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Abstract: Calcium sulfoaluminate (CSA) cement is recognized as an environmentally friendly alter-
native to Portland cement (PC) due to its lower carbon footprint and energy requirements. However,
traditional CSA cement production faces significant obstacles, including the high cost and region-
ally constrained availability of bauxite, a key raw material. Utilizing alternative materials in the
production process offers a viable approach to address these limitations. This study evaluated the
environmental performance of three laboratory-synthesized CSA cements using alternative raw ma-
terials sourced through an industrial symbiosis framework. A comparative assessment with PC was
conducted, focusing on energy consumption and CO2 emissions as key environmental performance
indicators. The environmental impact of the CSA cements was analyzed using Monte Carlo simu-
lations, a robust statistical approach based on data for the constituent raw materials. This method
provides a practical alternative to a full life cycle assessment (LCA) when comprehensive data are
not available. The results demonstrate that the CSA cements have significantly lower environmental
impacts compared to PC, achieving energy savings of 13–16% and CO2 emission reductions of 35–48%.
These results emphasize the potential of industrial symbiosis to enable more sustainable CSA cement
production while addressing raw material constraints. In addition, this approach highlights the
wider applicability of industrial symbiosis frameworks in the construction industry, contributing to a
zero-waste future and supporting global climate goals.

Keywords: calcium sulfoaluminate; CSA cement; Monte Carlo; waste; by-product; industrial symbiosis (IS);
CO2 emissions; energy consumption

1. Introduction

Awareness of climate change as an apparent threat to the future puts industries under
increasing pressure to minimize their ecological footprint and develop more sustainable
production methods. Among these industries, the construction sector stands out as the
one in need of a thorough assessment of its environmental impacts [1,2]. It is well known
that concrete is the most widely used construction material, and its main binder, Portland
cement (PC), is the product of a resource- and energy-intensive process with significant
CO2 emissions [3–6]. In fact, the annual global production of PC reached approximately
4.1 billion t according to the 2019 “Getting the Numbers Right (GNR)” database by the
WBCSD [7]. Notably, the cement industry accounts for a substantial portion of global
industrial energy consumption, ranging from 12% to 15% [8], and contributes to 5% to
8% of worldwide anthropogenic CO2 emissions [2,8–10]. These emissions mainly come
from two processes: the combustion of fossil fuels to achieve the necessary temperatures in
the process, and the calcination of limestone in the kilns. According to the same WBCSD
database [7], the global average of CO2 emissions/t of PC clinker is about 0.83 t.
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Both the cement industry and academia are increasingly focusing on strategies to
mitigate these adverse environmental impacts and promote sustainable practices. These
strategies include enhancing thermal and electrical efficiency, exploring alternative fuels
and raw materials, increasing clinker substitution, and implementing carbon capture and
storage techniques [11,12]. Another approach within this context is the development
of innovative sustainable binders [13]. Within this scope, calcium sulfoaluminate (CSA)
cements are recognized as a promising alternative to PC, primarily due to their lower energy
requirements and reduced CO2 emissions during production. The traditional production
process uses bauxite, limestone, and gypsum as primary raw materials. Unlike PC, CSA
cements are manufactured at lower kiln temperatures (1250–1300 ◦C), which significantly
reduces energy consumption. Furthermore, reduced limestone and fuel requirements
during clinkering, along with lower energy demands for grinding, further enhance energy
efficiency and decrease CO2 emissions [14–16].

Despite these advantages, CSA cements face production challenges, particularly the
high cost and limited availability of alumina-bearing raw materials, such as bauxite. This
situation has prompted the exploration of industrial waste/by-products as alternative
raw materials in CSA cement manufacturing. Researchers have investigated various
materials rich in the essential oxides (CaO, Al2O3, SiO2, and SO3) needed to form CSA
cement phases. Notable examples include residues from the aluminum industry such as
red mud, aluminum slag, alumina powder, and anodizing sludge [17–22]; by-products
from the iron and steel industry like granulated blast furnace slag and electric arc furnace
slag [23–25]; and materials from coal-fired power plants such as fly ash, bottom ash, and
flue gas desulfurization gypsum [17,19,20,23,24,26–33]. Additional alternatives include
phosphogypsum, fluorogypsum, and titanogypsum [24,27,28,33,34] from the chemical
industry; water potabilization sludge [34,35] from water treatment processes; pyrite-rich
cyanide tailings [36] from the gold mining industry; and jarosite–alunite precipitate [37]
from hydrometallurgical processes. These studies have revealed the potential of using
waste/by-products from various industries for sustainable cement production.

Industrial symbiosis (IS) emerges as a strategic solution to bridge this gap. It fosters
collaborative arrangements between independent industries, where the waste produced
by one industry serves as a valuable raw material for another industry [38,39]. It provides
not only environmental and economic advantages but also business and social advan-
tages [40]. Numerous global IS networks have been documented, particularly within the
cement industry [41]. For instance, Li et al. [42] proposed a regional symbiosis network
in Guiyang, China, integrating industries such as cement, iron/steel, coal chemical, phos-
phorus chemical, aluminum production, and power plants. This network demonstrated
significant environmental and economic benefits, reducing raw material need by 1.47 mil-
lion t/y, fossil fuel usage by 102.71 ktce/y, and CO2 emissions by 1022.01 kt/y. Similarly,
Dong et al. [43] studied the IS network in Liuzhou, China, a heavy industry-dominated
city. Compared to the business-as-usual scenario, this symbiosis, which also covers the
iron/steel, cement, and construction industries, reduces CO2 emissions by 29.66, 557.42,
and 520.13 kt-CO2/y in the power purchase, material consumption, and waste disposal
stages, respectively. In another example, Sellitto et al. [44] investigated an IS network in
Brazil involving multiple manufacturing companies. This network facilitated the exchange
of around 300,000 t of by-products annually. Notably, the cement industry acquires around
140,000 t of coal ash from thermoelectric plants and 24,000 t of mill scale from steelmaking
facilities. These initiatives not only result in significant cost savings but also support the
production of pozzolanic cement as an alternative to PC. Recent studies have also focused
on IS cases involving the cement industry [45–48].

Despite existing studies on symbiosis incorporating the cement industry, there is
a notable gap in the specific application of IS to CSA cements, which are considered
environmentally friendly alternatives to PC. To address this gap, this study sought to
explore the environmental performance of laboratory-produced CSA cements, whose
material supply is obtained through an IS network. The intention was to compare their
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performance to that of PC, with the ultimate goal of achieving more sustainable CSA
cement production by using a zero-waste strategy in the resource-intensive sectors of the
construction value chain.

Numerous studies have utilized the life cycle assessment (LCA) method to assess the
environmental impacts of cement production [3,9,10,49–55]. LCA involves four primary
stages: defining the goals and scope, conducting the inventory analysis, performing the
impact assessment, and interpreting the results. Given the complexity of the cement
production process, the diversity of raw materials, the different pyroprocessing techniques,
and the use of different fuel sources, conducting an inventory analysis and completing a
full process-LCA can be quite complicated [10]. Additionally, the lack of comprehensive
data for the entire production system often limits the feasibility of a thorough LCA analysis.

In this study, an alternative approach was used to assess the environmental perfor-
mance of CSA cements, focusing on two key indicators: energy consumption and CO2
emissions. Data from existing literature on the energy use and CO2 emissions of the raw
materials used in CSA cement production were gathered. Combining data from multiple
sources provides more statistically robust results than relying on a single study, as it allows
for a larger sample size and more comprehensive analysis. This approach also reduces the
reliance on localized factors, specific materials, and assumptions made in individual stud-
ies [56]. Using these literature-derived values, the environmental performance indicators
of the CSA cements were statistically estimated through Monte Carlo simulations, which
accounted for data variability and produced probabilistic estimates. These values were
then compared to the corresponding energy consumption and CO2 emissions of PCs.

2. Materials and Methods
2.1. Raw Materials

Materials for producing CSA cements were chosen through an IS approach. The mate-
rials used were obtained through the FISSAC project (Fostering Industrial Symbiosis for a
Sustainable Resource Intensive Industry across the extended Construction Value Chain),
which is a research initiative funded by the European Commission’s research and inno-
vation support program Horizon 2020. The IS network involved included the secondary
aluminum (non-ferrous metals), secondary steel, ceramic, glass, and cement industries.

The waste/by-products of these industries—Serox, ladle furnace slag (LFS), ceramic
waste, and glass waste—were combined with limestone and gypsum (to compensate for the
lack of sulfate and calcium oxide) to form the raw meal formulations of the CSA cements.
Serox, one of the trademarks for the alumina obtained through the recycling of aluminum
salt slags from secondary aluminum production [57], served as the main source of alumina.
All materials were provided by local suppliers in Türkiye, including LFS from Ekinciler
Iron and Steel Industry (Iskenderun, Türkiye), glass waste from Trakya Şişecam (Mersin,
Türkiye), ceramic waste from Çanakkale Ceramic (Canakkale, Türkiye), except for Serox,
which was supplied by Befesa in Valladolid, Spain.

Three different raw meal formulations were developed, resulting in the successful
synthesis of CSA cements. Table 1 presents the composition of these mixtures, identified as
Mix A, Mix B, and Mix C, with significant waste/by-product content: 45% for Mix A, 42%
for Mix B, and 52% for Mix C. The detailed synthesis and characterization of these cements
were comprehensively described in prior works [58,59]. Building on that foundation, this
study focused on evaluating the environmental performance of the produced CSA cements,
specifically in terms of energy consumption and CO2 emissions.

Figure 1 illustrates the three main stages of cement manufacturing: crushing and
grinding raw materials to acquire raw meal, burning the raw meal in kilns to produce
clinker, and grinding it with additives to form cement. In the production of CSA cement,
the addition of gypsum or anhydrite to the clinker varies based on its SO3 content. In
the CSA cements produced in this study, calcium sulfate was not incorporated during the
grinding process, unlike in ordinary PC.
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Table 1. Composition of CSA raw meals, in percent mass.

Naturally Sourced Materials Industrially Sourced Waste/By-Products

Limestone Gypsum Total Serox LFS Ceramic Glass Total

Mix A 28 27 55 23 14 7 1 45
Mix B 29 29 58 16 19 4 3 42
Mix C 12 36 48 16 33 1.5 1.5 52
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2.2. Monte Carlo Simulation Technique

Monte Carlo simulation is a powerful computational technique due to its versatility
and ability to handle complex systems with uncertainty. In this method, random input vari-
ables are generated to estimate the statistical properties of the target output variables [61].
In this study, the Monte Carlo simulation method was used to assess the environmental
performance of the produced CSA cements and PC.

As seen below, each constituent material in CSA cement production represents an
independent variable that is influenced by various factors such as production technology
and the composition of raw materials. These factors lead to diverse output values, resulting
in numerous potential combinations and a fundamentally stochastic process. Therefore, in
such cases where complete data on the entire system are unavailable, the adoption of the
Monte Carlo simulation model is important for accurate predictions. The following steps
represent the methodology in use:

1. Mathematical model for energy consumption and CO2 emissions

Energy consumption (EC) and CO2 emissions (CE) for CSA cement were modeled
using the following equations:

EC =
(
∑n

i=1

(
ECi,p × ai,w × qi,w

)
+ ∑n

j=1

(
ECj,p × qj,nm

))
/(1 − LOI) + ECk (1)

CE =
(
∑n

i=1

(
CEi,p × ai,w × qi,w

)
+ ∑n

j=1

(
CEj,p × qj,nm

))
/(1 − LOI) + CE f (2)

where,

• ECi,p and ECj,p are the energy consumption values from the sectors supplying the raw
materials. ECi,p refers to the energy consumption from the sectors where waste/by-
products are obtained: glass, ceramic, steelmaking, and salt slag recovery, while
ECj,p relates to the extraction and processing of the natural materials used, limestone
and gypsum.

• qi,w and qj,nm represent the quantities of waste/by-products and natural materials in
the raw meal, based on the mixture compositions in Table 1.

• ai,w is the allocation factor that determines how much of the total energy consumption
and CO2 emissions from production are attributed to waste/by-products. Sensitivity
analyses were used for glass waste, ceramic waste and LFS while a reference-based
allocation was applied for Serox.

• ECk is the energy consumption of the kiln, estimated based on theoretical heat de-
mand for CSA cement production and adjusted for kiln heat losses. A relationship
between theoretical and actual energy consumption, derived from data on cement
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plants and similar studies, was used to determine ECk, as explained in detail in the
subsequent section.

• LOI (loss on ignition) accounts for mass loss during raw meal processing, particularly
from the decomposition of limestone. The functional unit of this analysis is one metric
t of clinker. Therefore, adjustments are made to the terms concerning mix-ingredient
based on the LOI value of the raw meal.

Similarly, CO2 emissions were calculated using CEi,p, CEj,p, and CE f , which represent
the CO2 emissions related to waste/by-products, natural materials, and the fuel used in
the kiln, respectively.

2. Input data and probability distributions

The independent variables used in the analysis are key parameters that significantly
influence the outputs of CSA cement production. These variables include the processes for
glass, ceramic, secondary steelmaking, salt slag recovery, gypsum and limestone, kiln heat
demand, and fuel-related emissions. They are designated by the following labels: g, c, s,
ssr, gy, l, k, and f, respectively.

The probability distributions for these variables, expressed as probability density
functions, were established using data published in the literature to accurately reflect
their characteristics. The sources of this data are provided in Sections 3.1.1 and 3.2.1.
The probability distributions were determined using the commercial software @RISK 8.1.
The “Fit” function in @RISK was employed to evaluate a range of distribution models,
including normal, logistic, uniform, triangular, and exponential. The selection of the best-
fitting distribution was based on the Akaike information criterion (AIC), a widely accepted
measure used to assess the fit of statistical models. This approach ensured that variability
and uncertainty were reliably incorporated into the simulations.

3. Dependent variables and simulation process

The dependent variables, energy consumption (EC) and CO2 emissions (CE), were
assessed through 1000 iterations of the Monte Carlo simulation using @RISK 8.1 software.
This approach modelled the full range of possible outcomes based on the input distributions.
The decision to use 1000 iterations was based on preliminary analyses that showed the
convergence and stability of the results beyond this threshold. During the simulations,
energy consumption and CO2 emissions were calculated using Equations (1) and (2),
respectively, while incorporating the probability distributions of the independent variables.

4. Output results and environmental assessment

After completing all simulations, the energy consumption and CO2 emissions for
each mix (A, B, and C) were compiled and analyzed. The results are presented as 90%
confidence interval limit values, highlighting the variability in energy use and emissions
across the different mixes. The analyses were also repeated for traditional PC, which
enables a comprehensive comparison of the environmental performance of CSA cements
relative to PC.

3. Monte Carlo Simulation Results of CSA Cements and PC
3.1. Energy Consumption of CSA Cements
3.1.1. Energy Data Collection and Analysis

First, data on the energy consumption for each input used in CSA cement production
were gathered from several literature sources. Collecting reliable, comparable, and accurate
data for each input proved to be challenging and time-consuming. The data were converted
to units of MJ/t of product to ensure uniformity and then used to establish probability
distributions for the input variables. The use of existing literature data introduces some
inherent variability and uncertainty. Monte Carlo simulations were applied to manage
these uncertainties; however, the accuracy of the model is still affected by the representa-
tiveness of the data used. Table 2 provides a comprehensive list of inputs, including their
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minimum and maximum values, as well as the probability distributions used in the Monte
Carlo simulations.

Table 2. Inputs used for calculating energy consumption.

Input Unit Min Max Probability Distribution and Related
Parameters *

ECg,p (MJ/t glass) 4200 10,000 Normal distribution
µ: 6977.5; σ: 1401.3

ECc,p (MJ/t ceramic) 3310 7090 Triangular distribution
a: 2938.2; b: 7090; c: 7090

ECs,p (MJ/t steel) 4000 11,950 Triangular distribution
a: 2483.7; b: 11,950; c: 11,950

ECssr,p (MJ/t salt slag rec.) 1900 3845 Triangular distribution
a: 1900; b: 2890; c: 3845

ECgy,p (MJ/t gypsum) 200 500 Triangular distribution
a: 200; b: 350; c: 500

ECl,p-mining (MJ/t limestone) 10.3 109.8 Exponential distribution
λ: 42.1

ECl,p-grinding (MJ/t limestone) 24 360 Exponential distribution
λ: 123.7

ECth (MJ/t CSA clinker) 1099 1339 Triangular distribution
a: 1075.3; b: 1244; c: 1357.8

Data gathered from: Glass: [62–70], Ceramic: [71–74], Steelmaking: [75–82], Salt slag recovery: [83–85], Gyp-
sum: [50,86,87], Limestone: [88–91], Theoretical heat of clinker: [92,93]. * µ: mean, σ: standard deviation, a:
minimum value, b: mode, c: maximum value, λ: rate parameter.

3.1.2. Sensitivity Analyses for Energy Allocation of Waste/By-Products

Sensitivity analyses were conducted to address the allocation of environmental bur-
dens to waste/by-products. Allocation rates of 1%, 5%, 10%, and 20% were selected to cover
a reasonable range of energy distribution scenarios. The results, presented in Table 3, show
that variations in these allocation rates had only a minor effect on energy consumption
outcomes. The minor variations observed in energy estimates for the CSA cement mixes
suggest that the 10% allocation rate is a reasonable assumption, given the relatively small
proportion of these waste/by-products in the overall composition.

Table 3. Sensitivity analysis for mean energy consumption CSA cements.

Mix Allocation
Amount

Change in Mean Energy Consumption When Allocation Amount of Waste/By-Product Is
Changed from 10% (%)

Glass Waste Ceramic Waste LFS

Mix A

1% −0.3 −1.4 −4.2
5% −0.2 −0.8 −2.4
10% 0.0 0.0 0.0
20% 0.3 1.5 4.7

Mix B

1% −0.7 −0.8 −5.9
5% −0.4 −0.4 −3.3
10% 0.0 0.0 0.0
20% 0.8 0.9 6.5

Mix C

1% −0.3 −0.3 −9.5
5% −0.2 −0.2 −5.3
10% 0.0 0.0 0.0
20% 0.4 0.3 10.5
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Based on the results, a 10% allocation rate was established for glass waste, ceramic
waste, and LFS. In simpler terms, 10% of the energy used in the production of glass, ceramic,
or secondary steel is assigned to the corresponding waste/by-product. Serox, obtained
from the salt slag recycling, has a higher allocation rate of 60%, meaning that 60% of the
energy consumption associated with salt slag recycling is allocated to Serox, as reported
in FISSAC [85].

3.1.3. Assumptions for Kiln Heat Requirements

The theoretical heat required for CSA cement manufacturing was examined to deter-
mine the kiln’s heat demand. A data set was generated by gathering theoretical heat values
from various CSA mix scenarios in the literature, considering different raw materials and
mix ratios. However, when assessing the overall heat demand for the kiln process, it is
essential to consider heat loss within the kiln.

To estimate total heat loss, the theoretical heat required for PC production was com-
pared with the actual heat consumed in the kiln. For example, the theoretical heat needed
for PC clinker containing 67% C3S is 1760 MJ/t clinker [94]. To determine the overall energy
consumption in the kiln during PC production, data from the EVÇED report [95], which
includes data from 52 cement plants in Türkiye for the year 2019, were used.

A relationship between theoretical and actual energy consumption was identified and
expressed as “ECth-PC × Normal (1.94, 0.14) = ECk”. This relationship was then adapted for CSA
cement manufacturing. Consequently, in Equation (1), the term “ECth × Normal (1.94, 0.14)”
was used in place of the term “ECk.”

3.1.4. Monte Carlo Simulation Results for EC

Energy consumption for each CSA mix was calculated using Equation (1). An example
of the energy consumption formula for Mix A is shown below:

ECMix A = (Normal(6977.5, 1401.3)× 0.1 × 0.01
+Triang(2938.2, 7090, 7090)× 0.1 × 0.07
+Triang(2483.7, 11950, 11950)× 0.1 × 0.14
+Triang(1900, 2890, 3845)× 0.6 × 0.23
+Triang(200, 350, 500)× 0.27 + (Exp(42.1)
+Exp(123.7))×0.28)/(1 − 0.20)
+Triang(1075.3, 1244, 1357.8)× Normal (1.94, 0.14)

In the formula, the probability distribution functions in Table 2 are multiplied by the
raw meal composition ratios. The coefficient of 0.1 in the EC function for inputs related to
glass, ceramic, and LFS signifies a 10% allocation rate, while the coefficient for Serox is 0.6,
reflecting a 60% allocation rate.

The probability distribution of Mix A energy consumption was obtained following
1000 iterations of Monte Carlo simulations. Figure 2a illustrates the resulting distribution
for Mix A, with the 90% confidence interval ranging from 2888 MJ to 3648 MJ/t of clinker.
This means there is a 90% confidence that the energy consumption for Mix A falls within
this range, with a mean value of approximately 3270 MJ. While the minimum could be as
low as 2538 MJ and the maximum as high as 3966 MJ/t of clinker, these extremes have a
very low probability.

Additionally, Figure 2b,c shows the probability distributions of energy consumption
for Mix B and Mix C, respectively. According to the figures, the 90% confidence interval for
Mix B ranges from 2798 to 3540 MJ/t of clinker, while for Mix C, it extends from 2853 to
3631 MJ/t of clinker. The mean values of the distributions are approximately 3181 MJ for
Mix B and 3243 MJ for Mix C.
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3.2. CO2 Emissions of CSA Cements
3.2.1. CO2 Emissions Data Collection and Analysis

The CO2 emissions of CSA cements were calculated using the same methodology as
for energy consumption. CO2 emissions information for each input used in the production
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of CSA cement was compiled from various literature sources. To ensure uniformity, all
data were transformed into units of kg CO2/t of product. The data collected for each input
were used to establish their probability distributions using the software @ RISK 8.1. Table 4
lists these inputs, their minimum and maximum values, and the probability distributions
utilized in the Monte Carlo simulation model to estimate CO2 emissions.

Table 4. Inputs used for calculating CO2 emissions.

Input Unit Min Max Probability Distribution and Related
Parameters *

CEg,p (kg CO2/t glass) 450 1192 Triangular distribution
a: 450, b: 450, c: 967.8

CEc,p (kg CO2/t ceramic) 263 806 Exponential distribution
λ: 114

CEs,p (kg CO2/t steel) 240 1080 Triangular distribution
a: 240, b: 240, c: 1013.3

CEssr (kg CO2/t salt slag rec.) 171 346.1 Triangular distribution
a: 171, b: 260.1 c: 346.1

CEgy,p (kg CO2/t gypsum) 50 140.2 Triangular distribution
a: 50, b: 120, c: 140.2

CEl,p-calcining (kg CO2/t PC clinker) 510 553 Normal distribution
µ: 527, σ: 18.9

CEl,p-grinding (kg CO2/t limestone) 4.7 50.9 Exponential distribution
λ: 18.2

CEf (kg CO2/t PC clinker) 271 542 Loglogistic distribution
β: 59.5, α: 3.4

Data gathered from: Glass: [62–67,96,97], Ceramic: [71,73,98–100], Steelmaking: [75,76,79,80,101–106], Salt slag recov-
ery: [83–85], Gypsum: [50,86,92,93], Limestone: [3,8,49,50,88,92,93,107–110], Fuel: [95]. * a: minimum value, b: mode,
c: maximum value, µ: mean, σ: standard deviation, λ: rate parameter, β: scale parameter, α: shape parameter.

3.2.2. Sensitivity Analyses for CO2 Emissions Allocation of Waste/By-Products

Sensitivity analyses were performed to investigate the impact of different allocation rates
on the CO2 emissions of CSA cements. Allocation rates of 1%, 5%, 10%, and 20% were analyzed
for glass waste, ceramic waste, and LFS. The results, presented in Table 5, show that changing
the allocation rate from 10% to 1%, 5%, or 20% has no considerable impact on the CO2 emissions
of cements. Therefore, a 10% allocation rate was selected for these materials. In addition, based
on the FISSAC report [85], a 60% allocation rate was used for Serox.

Table 5. Sensitivity analysis for mean CO2 emissions of CSA cements.

Mix Allocation
Amount

Change in Mean CO2 Emissions When Allocation Amount of Waste/By-Product Is Changed from 10% (%)

Glass Waste Ceramic Waste LFS

Mix A

1% −0.1 −0.5 −1.4
5% −0.1 −0.3 −0.8
10% 0.0 0.0 0.0
20% 0.1 0.6 1.6

Mix B

1% −0.4 −0.3 −1.9
5% −0.2 −0.2 −1.1
10% 0.0 0.0 0.0
20% 0.4 0.3 2.2

Mix C

1% −0.2 −0.1 −4.0
5% −0.1 −0.1 −2.2
10% 0.0 0.0 0.0
20% 0.3 0.1 4.4
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3.2.3. Assumptions for Fuel-Related Emissions

Fuel-related emissions for CSA cements were determined using fuel emission data
from PC production, adjusted with a 20% reduction. This adjustment is based on the
findings by Ukrainczyk et al. [24], which showed that CSA cement emits 20% less fuel-
related emissions compared to PC. This reduction was incorporated into Equation (2) by
applying a coefficient of 0.80 to the “CEf” distribution. Additionally, CO2 emissions from
salt slag recovery were computed using an estimated rate of 90 kg CO2 per 1 GJ of fuel
combustion [24].

3.2.4. Monte Carlo Simulation Results for CE

The CO2 emissions for each CSA mix were calculated using Equation (2). The CE
formula for Mix A is provided as an example:

CEMix A = (Triang(450, 450, 967.8)× 0.1 × 0.01 + Exp(114)× 0.1 × 0.07
+Triang(240, 240, 1013.2)× 0.1 × 0.14
+Triang(171, 260.1, 346.1)× 0.6 × 0.23
+Triang(50, 120, 140.2)× 0.27
+(Normal(527, 18.9) + Exp(18.2))× 0.28))/(1 − 0.20)
+Loglogistic(59.5, 3.4)× 0.80

In the formula, the probability distribution functions in Table 4 were multiplied by the
raw component ratios. A coefficient of 0.1 indicates a 10% allocation rate for CO2 emissions
related to the generation of glass waste, ceramic waste, and LFS, while a coefficient of 0.6
represents a 60% allocation rate for Serox.

Monte Carlo simulations with 1000 iterations resulted in Figure 3, which shows the
probability distribution for the CO2 emissions of CSA cements. As seen in Figure 3a, the
90% confidence interval for CO2 emissions of Mix A ranges from 503.5 to 607.5 kg CO2/t of
clinker. This indicates that, with 90% confidence, the expected CO2 emissions are above
503.5 kg but below 607.5 kg/t of clinker. The distribution’s mean value is around 555 kg
CO2/t of clinker. Figure 3b,c shows the probability distribution of CO2 emissions derived
from Monte Carlo simulations for Mix B and Mix C, respectively. For Mix B (Figure 3b), the
90% confidence interval for CO2 emissions ranges from 501 to 607 kg/t of clinker, with a
mean value of approximately 546 kg CO2/t of clinker. In the case of Mix C (Figure 3c), the
90% confidence interval falls between 393.4 to 496 kg of CO2/t of clinker, and the mean
value for Mix C is around 436 kg CO2/t of clinker.
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3.3. Environmental Assessment of Portland Cement (PC)

For comparison with the CSA cement results above, the following environmental
analysis was also carried out on PC. The data regarding energy consumption and CO2
emissions during the production of PC clinker were gathered from reported statistics and
published studies in the literature. Table 6 provides the minimum and maximum values
for this collected data, as well as the probability distributions used in the Monte Carlo
simulation model. According to the data, the production of 1 t of PC clinker requires a
range of 2900 to 5568 MJ of thermal energy, 47 to 88 kWh of electricity up to and including
clinker production, and results in direct emissions of 612 to 1097 kg of CO2 (excluding
on-site power generation).

Table 6. Values for energy consumption and CO2 emissions of PC.

Unit Min Max Probability Distribution and Related Parameters *

Thermal energy
consumption (MJ/t clinker) 2900 5568 Loglogistic distribution

β: 1151.2, α: 6.3

Power
consumption (kWh/t clinker) 47 88 Normal distribution

µ: 66.0, σ: 9.6

CO2 emissions (kg CO2/t clinker) 612 1067 Logistic distribution
µ: 840.2, s: 36.9

Data gathered from: [3,7,8,49,50,95,107,109,110]. * β: scale parameter, α: shape parameter, µ: mean, σ: standard
deviation, s: scale parameter.
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Monte Carlo analyses, using the distribution functions in Table 6, were employed
to generate probability distributions for energy consumption and CO2 emissions in PC
production. Figure 4 displays the probability distribution for the energy required to produce
1 t of PC clinker, with a 90% confidence interval between 3286 MJ and 4409 MJ/t of clinker.
The mean value of this distribution is 3772 MJ. On the other hand, Figure 5 exhibits the
probability distribution for the CO2 emissions resulting from the production of 1 t of PC
clinker. Within this distribution, the 90% confidence interval for CO2 emissions ranges
from 731 to 948 kg/t of clinker, with the mean value of the distribution at 840 kg CO2.

Figure 4. Probability distribution of total energy consumption of PC (MJ/t clinker).

Figure 5. Probability distribution of CO2 emissions of PC (kg CO2/t clinker).

4. Discussion of Results

Figure 6 compares the 90% confidence interval results of the energy consumption
obtained from Monte Carlo simulations of produced CSA cements and PC. In Figure 6, the
leftward shift in the energy consumption ranges for CSA cements compared to PC clearly
indicates that CSA cements require less energy for production, in line with the literature.
Specifically, when considering the lower limit of the 90% confidence interval, Mix A, Mix B,
and Mix C exhibit energy consumption reductions of approximately 12%, 15%, and 13% in
comparison to PC, respectively. These reductions in energy consumption based on mean
values are around 13%, 16%, and 14%. Furthermore, a comparison with the upper limit
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shows energy consumption reductions of roughly 17%, 20%, and 18% compared to PC.
When CSA cements are compared among themselves, it is seen that Mix B has a slightly
lower energy requirement than the others. This is due to the relatively lower levels of Serox
and LFS in Mix B.
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Figure 6. Energy consumption for PC and CSA cements.

Similarly, Figure 7 presents a comparison of the 90% confidence interval results of the
CO2 emissions derived from Monte Carlo simulations of produced CSA cements and PC.
When comparing CSA cements and PC, there is a notable shift to the left in the CO2 ranges,
indicating a significant reduction in CO2 emissions during the production of CSA cements.
In terms of CO2 emissions, the decrease at the lower limit is approximately 31% for Mix A
and Mix B, and 46% for Mix C. On the mean, this reduction is around 35% for Mix A and
Mix B, and 48% for Mix C; and at the upper limit, the drop is about 36% for Mix A and Mix
B, and 48% for Mix C. A comparison of the CSA cements within their group shows that the
emission levels for Mix A and Mix B are quite similar, whereas Mix C emits approximately
20% less CO2 than the other two mixes. This distinction can be primarily attributed to the
lower limestone content in Mix C, which comprises only 12%, as opposed to the 28% in Mix
A and 29% in Mix B. Limestone calcination is a major source of CO2 emissions in cement
production, and using less limestone directly leads to fewer process emissions.
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According to Aranda and De la Torre [14], the production of 1 t of PC clinker results in
the release of a maximum of 0.98 t of CO2. On the other hand, the production of 1 t of CSA
clinker causes less CO2 emissions in the range of 0.25 to 0.35 t, depending on its composition.
This means that 1 t of CSA clinker releases 0.63 to 0.73 t of CO2. Similarly, Hanein et al. [93]
reported that various CSA clinker production scenarios results in CO2 emissions ranging
from 588 to 644 kg/t of clinker. This represents a substantial decrease of 25–35% compared
to PC emissions. It is clearly seen that a significant reduction in CO2 emissions can be
achieved by using CSA clinker compared to traditional PC clinker production. Moreover,
this study highlights the potential for even greater emission reductions in CSA cement
production by incorporating industrial waste/by-products while reducing limestone usage.
Such measures have been shown to lower emissions to an average of 436–555 kg/t of
clinker, a substantial decrease of 35–48% compared to PC emissions. Supporting this,
Sharma et al. [111] conducted a hypothetical study on CSA cement manufacturing in
India using LCA. Their findings indicated that CSA clinker production could achieve a
15–55% reduction in CO2 emissions compared to PC, with comparable energy consumption
levels. Utilizing waste/by-products of other industries as alternative raw materials can
substantially diminish reliance on natural resources and yield CSA cement with a reduced
environmental footprint compared to traditional production methods. This provides a
convincing argument for industry to adopt this approach.

Beyond its environmental benefits, CSA cement offers several technical advantages,
making it a strong alternative to PC. Its properties can be tailored by adjusting factors
such as the chemical and mineral composition of the clinker, the type and amount of
sulfate source, the water-to-cement ratio, and the inclusion of other binders as in PC [14].
Depending on these variables, CSA cements can be modified towards rapid setting, high
early strength, expansive behavior, shrinkage compensation, or self-stressing proper-
ties [15,58,112–114]. This versatility makes CSA cement ideal for a variety of specialized
applications, including pavement repairs, stucco systems, waste stabilization, and other
projects that require rapid setting and high strength [115–117].

5. Conclusions

This study investigated the environmental performance of CSA cement in three dif-
ferent mix formulations that were successfully synthesized on a laboratory scale using
an IS framework. Although the cements were produced under laboratory conditions, the
environmental assessment was based on diverse input data from various sources, ensuring
relevance to real-world scenarios. Data on energy consumption and CO2 emissions for
the raw materials used in CSA cement production were collected and incorporated into a
mathematical model, where Monte Carlo simulations were conducted to estimate the envi-
ronmental impacts. Simulating a range of potential outcomes provided robust estimates of
energy consumption and CO2 emissions. Based on the simulation results, the following
conclusions can be drawn:

• Despite conservative assumptions, CSA cements demonstrated significantly lower
environmental impacts compared to PC, with average energy consumption 13% to
16% lower and average CO2 emissions reduced by 35% to 48%, demonstrating their
significant contribution to climate change mitigation.

• The most significant energy consumption is observed during the burning process, and
a significant proportion of CO2 emissions are due to calcination and fuel use, similar
to PC production.

• Among the CSA mixes, Mix B exhibited the lowest energy demand due to its compara-
tively lower Serox and LFS content, while Mix C achieved the greatest reduction in
CO2 emissions, primarily due to its lower limestone content.

This study lays a strong foundation for sustainable cement manufacturing by in-
tegrating a zero-waste strategy through the IS approach within the resource-intensive
construction value chain. The findings emphasize the potential of IS to enable greener
and more sustainable CSA cement production, aligning with global climate goals, such as
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those outlined in the Paris Agreement. These insights are particularly valuable for cement
manufacturers seeking to adopt environmentally friendly production methods, policy-
makers aiming to develop supportive regulations, and researchers exploring innovative
approaches to reduce the carbon footprint of building materials.

Future research could investigate the economic feasibility of this approach and offer
a more comprehensive understanding of its implementation. Such insights are essential
to guide decision-making and advance sustainable practices in the cement industry. Col-
laboration through IS can drive resource efficiency, open new markets, and foster the
development of a greener viewpoint. This approach could shape policies and incentives as
it offers environmental, economic, and social benefits, while promoting a circular economy
and sustainable production practices.
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