ movements to manage
traffic and urban energy effectively, thereby contributing to the development of smart cities.
Yammaura et al. [113] utilized the integration of BIM and GIS for smart city planning and
development. Based on a comparison of various DT frameworks for urban development, a
DT–city model has been proposed that integrates a range of technologies, including DT, IoT,
5G wireless systems, blockchain, simulation, collaborative computing, and AI to facilitate
automatic city management [114]. Additionally, a BIM/construction information modeling
(CIM) reconstruction framework has been successfully tested in creating a digital represen-
tation of a high-density city using topographic maps [115]. To establish a holistic city DT, a
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2020 study presented an integrated system where each component represents a specific ur-
ban element [116]. The use of DT combined with AI in infrastructure management has been
explored, demonstrating its effectiveness for real-time monitoring, problem identification,
issue resolution, efficiency improvements, and loss reduction [117]. A conceptual smart
city DT has also been proposed and tested for disaster management, employing sensing
and simulation capabilities within community management contexts [118]. Ang et al. [119]
introduced an urban–BEM workflow that encompasses the necessary data and processes,
integrating personal behavior into urban planning based on real case studies. Furthermore,
a literature review discussed the applicability of DT simulation tools, multi-sensor fusion
technology, and spatial cognition algorithms in sustainable urban management, concluding
that IoT-based smart cities could effectively integrate these technologies [61].

8. Research Gaps: Potential Research Directions

While the authors have reviewed the current trends, this section aims to anticipate
future research trends, focusing on the application of Digital Twins in sustainability, partic-
ularly within the construction industry.

Structural Health Monitoring
The research indicates that while numerous studies highlight the use of DTs for

predicting structural conditions and inspections, the integration of emerging technologies
such as IoT, VR, UAV, and ML for SHM is still in its early stages and requires further
development. The expected outcome of such research is an improvement in both the
sustainability and resilience of individual infrastructures and interconnected networks.

Efficient Water Consumption and Analysis
The application of DTs for efficient energy consumption and enhancing occupants’

comfort has been thoroughly investigated, with various methods proposed. However, there
is a noticeable gap in strategies aiming to achieve efficient water consumption. Therefore,
the development of DT-based approaches for water efficiency remains a critical area for
future research.

Urban Development and Management
The Metaverse creates a virtual world that is interconnected with the real world,

evolving alongside it while redefining the concepts of time and space within the physical
realm [120]. Currently, the Metaverse is utilized in various domains, including gaming,
simulation, marketing, education, and social interactions [121]. It holds significant po-
tential as a tool for digitally modeling urban environments, including infrastructure [41].
However, its applicability has primarily been assessed conceptually, with limited practical
examination. Therefore, there is a need to develop a modeling framework for creating
a realistic urban–DT that accurately reflects the current state of the city and facilitates
real-time information exchange between the physical city and its digital counterpart. This
framework must also address existing challenges identified in various studies, such as those
discussed in [120,121]. To evaluate its pragmatic functionality, case studies are essential for
simulating a physical city within the Metaverse.

Integrated Source of Energy and Energy Efficiency
Research has been conducted to explore net-zero electricity storage solutions for a

limited number of houses [122]. This research focuses on the decision-making capabilities
of cyber–physical twins that balance energy production from renewable resources with
energy consumption, all while ensuring occupant comfort. The concept of integrating
energy storage systems to cover a neighborhood, an area, or an entire city in order to
achieve a net-zero energy system is identified as a topic that requires extensive investigation
and practical applications.

Furthermore, the authors advocate for the utilization of this technology for energy
management at the national level, particularly in countries that experience diverse weather
patterns across their territories.

Underground Projects HSE Considerations
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Studies focusing on the application of DTs in the sustainable lifecycle management
of underground projects are limited. However, such projects, including tunnels and deep
excavations, are prone to significant risks from unpredictable events. Developing DTs
integrated with IoT, cloud computing, and wearable sensors can enhance hazard prediction
and recognition, while also improving communication between office teams and workers
on-site. Additionally, these technologies contribute to more effective evacuation and crisis
management strategies.

Inspection of Existing Underground Infrastructures
Previous studies have developed robots for inspecting stormwater channels, allowing

for real-time data collection and visualization of defects and blockages. These data enable
O&M teams to make predictive and corrective decisions to prevent near- and mid-term
crises [123]. Therefore, the integration of robotics with IoT, AR, VR, Global Positioning
Systems (GPSs), and DT technologies provides a reliable overview of the current state of
underground infrastructures, including channels, pipelines, and water transmission tunnels.
This integrated approach helps O&M teams identify issues, particularly in inaccessible
locations. The integration is expected to ensure continuous operation while addressing
global climate change and associated natural disasters, thereby enhancing the sustainability
and resilience of infrastructure. Additionally, this study will facilitate the planning of
rehabilitation and strengthening activities through ongoing monitoring of the condition
and behavior of infrastructure.

Cyber–Physical Infrastructure/Building
Smart infrastructures provide data feedback and enable decision making based on a

comprehensive and continuously evolving set of data [124]. Related concepts have been
developed and discussed over several decades. However, cyber–physical twins, which
rely on automated decision-making features, represent a significant advancement in DTs
and smart infrastructure concepts. They are expected to facilitate automatic defect de-
tection and enable control or preventive decisions through the integration of computing
technologies, communication strategies, and control mechanisms. Cyber–physical infras-
tructures and buildings are anticipated to enhance their lifespan and prevent the escalation
of structural defects.

CE-DT Integration Case Study
As discussed, DTs contribute to enhancing sustainability. Çetin et al. studied DT

applications in circular construction and supply chain management [50]. Salmenperä et al.
focused on advancing circular twins [125]. However, there is a notable lack of studies
specifically examining case studies in circular construction.

9. Conclusions

The destructive impacts of the construction industry on various aspects of life require
urgent action to mitigate these consequences leveraging DT technology. While digitalization
has improved the sustainability indicators of the industry, significant challenges remain.
This research aims to explore previous efforts and trending research paths regarding the
application of BIM/DT in sustainable construction. Therefore, a comprehensive literature
review was conducted to highlight current trends and research directions among academics.
In this process, 34 journal and conference papers with the highest citation counts were
selected and categorized based on their focus, including simulation, technology integration,
and smart systems. Given the importance of technology integration and smart systems
in achieving sustainability, further investigations were carried out. Recent advancements
in integrating emerging technologies with DTs for sustainable lifecycle management of
buildings, infrastructures, and underground utilities were examined. Additionally, smart
systems, crucial for creating a sustainable built environment, were analyzed and discussed,
focusing on DT-based smart construction, buildings, infrastructure, and cities. This review
provided insights into research trends, showing that, although many studies have been
published, and the effectiveness of DT in areas such as smart construction, building and
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infrastructure O&M, and urban management has been demonstrated, further development
is needed.

Finally, based on the review, potential areas for future research were identified and
summarized into eight subsections.

Although the research aims to present recent developments and future directions, it
has certain limitations. The Scopus database was used for exploration, and only English-
language journal articles and conference papers were considered, resulting in the exclusion
of other potentially relevant publications.
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Appendix A

Table A1. Definitions of Digital Twins in the reviewed papers.

Row Authors Year Definition Ref.

1 Lehner et al. 2024

A Digital Twin prototype (DTP) portrays all possible products that can be made, is reusable, and consists of all the
information necessary to describe, resemble, and create a physical twin. The resembled physical twin does not exist as
described by the DTP until the decision for its creation is made. A connection to the physical twin transforms the DTP

into a DTI.

[126]

2 Ghorbani and Messner 2024
A Digital Twin of an asset is a fit-for-purpose and intelligent virtual representation that is synchronized at specific

frequencies, with an existing or planned connection between the virtual and physical twin that may include analysis
and the ability to actuate physical changes from the virtual twin.

[127]

3 Tripathi et al. 2024 A data-driven network of interconnected instances of a digital twin or different digital twins, along with different
organizational and individual stakeholders, that will create value for one another, enabled by new technologies. [128]

4 Cureton and Hartley 2023 A digital representation at a set fidelity of a physical element, including its behavior, which is connected and integrated
for efficiency. [129]

5 Emmert-Streib 2023 A mathematical model with an updating mechanism that generates data which are indistinguishable from its
physical counterpart. [130]

6 Baidya et al. 2022

A Digital Twin framework involves a “physical entity” consisting of objects, processes, interacting ambience, and
exogenous conditions, which are digitally reproduced in a counterpart “digital entity”, and a bidirectional information

flow between the physical and digital entity ensures the state and control information exchanges between them,
supporting synchronous or asynchronous behavioral influence on each other.

[131]

7 Singh et al. 2022

A Digital Twin is a dynamic and self-evolving digital/virtual model or simulation of a real-life subject or object (part,
machine, process, human, etc.) representing the exact state of its physical twin at any given point of time via exchanging
the real-time data as well as keeping the historical data. It is not just the Digital Twin which mimics its physical twin but

any changes in the Digital Twin are mimicked by the physical twin too.

[132]

8 De Lepper et al. 2022 the term digital twin might seem to refer to an all-encompassing model, realistically it is more likely that multiple
different digital twins will be created for concrete use cases, such as specific diseases and treatments. [133]

9 Venkatesh et al. 2022 Health digital twins are defined as virtual representations (“digital twin”) of patients (“physical twin”) that are
generated from multimodal patient data, population data, and real-time updates on patient and environmental variables [134]

10 Area et al. 2022 An evolving digital profile of the historical and current behavior of a physical objector real process that helps optimize
the performance of the real process. [135]

11 Opoku et al. 2021 Real-time representation of the building or structure that is fully or partially completed and developed for the purpose
of representing the status and character of the building or structure it mirrors. [136]



Buildings 2024, 14, 3613 23 of 33

Table A1. Cont.

Row Authors Year Definition Ref.

12 Gillette et al. 2021 Digital replicas of patient hearts derived from clinical data that match like-for-like all available clinical observations. [137]

13 Budiardjo and Migliori 2021 A digital twin is a virtual representation of real-world entities and processes, synchronized at a specified frequency
and fidelity. [138]

14 Semeraro et al. 2021

A set of adaptive models that emulate the behaviour of a physical system in a virtual system getting real time data to
update itself along its life cycle. The digital twin replicates the physical system to predict failures and opportunities for
changing, to prescribe real time actions for optimizing and/or mitigating unexpected events observing and evaluating

the operating profile system.

[139]

15 ISO 2021 Fit for purpose digital representation of an observable manufacturing element with synchronization between the
element and its digital representation [140]

16 Serbulova 2021

A digital twin is a virtual prototype of a real object, group of objects or processes. It is a complex software product that
is created from a variety of data. The digital twin is not limited to collecting data from the product engineering and

production stages—it continues to collect and analyze data throughout the lifecycle of the real object, including through
the use of numerous IoT sensors

[141]

17 Fotland et al. 2020 A digital copy of a physical asset, collecting real-time data from the asset and deriving information not being measured
directly in the hardware. [142]

18 DoD 2020 A dynamic virtual representation of a physical system that is continually updated using data from the real-world
operational system. [143]

9 AIAA 2020
A set of virtual information constructs that mimics the structure, context and behavior of an individual/unique physical
asset, or a group of physical assets, is dynamically updated with data from its physical twin throughout its life cycle and

informs decisions that realize value
[144]

20 Rasheed, San, and
Kvamsdal 2020 A virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization,

monitoring, controlling, and improved decision making. [145]

21 Lu et al. 2020 The digital representation provides both the elements and the dynamics of how a physical ‘thing’ operates and lives
throughout its life cycle. [146]

22 Moyne et al. 2020 A purpose-driven dynamic digital replica of a physical asset, process, system, or product. [147]

23 Luo et al. 2019
A multi-domain and ultrahigh fidelity digital model integrating different subjects such as mechanical, electrical,

hydraulic, and control subjects. It connects multiple product activities, and is a consistent model supporting design,
production, operation, maintenance, and recycling lifecycle stage.

[148]

24 Leng et al. 2019 An exact and real-time cyber copy of a physical manufacturing system that truly represents all of its functionalities. [149]

25 Nochta, Badstuber, and
Wahby 2019 City Digital Twins are realistic digital representations of physical city systems, assets and processes providing digital

simulation and management environments to aid decision-making. [150]
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26 Madni, Madni, and
Lucero 2019 A virtual instance of a physical system (twin) that is continually updated with the latter’s performance, maintenance,

and health status data throughout the physical system’s life cycle. [151]

27 ARUP 2019
The combination of a computational model and a real-world system, designed to monitor, control and optimise its

functionality. Through data and feedback, both simulated and real, a digital twin can develop capacities for autonomy
and to learn from and reason about its environment.

[152]

28 Nikolakis et al. 2019 Rich digital representation of real-world objects/subjects and processes, including data transmitted by sensors. [153]

29 Ding et al. 2019 Digital Twining is a process of building a Digital Twin in the cyber world of the physical objects and systems, and
establishing data channels for cyber-physical interconnection and synchronisation. [154]

30 Xu et al. 2019 Simulates, records and improves the production process from design to retirement, including the content of virtual
space, physical space and the interaction between them. [155]

31 Kannan and
Arunachalam 2019 A digital representation of the physical asset which can communicate, coordinate and cooperate the manufacturing

process for an improved productivity and efficiency through knowledge share [156]

32 Tao et al. 2019 A real mapping of all components in the product life cycle using physical data, virtual data and interaction data
between them [157]

33 Wang et al. 2019 Essentially a unique living model of the physical system with the support of enabling technologies including
multi-physics simulation, machine learning, AR/VR and cloud service, etc. [158]

34 Tomko and Winter 2019 A cyber–physical–social system with coupled properties. [159]

35 Brilakis et al. 2019

A digital twin is a digital replica of a physical built asset. What a digital twin should contain and how it represents the
physical asset are determined by its purpose. It should be updated regularly in order to represent the current condition
of the physical asset. A digital twin should be standardised yet extensible, able to address key use cases directly and

specialty use cases with extensions, cloud and computationally friendly, scalable and verifiable.

[160]

36 Bolton et al. 2018 A realistic digital representation of assets, processes or systems in the built or natural environment [161]

37 Kunath and Winkler 2018 The sum of all logically related data, i.e., engineering data and operational data, represented by a semantic data model. [162]

38 Scaglioni and Ferretti 2018 A near-real-time digital image of a physical object or process that helps optimize business performance. [163]

39 Zhuang, Liu, and Xiong 2018 A virtual, dynamic model in the virtual world that is fully consistent with its corresponding physical entity in the real
world and can simulate its physical counterpart’s characteristics, behavior, life, and performance in a timely fashion. [164]

40 Batty 2018 A mirror image of a physical process that is articulated alongside the process in question, usually matching exactly the
operation of the physical process which takes place in real time. [165]

41 Qi and Tao 2018 Brings together the data from all aspects of product lifecycle, laying the data foundation for innovative product design
and the quality traceability. [166]
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42 Zheng, Yang, and Cheng 2018 a set of virtual information that fully describes a potential or actual physical production from the micro atomic level to
the macro geometrical level. [167]

43 He, Guo, and Zheng 2018 A dynamic digital replica of physical assets, processes, and systems, which comprehensively monitors their whole
life cycle [168]

44 Tharma, Winter, and
Eigner 2018 A virtual reflection, which can describe the exhaustive physical and functional properties of the product along the

whole life cycle and can deliver and receive product information. [169]

45 General Electric 2018 Dynamic digital representations that enable companies to understand, predict, and optimize the performance of their
machines and their business. [170]

46 Haag and Anderl 2018 A comprehensive digital representation of an individual product that will play an integral role in a fully digitalized
product life cycle. [171]

47 El Saddik 2018 Digital replications of living as well as nonliving entities that enable data to be seamlessly transmitted between the
physical and virtual worlds. [172]

48 Eisenträger et al. 2018 A digital model of a real object containing lifecycle records and dynamic status data, which are synchronized in
real-time. [173]

49 Alam and El Saddik 2017 An exact cyber copy of a physical system that truely represents all of its functionalities [174]

50 Stark et al., 2017 2017

A digital representation of an active unique product (real device, object, machine, service, or intangible asset) or unique
product-service system (a system consisting of a product and a related service) that comprises its selected characteristics,
properties, conditions, and behaviors by means of models, information, and data within a single or even across multiple

life cycle phases.

[175]

51 Grieves and Vickers 2017 A set of virtual information constructs that fully describes a potential or actual physical manufactured product from the
micro atomic level to the macro geometrical level. [47]

52 Söderberg et al. 2017 Using a digital copy of the physical system to perform real-time optimization [176]

53 Weber et al. 2017 The digital representation of all the states and functions of a physical asset. [177]

54 Chen 2017 A computerized model of a physical device or system that represents all functional features and links with the
working elements. [178]

55 Schluse and Rossmann 2016 Virtual substitutes of real world objects consisting of virtual representations and communication capabilities making up
smart objects acting as intelligent nodes inside the internet of things and services. [179]

56 Canedo 2016 A digital representation of a real world object with focus on the object itself. [180]

57 Schroeder et al. 2016 A DT is a virtual representation of a real product. [181]
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58 Kraft 2016
An integrated multi-physics, multi-scale, probabilistic simulation of an as-built system, enabled by Digital Thread, that
uses the best available models, sensor information, and input data to mirror and predict activities/performance over the

life of its corresponding physical twin.
[182]

59 Boschert and Rosen 2016
The linked collection of the relevant digital artefacts including engineering data, operation data and behaviour

descriptions via several simulation models. The Digital Twin evolves along with the real system along the whole life
cycle and integrates the currently available knowledge about it.

[183]

60 Rosen et al. 2015 Very realistic models of the current state of the process and their own behavior in interaction with their environment in
the real world. [184]

61 Ríos et al. 2015 The product digital counterpart of a physical product [185]

62 Grieves 2014 A virtual representation of what has been produced. Compare a Digital Twin to its engineering design to better
understand what was produced versus what was designed, tightening the loop between design and execution. [186]

63 Reifsnider and
Majumdar 2013 The ultra-high fidelity physical models of the materials and structures that control the life of a vehicle. [187]

64 Shafto et al. 2012 An integrated multiphysics, multiscale simulation of a vehicle or system that uses the best available physical models,
sensor up- dates, fleet history, etc., to mirror the life of its corresponding flying twin. [188]

65 Tuegel 2012 A cradle-to-grave model of an aircraft structure’s ability to meet mission requirements. [189]

66 Gockel et al. 2012 An ultra-realistic, cradle-to-grave computer model of an aircraft structure that is used to assess the aircraft’s ability to
meet mission requirements. [190]

67 Glaessgen and Stargel 2012
A Digital Twin is an integrated multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system that

uses the best available physical models, sensor updates, fleet history, etc., to mirror the life of its corresponding
flying twin.

[46]
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