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Abstract: The accurate prediction of dam deformation is essential for ensuring safe and efficient
dam operation and risk management. However, the nonlinear relationships between deformation
and time-varying environmental factors pose significant challenges, often limiting the accuracy
of conventional and deep learning models. To address these issues, this study aimed to improve
the predictive accuracy and interpretability in dam deformation modeling by proposing a novel
LSTM seq2seq model that integrates a chaos-based arithmetic optimization algorithm (AOA) and
an attention mechanism. The AOA optimizes the model’s learnable parameters by utilizing the
distribution patterns of four mathematical operators, further enhanced by logistic and cubic mappings,
to avoid local optima. The attention mechanism, placed between the encoder and decoder networks,
dynamically quantifies the impact of influencing factors on deformation, enabling the model to focus
on the most relevant information. This approach was applied to an earth-rock dam, achieving superior
predictive performance with RMSE, MAE, and MAPE values of 0.695 mm, 0.301 mm, and 0.156%,
respectively, outperforming conventional machine learning and deep learning models. The attention
weights provide insights into the contributions of each factor, enhancing interpretability. This model
holds potential for real-time deformation monitoring and predictive maintenance, contributing to the
safety and resilience of dam infrastructure.

Keywords: dam deformation prediction; long short-term memory sequence-to-sequence model;
attention mechanism; arithmetic optimization algorithm; chaotic optimization

1. Introduction

Heath monitoring is crucial for the safe operation of a dam, with the structural per-
formance as well as surrounding changes measured by monitors installed on the dam
such as environmental factors, dam deformation, water seepage, etc. [1]. In engineering
practice, dam deformation has been used as the most effective monitoring indicator of
dam safety [2], and deformation prediction models have been proposed and extensively
studied [3–6] in dam health monitoring, in order to accurately predict the deformation to
assess the potential risk based on historical monitoring data.

Statistical models have been used traditionally to predict dam deformation [2], which
take influencing factors (e.g., water pressure, temperature and time) as independent vari-
ables, and performance indicators (e.g., dam deformation and water seepage) as dependent
variables. One of the commonly used statistical models is the hydrostatic-season-time (HST)
model and its variants [7–10]. Despite the broad applications of statistical models, their
simple form of linearly superimposing the components of water pressure, temperature, and
time, without considering the nonlinear relationship between these components and the
deformation [3], results in issues of accuracy, robustness, and generalization. In recent years,
machine learning models have been applied in prediction tasks for dams such as the back
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propagation (BP) neural network [11,12], support vector machine (SVM) [13–16], and ex-
treme learning machine (ELM) [17–19]. Machine learning models have been demonstrated
to achieve a higher prediction accuracy than statistical models as they have the capability of
approximating the nonlinear relationship between influencing factors and monitoring data.
Most traditional machine learning models primarily focus on capturing direct regression
relationships between the input and output, which often leads to overlooking the inherent
long-term temporal dependencies within the deformation data that refer to the influence
that changes in certain variables at a given time can have on future time points. In complex
dam deformation monitoring scenarios, neglecting these long-term temporal dependencies
can limit the model’s predictive accuracy, as such algorithms may fail to fully capture the
underlying features in the deformation data [3].

With the availability of large datasets and GPU-accelerated computational perfor-
mance, deep learning, a branch of machine learning, has been widely applied
and studied [20], achieving breakthrough results in fields such as healthcare [21,22],
education [23], economics [24], renewable energy [25–28], computer technology [29], and
industry [30,31]. In the field of dam deformation prediction, models like recurrent neural
networks (RNNs) [4], convolutional neural networks (CNNs) [32], graph neural networks
(GNNs) [33], and autoencoders [34] have been extensively studied. Among these methods,
the long short-term memory network (LSTM), a variant of RNNs [35], has been proposed to
solve the long-term dependence issue of time-series data [36], and deformation prediction
models based on LSTM have been developed ever since. Li et al. [37] built an LSTM
prediction model for the decomposed deformation data, and Liu et al. [38] further used
principal component analysis and the moving average method to reduce the dimensionality
of the input variables of the LSTM model. To consider the global and local connections
between the deformation and the long sequences of influencing factors, Yang et al. [39]
added an attention mechanism ahead of the output layer of LSTM to improve the predic-
tion performance. For the sequence data, the sequence-to-sequence (Seq2Seq) structure,
a variant of RNN [40], is commonly used when the input and output lengths differ. This
approach is especially beneficial for dam deformation prediction, where input factors
such as water level, temperature, and time are sequential, but the output (deformation
prediction) may vary in length. The Seq2Seq structure effectively captures the complex
relationships between these factors and deformation, addressing the challenge of differing
input–output lengths and enhancing prediction accuracy. Additionally, incorporating an
attention mechanism in the Seq2Seq structure is crucial for both prediction accuracy and
model interpretability in dam deformation prediction. It enhances accuracy by allowing
the model to dynamically focus on the most relevant parts of the input sequence, adjusting
attention to specific time steps or factors that are critical for each prediction. This ability
to emphasize key features improves the model’s capacity to capture essential patterns
and dependencies in the deformation data. Moreover, the attention mechanism enhances
interpretability by assigning weights to input features, making it possible to visualize and
understand which factors most significantly impact the prediction [3,6].

Although LSTM and its related models have been successfully applied in dam defor-
mation prediction, some challenging issues are still to be tackled that may otherwise affect
the prediction accuracy. The learnable parameters (i.e., weights and biases of the model)
are trained with gradient-based algorithms by default in most available prediction models,
which would inevitably fall into the local optima when the data exhibit high nonlinearity. To
mitigate this issue, researchers have attempted to apply the global optimization approach,
especially meta-heuristic algorithms (e.g., genetic algorithm, particle swarm optimization
algorithm, and whale optimization algorithm) to obtain globally optimized learnable pa-
rameters [41,42], which has been demonstrated to significantly improve the prediction
accuracy. Compared with other meta-heuristic algorithms, the arithmetic optimization al-
gorithm (AOA) is more computationally efficient, has better convergence performance [43],
and has been applied in learning models with real-world data. Li et al. [44] optimized the
hyperparameters of the support vector regression model using AOA to accurately predict
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tunnel crown displacement caused by blasting excavation, and Xu et al. [45] used AOA
to optimize the initial weights and thresholds of the BP neural networks, improving the
accuracy of cluster failure prediction.

Apart from the optimization of learnable parameters, the importance of the influencing
factors in the dam deformation is not straightforward to quantify. Attempts have been
made to use the attention mechanism to dynamically quantify the relative importance
of each influencing factor in the prediction [6]. Nonetheless, the influence of the spatial
correlation of monitors on the dam has not been studied, while the monitoring data show
that the long-term deformation at different locations on the dam are highly correlated.
Hence, we also aimed to analyze the influence of the spatial correlation, in addition to other
influencing factors, in the prediction model with an attention mechanism.

In this paper, we propose an LSTM-seq2seq model equipped with an attention mecha-
nism and AOA for dam deformation prediction with high accuracy. The novelties of this
study are summarized as follows:

(1) Training deep learning models using gradient-based algorithms can lead to the
learnable parameters likely trapped in local optima, thereby causing inadequate accuracy
for dam deformation prediction. To mitigate this challenge, we propose a chaos-based
AOA to optimize the parameters further, thus greatly improving the prediction accuracy of
dam deformation.

(2) In order to explain the effect of different factors on the prediction of deformation,
an attention mechanism was integrated in the model, which was located between the
encoder and decoder networks to quantify the dynamic impact of time, water level, and
temperature on the deformation prediction.

(3) The model proposed in this paper was applied to predict deformation in an earth-
rock dam, achieving a high prediction accuracy that outperformed conventional machine
learning and deep learning models. The results illustrate the innovation and superiority of
the proposed model.

For the notational convenience, the proposed model is referred to as LSTM-seq2seq-
AA in the following. An LSTM-seq2seq model was first established using LSTM cells in
the seq2seq structure, and then the attention mechanism was introduced in the seq2seq
structure to form the LSTM-seq2seq-A model. The final LSTM-seq2seq-AA model was
built using the AOA to train learnable parameters. The rest of the paper is organized as
follows. Section 2 presents the research framework of this study. A brief description of the
HST statistical model and the details of the LSTM-seq2seq-AA model are introduced in
Section 3. The case study and results are given in Section 4. Finally, our conclusions are
shown in Section 5.

2. Research Framework

Figure 1 shows the framework of the LSTM-seq2seq-AA model. The LSTM-seq2seq-A
model can be divided into a temporal feature prediction module and an influencing factor
prediction module, and the final prediction is obtained by merging the results of the two
modules. For the temporal feature prediction module, the input of influencing factors is
in a sequence of time steps, and the influence of key time steps can be highlighted with
the attention mechanism, in order to deal with the long-term dependency and improve
the prediction accuracy. For the influencing factor prediction module, the input of influ-
encing factors is sorted by category, and the contribution of each influencing factor to the
predicted deformation is also quantified with the attention mechanism, offering certain
interpretability of the model. Finally, the AOA enhanced with the chaos theory is used
for optimizing the learnable parameters (weights and biases) of the model, attempting to
obtain a better optimized model.
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3. Methodologies
3.1. Brief Description of HST Statistical Model of Earth-Rock Dam Deformation

The HST statistical model gives the statistical relationship between deformation and
environmental quantities, which we rely on to determine the input of the deformation pre-
diction model. In the HST statistical model, dam deformation is computed with components
induced by hydrostatic pressure, temperature, and time [46], which can be expressed as

yt = yp + yτ + yη + y0, (1)

where yt represents the deformation at a monitoring point at time t, yp denotes the hydro-
static pressure component, yτ denotes the deformation induced by temperature change, yη

indicates the time-dependent aging effect, and y0 is a constant term.
The hydrostatic pressure component represents the deformation under the reservoir

hydrostatic pressure, which is given by the polynomial of the upstream water level as [15]

yp =
3

∑
i=1

αi pi, (2)

where p represents the upstream water level and αi (i = 1, 2, 3) denotes the correspond-
ing coefficients.
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Temperature change has a relatively small impact on earth-rock dams except in alpine
regions [47]. The resulting dam deformation stems from periodic changes in air and water
temperature, which is given by [48],

yτ =
2

∑
i=1

βicos
(

2πid
365

)
, (3)

where d indicates the cumulative number of days from the starting date, and βi (i = 1, 2)
are the corresponding coefficients.

The deformation of earth-rock dams is mainly caused by soil consolidation. It changes
rapidly during the initial period within one to two years and then stabilizes [31], which is
indicated by the time component expressed as follows [6],

yη = γ1η + γ2ln η, (4)

where η = t/100, and γ1 and γ2 are the corresponding coefficients.
Finally, the HST statistical model (1) of the earth-rock dam deformation can be writ-

ten as

yt =
3

∑
i=1

αi pi +
2

∑
i=1

βicos
(

2πid
365

)
+ γ1η + γ2ln η + y0, (5)

Therefore, for the deformation prediction model, the parameters of the statistical
model in Equation (5) (i.e.,

{
p, p2, p3, cos

(
2πd
365

)
, cos

(
4πd
365

)
, η, ln η

}
) are taken as the input

factors, and the complex nonlinear relationship of these factors are computed with the
prediction model.

3.2. The Proposed Methods

The proposed LSTM-seq2seq-AA model was built upon the LSTM sequence-to-sequence
model with an attention mechanism (LSTM-seq2seq-A). The LSTM-seq2seq-A model was
divided into a temporal feature prediction module and an influencing factor prediction
module, and the final prediction was obtained by merging the results of the two modules.
For the temporal feature prediction module, the input of influencing factors was in a
sequence of time steps, and the influence of time steps can be highlighted with the attention
mechanism. For the influencing factor prediction module, the input of influencing factors
was sorted by category, and the contribution of each influencing factor to the predicted
deformation was also quantified with the attention mechanism. The AOA enhanced with
the chaotic optimization was used to train the learnable parameters (i.e., weights and biases
of the model) to improve the prediction accuracy.

3.2.1. LSTM Sequence-to-Sequence Model (LSTM-seq2seq)

Figure 2 shows the seq2seq structure consisting of an encoder and a decoder. In the
encoder neural network, the input sequence {x1, x2, · · · , xT} with the number of time
steps T is read one time step at a time, and the last hidden state hT produces a high-
dimensional vector D that is encoded to represent the information of the input sequence.
The decoder neural network structure takes the vector D as the input to obtain the output
sequence {y1, y2, · · · , yT} through a directed loop. The computation involved in the seq2seq
structure is as follows,

ht = ψ(xt, ht−1), (6)

D = ϕ(h1, · · · , ht), (7)

ĥt = θ
(

yt−1, ĥt−1, D
)

, (8)

where ht and ĥt denote the hidden state in the encoder and decoder at the time step t,
respectively; ψ, ϕ, and θ represent nonlinear activation functions.
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The LSTM-seq2seq model is illustrated in Figure 3. Assuming that xm×n are the
influencing factor sequence data and ym×1 are the monitoring deformation data, with m the
number of samples and n the number of influencing factors (e.g., water level, temperature,
time, etc.), the two data sequences are first rearranged into x(m/T)×n×T and y(m/T)×1×T ,
respectively, by time steps T. After normalization, they are taken as the input of the LSTM-
seq2seq structure. In the encoder, the input sequence data x and y are encoded with hidden
layer outputs of all of the LSTM networks corresponding to time steps, which contains all
of the sequence features of the input. The output of the last hidden layer hT is then fed into
the decoder. The output of each time step in the decoder is given by

yt = σ
(

ĥt

)
, (9)

and they are combined in a sequence to form the final fitting result, and the deformation y
is finally obtained after denormalization.
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3.2.2. Optimization of Learnable Parameters with Chaos-Based AOA

Deep learning models typically use the gradient-based algorithm to train the learnable
parameters, and the existence of local minima is one of the key issues that influence the
prediction accuracy. Here, we adopted the AOA [33] to further optimize the learnable
parameters of the trained LSTM-seq2seq model. The AOA is a meta-heuristic algorithm that
takes advantage of the distribution behaviors of the four main mathematical operators (i.e.,
addition, subtraction, multiplication, and division) to perform optimization in the search
space. We also applied logistic mapping and cubic mapping in chaotic optimization to
better avoid the local optima in the optimization process. In this study, the fitness function
of the optimization was the mean absolute error (MAE) of the prediction model, and the
initial candidate solutions were 10 sets of learnable parameters of LSTM-seq2seq obtained
with the gradient-based training.
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The solution update in AOA involves two stages (i.e., the exploration stage and
the exploitation stage). A mathematical optimization accelerator is defined as follows to
determine the stage at the k-th iteration, in other words,

A(k) = Amin + k × Amax − Amin

M
, (10)

where Amin and Amax are the prescribed minimum and maximum values of the accelerator,
respectively, and M is the maximum number of iterations.

Consider a random number r1 ∈ (0, 1), where the exploration stage is activated if
r1 ≥ A(k). The division operator and the multiplication operator are used as the search
strategy in this stage, in other words,

w(k)
i,j =


w*

j ÷
(

P(k) + ϵ
)
×

[(
wU

j − wL
j

)
× µ + wU

j

]
, r2 < 0.5

w*
j × P(k) ×

[(
wU

j − wL
j

)
× µ + wL

j

]
, r2 ≥ 0.5

, (11)

where r2 is another random number between 0 and 1, which is used to switch the explo-
ration between multiplication and division operators; w(k)

i,j represents the j-th position of

the i-th solution in the k-th iteration; w*
j is the j-th position of the optimal solution currently

obtained; ϵ is the floating-point relative accuracy; wU
j and wL

j represent the upper and
lower limits of the j-th position, respectively; µ is a control parameter to adjust the search
process, which is fixed to 0.5 in our model; P(k) is the math optimizer probability defined as

P(k) = 1 − k
1
ρ

M
1
ρ

, (12)

where ρ is a sensitive parameter that controls the exploitation accuracy, which was fixed to
5 in our model.

The exploitation stage is activated if r1 < A(k), and the search strategy uses the
addition operator and the subtraction operator, so that the search target can be approached
with a low dispersion, in other words,

w(k)
i,j =


w∗

j − P(k) ×
[(

wU
j − wL

j

)
× µ + wL

j

]
, r3 < 0.5

w∗
j + P(k) ×

[(
wU

j − xL
j

)
× µ + wL

j

]
, r3 ≥ 0.5

, (13)

where r3 represents a third random number between 0 and 1, which is used to switch
between the addition and the subtraction search.

The AOA optimization of learnable parameters terminates when the maximum num-
ber of iterations M is reached, and the optimized parameters are returned. Though the
AOA aims to avoid the local optima, the fitness function may still converge to a local
optimum in complex optimization problems. To further improve the optimization, when
the values of the fitness function in consecutive iterations are less than a threshold (e.g.,
10−5), double chaotic mappings is introduced to try to remove a local optimum. In the
following, the local search based on chaotic optimization is discussed.

To train a deformation prediction model that involves quite a few local optima, the
AOA may terminate without searching further in the solution space. A chaotic optimization
mechanism is integrated into the local search strategies of the AOA to improve the opti-
mization result, in which two completely different chaotic mappings (i.e., logistic mapping
and cubic mapping) are used for independent searches. Studies have demonstrated that
with the same initial value and the same number of iterations, the chaotic variable values of
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the two mappings are different in most cases [49,50], which helps the optimization process
converge to a better solution.

Suppose the population size is p, with each individual an n-dimensional vector. Con-
sider an optimal individual w(k) at the iteration k, which is transformed to two chaotic
values w(k)

l and w(k)
c , respectively, as the input of the logistic mapping and the cubic

mapping, in other words,

w(k)
l,i =

w(k)
i − li

ui − li
, (14)

w(k)
c,i =

2
(

w(k)
i − li

)
ui − li

− 1, (15)

with u and l the upper and lower bounds of the search domain, respectively, and the index
i = 1, 2, · · · , n. The logistic and cubic mappings are then defined as follows,

∼
w
(k+1)
l,i = Logistic

(
w(k)

l,i

)
= λ w(k)

l,i

(
1 − w(k)

l,i

)
, (16)

∼
w
(k+1)
c,i = Cubic

(
w(k)

c,i

)
= ξ

(
w(k)

c,i

)3
+ (1 − ξ) w(k)

c,i , (17)

According to References [49,51], the logistic mapping is considered as chaotic when
λ = 4 and w(k)

l,i ∈ (0, 1), and the cubic mapping is chaotic when ξ ∈ [3.3, 4] and

w(k)
c,i ∈ (−1, 1). The obtained chaotic variables are then transformed back into the search

space, in other words,

w(k+1)
l,i =

∼
w
(k+1)
l,i (ui − li) + li, (18)

w(k+1)
c,i =

(
∼
w
(k+1)
c,i + 1

)
(ui − li)

2
+ li, (19)

and their corresponding fitness function values g
(

w(k+1)
l

)
and g

(
w(k+1)

c

)
are compared

with the fitness function value g
(

w(k)
)

in the previous iteration. The optimal solution at
iteration k + 1 takes the best among the three candidates, which has the smallest fitness
function value.

The chaotic mapping iterations continue until the difference between the two chaotic
values w(n)

l and w(n)
c is less than a prescribed value, that is,∥∥∥w(n)

l − w(n)
c

∥∥∥ < ν ∥u − l∥, (20)

lν
i = min

(
w(n)

l,i , w(n)
c,i

)
− ζν

∥∥∥w(n)
l − w(n)

c

∥∥∥, (21)

lν
i = max

(
w(n)

l,i , w(n)
c,i

)
+ ζν

∥∥∥w(n)
l − w(n)

c

∥∥∥, (22)

with ζ ∈ [1, 2]. To avoid the new search step outside the bounds, the following treatment
is also considered, {

lν
i = li, lν

i < li
uν

i = ui, uν
i > ui

, (23)

to update the bounds of the search domain (i.e., l = lν, u = uν). The optimization process
of Equations (14)–(19) is repeated until Equation (20) is satisfied, and the optimal solution
is obtained. The entire process of the optimization of learnable parameters with the chaos-
based AOA is illustrated in Figure 4.
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3.2.3. Quantifying Dynamic Contributions of Influencing Factors by Embedding
Attention Mechanism

With the LSTM-seq2seq model only, the contributions of different influencing factors
in the input sequence to the output cannot be quantified, and the effect of time step lengths
of the input sequence on the output is also not clear. Hence, the attention mechanism was
adopted for the interpretability of the LSTM-seq2seq model, in which a temporal feature
prediction module and an influencing factor prediction module have been established.
The output of the model contains information in both the time and feature dimensions.
By dynamically measuring the contribution of each factor to the output, key features are
figured out automatically during the training process.

In the LSTM-seq2seq structure introduced in Section 3.2.1, the contribution of each
LSTM cell in the encoder network to the output of each LSTM cell in the decoder network
is assumed to be the same. As a matter of fact, the influencing factors at different time
steps have a different influence on the prediction, and different influencing factors also
contribute differently to the prediction. The different contributions can be related to the
adaptive weights of influencing factors in the attention mechanism.

The schematic diagram of the attention mechanism is shown in Figure 5. The weights
ω<s,t> (t = 1, 2, · · · , T) measure the influence of the hidden layer output at time step t in
the encoder on the output of the decoder at time step s, which are computed as

e<s,t> = relu
(

We
[

ĥs−1, ht

]
+ be

)
, (24)

ω<s,t> =
exp(e<s,t>)

∑T
t=1 exp(e<s,t>)

, (25)

where We and be are the weights and biases of each attention cell, respectively, e<s,t> is the
attention score of the t-th hidden layer state in the encoder, and ω<s,t> is the weight of the
t-th hidden layer state in the encoder. Afterward, the weighted summation of the output of
each cell in the encoder is computed as the output of the attention mechanism layer, which
is a context vector

Cs =
T

∑
t=1

ω<s,t>ht, (26)

and it is also the input of the corresponding cell of the decoder.
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Figure 5. Schematic diagram of the attention mechanism.

Figure 6 depicts the framework of the LSTM-seq2seq-A model. The temporal feature
prediction module captures deep temporal patterns within the deformation data, while
the influencing factor prediction module dynamically evaluates the impact of each factor
(e.g., water level, temperature) on the output by using attention weights. By analyzing
data from both perspectives—time-based dependencies and factor-specific influences—the
model achieves a more comprehensive feature extraction, leading to enhanced prediction
accuracy and reliability in dam deformation forecasting. The original dataset {x, y} is
first classified into a temporal feature dataset

{
xT , yT

}
and an influencing factor dataset{

xF , yF
}

, and they are the input of a temporal feature prediction layer and an influencing
factor prediction layer, respectively. In the first cell of the encoder, the cell state c0 and the
hidden layer state h0 are initialized with zero matrices, and subsequently, the hidden layer
states hTt (t = 1, 2, · · · , T) of the temporal feature prediction layer and the hidden layer
states hFf ( f = 1, 2, · · · , m) of the influencing factor prediction layer are obtained, and they
are further combined with the hidden layer states at the previous time step of the decoder
as the input of the individual attention cell. The attention weights of different states can
then be obtained, and the output of the attention cell is the input of each cell in the decoder.
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Figure 6. LSTM-seq2seq model with an attention mechanism.

The hidden layer states of the decoders are activated with the sigmoid function, and
the final outputs of the temporal prediction layer and the influence factor prediction layer
are reshaped into two matrices ŷT and ŷF of the same dimension n × 1. The final output ŷ
of the model is

ŷ = Ŵ
[
ŷT , ŷF

]
, (27)

where Ŵ is the weight matrix obtained from the temporal feature prediction layer and the
influence factor prediction layer. The dam deformation prediction result is finally obtained
after denormalizing ŷ.
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The pseudocode of the proposed LSTM-seq2seq model with an attention mechanism
and the chaos-based AOA is shown in Algorithm 1.

Algorithm 1: LSTM-seq2seq-AA

Input: original dataset {x, y} with x influencing factor sequence data and y dam
deformation data, the initial solution wi ((i = 1, 2, 3 . . . 10)), maximum number of
iterations M
Output: Prediction model for dam deformation
1: Classify time feature dataset

{
xT , yT

}
and influencing factor dataset

{
xF , yF

}
2: temp = inf, Leader_Score = inf, Leader_pos = w1 # initialization
3: For i = 1, 2, · · · , 10
4: Obtain predicted dam deformation ŷi = LSTM-seq2seq-A (wi, xT , xF )
5: Calculate fitness function value gi = g(ŷi, y)
6: if (gi < Leader_Score)
7: Update the optimal fitness function value Leader_Score = gi and update the
optimal solution Leader_pos = wi
8: end if
9: end for
10: while k < M
11: if (abs(temp − Leader_Score) < 10−5)
12: update Leader_Score and Leader_pos with chaotic optimization (14) to (23)
13: end if
14: temp = Leader_Score
15: Update the Leader_Score and Leader_pos with AOA (10) to (13)
16: k = k + 1
17: end while
18: return Leader_pos

4. Case Study

The proposed prediction model was applied to Nuozhadu Dam in southwestern China,
which is a gravel-soil core earth-rock dam with a height of 261.5 m, as shown in Figure 7.
A monitoring system has been installed to monitor the operation of the dam during the
construction of the dam, which records several parameters including deformation, seepage,
stress–strain, temperature, water level, etc. In this section, the prediction accuracy of
the proposed model is investigated, and the contributions of different factors to the dam
deformation are also interpreted with the model.
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Figure 7. A monitoring system has been installed to monitor the operation of the dam 
during the construction of the dam, which records several parameters including defor-
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to the dam deformation are also interpreted with the model. 

 
Figure 7. Scene of Nuozhadu Dam.
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4.1. Data Collection and Preprocessing

Figure 8 shows the layout of the deformation monitoring points on the dam. Without
loss of generality, we chose seven monitoring points for model validation (i.e., L4-02, L5-02,
L6-02, L6-06, L6-13, L7-03, and L7-13). In this study, the monitoring data were collected
from 11 January 2015 to 10 November 2018 (1400 days) including deformation, water level,
and air temperature, as shown in Figure 9.
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Figure 9. Monitoring data of the dam over time. (a) Deformation at the monitoring points. (b)
Upstream water level. (c) Air temperature.

According to Equation (5), the input vector of the prediction model is composed of
three types of influencing factors including the hydrostatic pressure component,

{
p, p2, p3 },

the temperature component, {cos
(

2πd
365

)
, cos

(
4πd
365

)
}, and the time effect component, {η, ln η}.

Due to the spatial correlation among multiple monitoring points, the deformation data of
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multiple points were directly integrated into the monitoring model. Therefore, the set of
influencing factors F can be considered as

F =

{
p, p2, p3, cos

(
2πd
365

)
, cos

(
4πd
365

)
, η, ln η, D1, D2, D3, D4, D5, D6

}
, (28)

where D1 to D6 are the other six monitoring points. The LSTM-seq2seq-AA model utilizes
these HST-derived inputs as sequential features, allowing it to learn complex nonlinear
relationships between hydrostatic pressure, temperature, aging, and deformation.

The data are further normalized with

x =
x − xmin

xmax − xmin
, (29)

where x represents the original data, x represents the normalized value, and xmin and xmax
are the minimum and maximum values in the original data, respectively.

4.2. Hyperparameters of the Prediction Model

The model was built with Keras 2.2.4. The chaos-based AOA (c-AOA) was applied
to optimize the hyperparameters of the model. After optimization, we obtained the opti-
mal hyperparameters of the temporal feature prediction module and the influence factor
prediction module. In the temporal feature prediction module, the number of time steps
T = 20, the learning rate Lr = 0.008, the number of neurons in an LSTM unit of the encoder
Ne

u = 64, the number of neurons in an LSTM unit of the decoder was Nd
u = 64. In the

influencing factor prediction module, the hyperparameters were T = 20, Lr = 0.0077,
Ne

u = 64, Nd
u = 64. The number of epochs N was set to 150.

We selected six other learning models (i.e., LSTM, LSTM with attention mechanism
(LSTM-A), LSTM-seq2seq, LSTM-seq2seq-A, support vector machine (SVM), and multilayer
perceptron (MLP)) to compare their prediction performance with our proposed model for
the deformation at point L6-13. The chaos-based AOA and fivefold cross validation were
used to determine the hyperparameters of all six models, which are given in Table 1. Nu
in the LSTM-based models represents the number of LSTM units. The kernel function of
SVM is the Gaussian kernel, with parameters q and κ the penalty and the kernel parameter,
respectively. Nh in MLP represents the number of hidden layers, and Nl is the number of
hidden neurons.

Table 1. Hyperparameters of different models for comparison.

Model Hyperparameters

LSTM N = 150, T = 14, Lr = 0.005, Nu = 49
LSTM-A N = 150, T = 14, Lr = 0.005, Nu = 73

LSTM-seq2seq N = 150, T = 20, Lr = 0.012, Ne
u = 73, Nd

u = 68
LSTM-seq2seq-A N = 150, T = 20, Lr = 0.007, Ne

u = 63, Nd
u = 59

SVM q = 7.21, κ = 5.49
MLP Nh = 1, Nl = 15

5. Result
5.1. Validation of Meta-Heuristic Training of the Model

We first demonstrated the advantage of using the AOA as the meta-heuristic training
method. Taking the deformation prediction at monitoring point L6-13 as an example, we
first compared the AOA with other classical meta-heuristic algorithms including the genetic
algorithm (GA), the particle swarm optimization (PSO), the bat-inspired optimization
algorithm (BAT), and the wolf optimization algorithm (WOA) to optimize the learnable
parameters of the model. The convergence curves of different algorithms are shown in
Figure 10a. It can be observed that all the algorithms converged quickly after 20 iterations
to sub-optimal values, and using the AOA converged to the smallest value, reducing the
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fitness function value from 1.96 × 10−5 to 1.87 × 10−5. Afterward, we considered their
implementations enhanced with the double chaotic mappings, as introduced in Section 3.2.2
(i.e., c-GA, c-PSO, c-BAT, c-WOA, and c-AOA), to optimize the learnable parameters of
the model, and the convergence curves are shown in Figure 10b. Again, the AOA gave
the smallest value, reducing the fitness function value from 1.96 × 10−5 to 1.65 × 10−5.
The chaos-based enhancements overcome this limitation by introducing chaotic search
strategies that initiate independent parallel searches around the current best solution
when convergence stalls. As can be seen, with the same 100 iterations, the double chaotic
mappings significantly improved the optimization results, while the original meta-heuristic
algorithms fell prematurely into the local optima. We present the deformation prediction
results of each chaotic meta-heuristic algorithm for monitoring point L6-02 in Table 2. It
can be seen that the differences in prediction evaluation metrics were minimal, indicating
an almost similar performance. Additionally, as shown in Tables 3 and 4, AOA and c-
AOA achieved comparable optimization goals with reduced time consumption compared
to other meta-heuristic algorithms, enhancing the model’s practicality for real-time dam
monitoring applications.
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Figure 10. Convergence of five meta-heuristic optimization algorithms to optimize learnable parame-
ters. (a) Original optimization algorithms. (b) Chaos-based optimization algorithms.

Table 2. Comparison of the time consumption of all chaotic meta-heuristic algorithms.

c-GA c-PSO c-BAT c-WOA c-AOA

MAPE (%) 0.244 0.242 0.242 0.243 0.242
RMSE (mm) 0.676 0.677 0.675 0.677 0.675
MAE (mm) 0.491 0.490 0.490 0.489 0.489

Table 3. Comparison of the time consumption of all classical meta-heuristic algorithms.

GA PSO BAT WOA AOA

Time consumption (hours) 0.28 0.31 0.24 0.26 0.21

Table 4. Comparison of the time consumption of all chaotic algorithms.

c-GA c-PSO c-BAT c-WOA c-AOA

Time consumption (hours) 7.54 7.99 6.87 6.84 6.13

5.2. Prediction Performance

The dam deformations at the seven points L4-02, L5-02, L6-02, L6-06, L6-13, L7-03, and
L7-13 were predicted with the proposed model. The data of 1000 days from 11 January 2015
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to 6 October 2017 formed the training dataset, while the remaining data of 400 days from 7
October 2017 to 10 November 2018 were used as the test dataset. For all of the predictions,
the MAE loss function converged within 100 iterations. The comparison illustrated in
Figure 11 demonstrates a good agreement between the deformation prediction results and
the monitoring data. The performance evaluation metrics are given in Table 5. The MAPE,
MAE, and RMSE ranged from 0.042% to 0.242%, 0.257 mm to 0.937 mm, and 0.483 mm
to 1.019 mm, respectively. The average MAPE, RMSE, and MAE of the seven points were
0.125%, 0.739 mm, and 0.493 mm, respectively.
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Figure 11. Prediction results at the seven monitoring points: (a) L4-02; (b) L5-02; (c) L6-02; (d) L6-06;
(e) L6-13; (f) L7-03; (g) L7-13.
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Table 5. Evaluation metrics of the proposed model at the seven monitoring points.

L4-02 L5-02 L6-02 L6-06 L6-13 L7-03 L7-13 AVG

MAPE (%) 0.086 0.042 0.242 0.137 0.156 0.096 0.116 0.125
RMSE (mm) 0.483 0.694 0.675 1.019 0.695 0.983 0.626 0.739
MAE (mm) 0.257 0.376 0.489 0.937 0.301 0.702 0.391 0.493

5.3. Comparison

To further validate the model, we compared it with several commonly used traditional
machine learning and deep learning models: support vector machine (SVM), multilayer
perceptron (MLP), long short-term memory (LSTM), LSTM sequence-to-sequence (LSTM-
seq2seq), attention-based LSTM (LSTM-A), and attention-based LSTM-seq2seq (LSTM-
seq2seq-A). The comparison of prediction results for point L6-13 using these different
models is shown in Figure 12, with the performance evaluation metrics listed in Table 6.
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Figure 12. Comparison of the proposed model and other learning models for L6-13. (a) Results of
MLP, SVM, and LSTM-seq2seq-AA. (b) Results of LSTM, LSTM-A, and LSTM-seq2seq-AA. (c) Results
of LSTM-seq2seq, LSTM-seq2seq-A, and LSTM-seq2seq-AA.

Table 6. Hyperparameters of different models for comparison.

LSTM-seq2seq-AA LSTM-seq2seq-A LSTM-A LSTM-seq2seq LSTM MLP SVM

MAPE (%) 0.156 0.307 0.403 0.475 0.536 0.697 0.637
RMSE (mm) 0.695 1.038 1.287 1.632 1.755 1.902 1.868
MAE (mm) 0.301 0.679 0.846 1.037 1.189 1.986 1.756

As illustrated in Figure 12, the proposed model consistently aligned most closely with
the actual data, particularly in regions with high deformation fluctuations. A detailed
view of point L6-13 highlights these differences, where the proposed method showed the
lowest deviation from the observed values compared to other models. LSTM-seq2seq and
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LSTM-A provided better fits than the standard LSTM, and LSTM-seq2seq-A aligned more
closely with the observed values than LSTM-seq2seq. The proposed method achieved the
best overall fit, confirming its effectiveness in capturing dynamic deformation patterns.
Table 6 further supports these findings, showing that the proposed LSTM-seq2seq-AA
model outperformed all of other models for deformation prediction, with the lowest MAPE,
MAE, and RMSE values across the seven monitoring points.

The relative improvement ratios between different models are plotted in Figure 13.
The performance of the proposed model was distinguishingly better than the traditional
machine learning models as it addressed the issue of long-term dependence. The relative
improvement over the other deep learning models indicates that the attention mechanism
improves the prediction accuracy with the adaptive weight assignment.
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Figure 13. Relative improvement ratios between the deformation prediction models.

5.4. Contributions of Influencing Factors

In the proposed model, the contribution of each influencing factor to deformation
prediction can also be dynamically quantified. Figure 14a,b displays the time-varying
attention weights of seven influencing factors and other spatially correlated monitoring
points for point L6-13, respectively. Figure 15a,b shows the average attention weights of
the seven environmental factors and six other monitoring points.
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Figure 14. Attention weights of different influencing factors and other spatially correlated monitoring
points of L6-13. (a) Attention weights of influencing factors. (b) Attention weights of other spatially
correlated monitoring points.

From Figure 14a, it can be observed that in the time-varying attention weight plot for
environmental factors, the two curves for the time–effect component {η, ln η} consistently
held the highest positions, and the hydrostatic pressure component {p, p2, p3} were mostly
larger than the temperature component {cos 2πd

365 , cos 4πd
365 }, indicating that among the en-

vironmental factors, the time–effect components had the greatest impact on deformation.
Figure 14b shows that in the time-varying attention weight plot for monitoring points, the
curve for point L7-13 remained in a relatively high position, suggesting that deformation
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at this point plays a dominant role in influencing the deformation monitoring data for
point L6-13.
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Figure 15. Average attention weights of influencing factors and other points. (a) Weights of influenc-
ing factors for L6-13. (b) Average attention weights of influencing factors and other points.

Figure 15a shows that among the environmental factors, the aging factor had the
highest attention weight, or contribution rate, to the deformation of the monitoring point,
at 51%, followed by the water level and temperature, with contribution rates of 32% and
17%, respectively. Among the deformation monitoring points, point L7-13 contributed the
most to point L6-13, at 26%, followed by L6-06, L7-03, and L6-02, while points L5-02 and
L4-02 had the smallest contribution rates.

Based on long-term studies of earth-rock dam deformation, the time–effect components
were the most significant, the hydrostatic pressure component was less significant, and
the temperature component was negligible, which aligns with the attention weight results
calculated in this study [33]. Additionally, from the perspective of spatial distance from
point L6-13, L7-13 was the closest, followed by L6-06 and L7-03, while L6-02 was slightly
farther, and L5-02 and L4-02 were the farthest. Generally, the closer the points are to each
other, the greater the influence of deformation between them, which corresponds closely to
the results in Figures 14 and 15, thus proving the reliability of the model in this study.

6. Discussion

The proposed LSTM-seq2seq-AA model demonstrates an innovative approach to im-
proving dam deformation prediction by leveraging a chaos-based arithmetic optimization
algorithm (c-AOA) and an attention mechanism. These components address core chal-
lenges in complex time-series modeling by optimizing predictive accuracy and enhancing
model interpretability. The attention mechanism plays a critical role in refining predictions
by dynamically focusing on the most relevant input factors for each time step. This allows
the model to adaptively emphasize essential temporal patterns in the data, capturing the
nuanced influences of various environmental and structural factors. Such adaptability is
particularly beneficial in managing the variable conditions surrounding dam deformation,
as it enables the model to assess factor significance in real-time. While spatial correlations
among monitoring points were not the focus of this study, future work could consider
integrating a spatial attention layer, which could further improve the accuracy by capturing
dependencies across different monitoring locations. The chaos-based AOA offers an effec-
tive solution for hyperparameter optimization, surpassing conventional algorithms in its
ability to navigate complex solution spaces and avoid local minima. By employing chaotic
mapping, AOA introduces diversity into the search process, enhancing model convergence
and stability. This optimization approach contributes to robust predictive performance,
ensuring reliable deformation predictions under varying conditions.

Despite the model’s demonstrated efficacy, there are limitations to its applicability
across different dam types. Concrete gravity dams, for instance, exhibit more stable mate-



Buildings 2024, 14, 3675 19 of 21

rial characteristics and deformation driven largely by creep and thermal stress, potentially
requiring model adjustments to capture these specific dynamics accurately. Similarly, the
complex deformation patterns in arch dams might challenge the model’s current configura-
tion. Tailoring the model for these structural variations could improve its adaptability and
broaden its application scope within the field.

This study addressed key challenges in building sciences, particularly in the prediction
of structural deformation and the health monitoring of large infrastructure systems. The
proposed model is particularly valuable for structural health monitoring in civil engineering
and construction and enhances the ability to predict deformation trends and assess risk,
enabling timely maintenance and intervention strategies. By improving deformation
prediction accuracy, this model supports the development of early warning systems for
critical infrastructure including dams, bridges, and high-rise buildings. Such systems
can significantly reduce the risk of catastrophic failures and increase the overall resilience
of infrastructure.

7. Conclusions

In this study, an LSTM sequence-to-sequence model integrated with an attention
mechanism and a chaos-based arithmetic optimization algorithm (AOA) was proposed for
dam deformation prediction. The conclusions drawn from this research are as follows:

(1) The proposed LSTM-seq2seq-AA model significantly enhanced the prediction
accuracy for dam deformation. Quantitatively, the model achieved average RMSE, MAE,
and MAPE values of 0.739 mm, 0.493 mm, and 0.125%, respectively, across seven monitoring
points. This performance markedly surpassed that of the traditional machine learning
models and other LSTM-based models. Qualitatively, the integration of the attention
mechanism improved the interpretability of the model by dynamically assigning weights
to influencing factors, while the chaos-based AOA effectively optimized the learnable
parameters, avoiding convergence to the local optima.

(2) Given its high accuracy and robustness, the proposed model is recommended for
implementation in dam safety monitoring systems. It is particularly suitable for real-time
deformation prediction and the risk assessment of earth-rock dams. Engineers and practi-
tioners can utilize this model to enhance early warning systems and inform maintenance
decisions, thereby improving the overall safety management of dam infrastructure.

(3) Future studies should explore the application of the LSTM-seq2seq-AA model
to different types of dams and structural health monitoring scenarios to validate its gen-
eralizability. Investigating the incorporation of additional influencing factors, such as
material properties and environmental conditions, could further refine the model. More-
over, integrating other advanced optimization algorithms might enhance the prediction
performance, opening new avenues for research in the predictive modeling of complex
engineering structures.

(4) While the model demonstrated superior performance, it was tested on data from a
single earth-rock dam. To ensure broader applicability, future work should involve testing
the model on various dam types and incorporating larger datasets. Additionally, extending
the model to predict other structural behaviors, such as stress distribution and seepage
patterns, could provide a more comprehensive tool for structural health monitoring.
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