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Abstract: To better understand the bending performance of rectangular high-strength steel fiber-
reinforced concrete (HSFRC)-filled steel tubular (HSFRCFST) beams with internal stiffeners, ten beams
were subjected to a four-point bending test. The primary considerations were the strength grade of
the HSFRC, the steel fiber content, the internal stiffener type, and the circular hole spacing of the
perfobond stiffener. The moment–curvature and flexural load–deflection curves were calculated. The
mode of failure and the distribution of cracks of the infill HSFRC were observed. The presence of
steel fibers greatly improved the bending stiffness and moment capacity of HSFRCFST beams, with
the optimal effect happening at a steel fiber content of 1.2% by volume, according to the experimental
findings. The type of stiffener influenced the failure modes of the exterior rectangular steel tube,
which were unaffected by the compressive strength of the infill HSFRC. On the tension surface of
HSFRCFST beams, the crack spacing of the infill HSFRC was virtually identical to the circular hole
spacing of perfobond stiffeners. When the circular hole spacing was between two and three times
the diameter, the perfobond stiffener worked best with the infill HSFRC. The test beams’ ductility
index was greater than 1.16, indicating good ductility. The test beams’ rotational capacities ranged
from 6.26 to 13.20, which were greater than 3.0 and met the requirements of the specification. The
experimental results demonstrate that a reasonable design of the steel fiber content and the spacing
between circular holes of perfobond stiffeners can significantly improve the bending resistance of
rectangular HSFRCFST beams. This provides relevant parameter design suggestions for improving
the ductility and bearing capacity of steel fiber-reinforced concrete beams in practical construction.
Finally, a design formula for the moment capacity of rectangular HSFRCFST beams with stiffeners is
presented, which corresponds well with the experimental findings.

Keywords: concrete-filled steel tubular beams; rectangular section; high-strength steel fiber-reinforced
concrete; perfobond stiffener; flexural capacity

1. Introduction

Beams, columns, towers, arch ribs, and piers made of concrete-filled steel tube (CFST)
structural components are becoming more prevalent in tall buildings [1–3] and large-
span bridges [4,5] due to the strong compressive resistance of infill concrete and the
adaptability of exterior steel tubes. In general, the bearing capacity of infill concrete
increases when it is confined by an exterior steel tube subjected to triaxial compression,
and the support provided by the infill concrete prevents the external steel tube from local
buckling sooner [6,7]. In addition to enhancing the deformability and bearing capacity
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of CFST structural components, the combined effects of external steel tubes and infill
concrete provide excellent seismic resistance and damping performance. In addition, CFST
components use exterior steel tubes as the formwork to reduce the labor force required for
reinforced concrete structures, shorten the construction period, and reduce engineering
expenses [8–12].

In contrast to CFST columns subjected to compression or compression with flexure,
CFST beams subjected to flexure have weaker infill concrete confinement by external steel
tubes [13–18]. This permits the investigation required to determine the bending behavior of
CFST beams [19,20]. Compared to a circular section [21,22] and an elliptical section [23,24],
a rectangular or square section for CFST beams has advantages in connecting and cooper-
ating with other members. In rectangular CFST beams, unequal bending capacity along
different axes is a characteristic of their mechanical behavior. In the meantime, the lateral
confinement of infill concrete by steel tubes becomes less uniform and weaker, leading to a
decrease in flexural capacity and ductility [25,26].

CFST beams with a rectangular section have been enhanced using a variety of tech-
niques. One method involved the interfacial bonding of infill concrete to steel tubes. When
using high-strength concrete as infill concrete, it is important to avoid significant volume
shrinkage [27–30]. Internal stiffeners efficiently increase the bonding behavior and stiffness
of external steel tubes, delaying the onset of local buckling [31–35]. This encourages the
investigation of internal stiffeners, such as steel plate stiffeners and perfobond stiffeners
with circular holes spaced equally apart. The deficiency results in an unavoidable increase
in construction costs. Alternately, one might boost the exterior steel tube and infill con-
crete’s already impressive performance. Thick steel plates can improve the load carrying
capability and ductility of CFST beams, notwithstanding the unavoidable increase in weld-
ing difficulty and construction expense [36–42]. Concrete with high strength can improve
bearing capacity and energy absorption while decreasing ductility. Rubberized concrete
is an eco-friendly building material that can increase ductility while decreasing structure
members’ compressive performance [43,44]. SFRC is advantageous for enhancing the
ductility and load-bearing capacity of CFST beams [45,46]. Due to steel fibers’ bridge effect
on the cracks in the concrete matrix, SFRC exhibits superior post-crack behavior, impact
resistance, tensile strength, and interfacial bonding strength to steel tubes [47–49]. The
main parameters include the strength grade of infill concrete, which ranges from 30 MPa
to 70 MPa; the percentage of steel fiber volume, ranging from 0.5% to 1.5%; and the steel
fiber type, comprising straight, hooked-end, and crimped fibers. Steel fibers improve CFST
beams’ bearing capacity, ductility, and energy dissipation, while steel fibers with hooked
ends outperform straight or crimped steel fibers [50,51]. Along with self-compacting and
high-flowing construction, the orientation of steel fibers in an SFRC mixture agrees with
the flexural state of the beam, and HSFRC becomes able to be used in CFST beams [52,53].

Based on the preceding statement [54], it is worthwhile to investigate the flexural
behavior of rectangular high-strength steel fiber-reinforced concrete (HSFRC)-filled steel
tubular (HSFRCFST) beams. In this article, the four-point bending experiment was conducted
on nine HSFRCFST beams and one CFST beam used as a reference. The strength grade
of HSFRC, steel fiber content, the internal stiffener type, and the circular hole spacing of
perfobond stiffeners were the research factors. On the basis of test results, the failure modes,
moment–curvature curves, flexural load–deflection curves, ductility indexes, rotational capac-
ities, bending stiffnesses, and ultimate loads of test beams are discussed. Finally, suggested
formulas for calculating the bending capacity of rectangular HSFRCFST are presented.

2. Materials and Methods
2.1. Concrete Preparation

One conventional concrete with an 80 MPa designed cubic compressive strength
and five HSFRC mixes with 50 MPa, 60 MPa, and 80 MPa designed cubic compressive
strengths were manufactured. Table 1 shows the proportions of the designed concrete.
The mixes identified with “SC” and “CC” refers to HSFRC and conventional concrete,
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respectively. The figures that follow show the desired cubic compressive strength as well
as the proportion of steel fiber volume. The primary components of HSFRC were 42.5 R
Portland cement, slag powder, water, high-quality river sand, a maximum particle size
of 20 mm for graded crushed stone, hooked-end steel fiber, and a highly efficient water
reducer. The fluidity of the HSFRC slump was greater than 550 mm. The length, diameter,
and tensile strength of the hooked-end steel fiber were 30 mm, 0.75 mm, and 600 MPa,
respectively. In the design of mixtures with different proportions of steel fiber volume, to
optimize the mechanical properties and workability of the concrete, the dosage of sand
and crushed stone varied. The main reason was that the fineness modulus of river sand
particles was moderate, which was conducive to improving the workability of concrete,
and the surface area was large, which could form better bonding with cement slurry and
facilitate the dispersion and anchoring of steel fibers in concrete. So, according to the steel
fiber content and the strength grade of concrete, we adjusted the ratio of river sand and
gravel reasonably. In the case of high steel fiber content, the amount of river sand was
increased and the amount of crushed stone was reduced.

Table 1. Mix proportions of conventional concrete and HSFRC.

Identifier
Dosage of Raw Materials (kg/m3)

Cement Slag Powder Water River Sand Crushed Stone Steel Fiber Water Reducer

SC50/1.2 470.7 0 193 655.8 1022.4 94.2 3.3
SC60/1.2 583.3 0 175 754.4 865.9 94.2 5.9
CC80/0 535.6 133.9 170 587.3 1000.0 0 0.3

SC80/0.8 544.0 136.0 170 732.8 949.2 62.8 0.3
SC80/1.2 544.0 136.0 170 775.3 892.5 94.2 0.3
SC80/1.6 544.0 136.0 170 835.5 816.6 125.6 0.3

2.2. Fabrication of Test Beams

Ten test beams were constructed. There were perfobond stiffeners on eight of them,
steel plate stiffeners on one, and none on the last one. All the test beams had a length
of 1200 mm and a cross-section measuring 360 mm by 188 mm. Steel tubes and internal
stiffeners were fabricated from 4 mm thick steel plates. Additional information regarding
the stiffened test beams is shown in Figure 1. In every respect, the test beam without a
stiffener was identical to the test beams with stiffeners.

The test beams were developed and produced in compliance with China’s GB/T
50081 [55], JG/T472 [56], and GB 50666 [57] specifications, as well as GB50661 [58] and
DG/TJ08 [59] for the construction of steel structures, including installation and welding. A
forced trough mixer was implemented for ordinary concrete and HSFRC. Using a welding
machine with an automatically changeable parameter, steel plates were welded. Using a
portable ultrasound device, the weld quality was evaluated.

The production of steel fiber-reinforced concrete adopts a dry wet process, with
materials added in the order of river sand, steel fibers, crushed stone, slag powder, and
cement. The mixture is first dry mixed in the mixer, and then wet mixed with water and
water reducer. When adding steel fibers, a steel fiber dispersing device is used, and the
steel fibers are dispersed by a disperser before entering the forced mixer. Here, steel sheets
were used to construct both the outer rectangular steel tubes and the internal stiffeners. The
perfobond stiffener’s circular holes were precisely drilled. Using sandblasting, rust was
removed from the prepared steel members. Internal ribs were used to stiffen rectangular
steel tubes. The specimen was then maintained in a vertical position on the thick steel plate.
The infill HSFRC was cast in layers into the rectangular steel tube and immediately vibrated
with an electric vibrator to remove air pockets. A coating of high-grade cement mortar was
put on the infill HSFRC’s upper surface to smooth it. The test beams were then covered in
straw and sprayed with water at room temperature for 28 days. Three cube test pieces with
150 mm side lengths and three prism test pieces with 150 mm × 150 mm × 300 mm sizes
were cast and cured alongside each test beam under the same conditions.
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2.3. Material Properties

According to the criteria of China code GB/T 228.1 [60], tensile tests were conducted
on the steel plates to determine their tensile qualities. Three samples were tested as a group.
The average values for elasticity modulus, yield strength, and ultimate tensile strength, as
obtained by testing, were 206 GPa, 360 MPa, and 576 MPa, respectively.

Using China code GB/T 50081, the cubic and prismatic compressive strengths of infill
HSFRC were measured and expressed as fcu and fc, respectively. Table 2 displays the results
of the experiment. In the following table, PS, SS, and NS denote test beams with perfobond
stiffener, steel plate stiffener, and no stiffener, respectively. This is followed by perfobond
stiffener circular hole spacing, infill concrete target strength grade, and steel fiber volume
percentage (vf). Using the Chinese standard GB 50936 [61], the test beam confinement
coefficient θ was computed.

θ =
fyt Ast

fc Ac
(1)

Table 2. Strength of infill concrete and stiffener details of test beams.

Identifier vf (%) fcu (MPa) fc (MPa) θ Hole Spacing (mm) Stiffener Type

PS-120-SC80/1.2 1.2 85.0 53.0 0.47 120

Perfobond stiffener

PS-90-SC80/1.2 1.2 67.0 42.7 0.59 90

PS-60-SC80/1.2 1.2 65.3 41.7 0.6 60

PS-60-SC80/0.8 0.8 81.0 50.8 0.49 60

PS-60-SC80/1.6 1.6 78.3 49.3 0.51 60

PS-60-SC50/1.2 1.2 46.0 30.2 0.83 60

PS-60-SC60/1.2 1.2 54.0 34.8 0.72 60

PS-60-CC80/0 0 80.0 50.2 0.50 60

SS-0-SC80/1.2 1.2 88.0 54.6 0.46 -- Steel plate stiffener

NS-0-SC80/1.2 1.2 77.0 48.5 0.51 -- No stiffener
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In this equation, fyt represents the actual measured yield strength of the outer rectan-
gular steel tube in MPa, while Ac and Ast are the cross-sectional areas of the infill concrete
and the outside rectangular steel tube, both expressed in mm2.

2.4. Test Preparation and Procedure

The test apparatus and arrangement are depicted in Figure 2. Before the tests, black
grids measuring 30 mm by 50 mm were drawn on the outside of the steel tubes to see
if there was any local buckling. The test beams were bent using hydraulic-servo test
equipment with a capacity of 5000 kN in a four-point configuration until failure. The
rolled hinge bearings supported the test beams with an effective span of 1000 mm. The
proportion of shear span to effective depth was equal to 1.36. The load sensor was mounted
in the middle of the rigid I-girder, which distributed the load across the I-girder. Before
the load was lower than 70% of the matching predicted maximum capacity, it was being
loaded at a rate of 0.5 kN/s. After that, the loading method adjusted the speed of the
displacement control to be 0.5 mm/min. When the midspan displacement reached 1/200 of
the effective span, the experiment was ended. To measure the vertical deflection, five linear
variable differential transducers (LVDTs) with deformation limits of 50 mm were attached
at the support, load sections, and midspan. In order to eliminate the effect of support
displacements, the vertical deflection of test beams was computed using Formula (2).

δai = δmi −
(δm1 + δm5)

2
, i = 2, 3, 4, (2)

where δai is the vertical deflection of test beam in mm, δai is the vertical displacement
measured at sections of test beam in mm, and δm1 and δm5 are the displacements measured
at the left and right support in mm, respectively.
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Figure 2. Experiment setup and instrumentation (unit: mm).

To analyze the stress condition of the rectangular steel tube during the test, eight
and twelve strain gauges were, respectively, positioned in the midspan of the test beam
without stiffeners and with stiffeners. The test beam without stiffeners and with stiffeners’
sketch map as shown in Figure 3. Using a steel ruler with a 200 mm range, the relative
movement between the outside rectangular steel tube and the infill HSFRC was measured.
The acquisition system simultaneously displayed all corresponding data.
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3. Test Results and Discussions
3.1. Failure Modes

The typical modes of failure for HSFRCFST beams are illustrated in Figure 4. Each
of the specimens appeared to have two buckling failure modes on the upper surface and
exhibited some ductility when loaded. When the specimen’s applied load reached 20–30%
of its maximum capacity, the specimen emitted a slight abnormal noise that gradually
diminished and became intermittent. It is believed that a local bond failure occurred
between the exterior steel plate and the infill HSFRC. On the compression surface of
the rectangular steel tube, a few wrinkles appeared as the applied load approached its
maximum. The vertical deflection was minimal due to the significant bending stiffness of
HSFRCFST beams. Compared to HSFRCFST beams stiffened with a steel plate or without
stiffeners, where the relative slippage between the outside rectangular steel tube and the
infill HSFRC was greater than 6 mm, the relative slip of HSFRCFST beams stiffened with
perfobond stiffeners was negligible (i.e., 1 mm).

As shown in Figure 4, local buckling of the outside rectangular steel tube at the
midspan of the HSFRCFST beam stiffened with perfobond plates. The welded seam on the
compression face of a test beam stiffened with steel plate stiffeners or without stiffeners was
torn and damaged, and the buckling of the exterior rectangular steel tube was insignificant.
This illustrates that the failure modes of HSFRCFST beams are significantly affected by the
type of internal stiffener used. In contrast, the failure modes were not noticeably impacted
by either the compression grade of infill HSFRC or the inclusion of steel fibers.

Local buckling of the upper surface was seen in the center of the stiffeners, as depicted
in Figure 5 regarding the appearance of the midspan section. The stiffeners effectively
restricted the growth of local buckling along the upper edge. In the absence of a stiffener,
the upper edge of the HSFRCFST beam buckled outward along its entire length.

Following the loading test, the outside rectangular steel tube was cut away using an
oxygen–acetylene flame in order to inspect and assess the damage to the infill HSFRC. The
infill HSFRC that corresponded to the buckling of steel tubes was crushed. Figure 6 depicts
the tensile side appearances of infill HSFRC on some of the test beams with perfobond
stiffeners. The cracks of the internal infill HSFRC were not penetrated, and the crack
spacing was roughly equivalent to the circular hole spacing of perfobond stiffeners. It is
speculated that the concrete dowel in the perfobond stiffeners contributed to the stiffener’s
stress and was in a complex state of stress. This indicates that a concrete dowel can reliably
transmit the force of an exterior rectangular steel tube through perfobond stiffeners. The
presence of steel fibers in infill HSFRC had a negligible impact on crack spacing. It is
essential to point out that the steel fibers at the crack were extracted whole and undamaged.
This confirms that steel fibers with tensile strengths of more than 600 MPa were adequate
for HSFRCFST beams subjected to pure bending.
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From the experimental results obtained after loading, it can be seen that compared
with ordinary steel plate stiffeners, perforated steel plate stiffeners reduced the occurrence
of local cracks and delay the development of cracks. This was due to the significant en-
hancement of the combination effect between steel tubes and infilled concrete by perfobond
stiffeners, which improved the overall performance of rectangular HSFRCFST with stiffen-
ers. This combination effect helped to distribute the load more evenly in the beam, thereby
reducing the risk of local stress concentration and minimizing the occurrence of local cracks
of infilled concrete.
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3.2. Vertical Deflection Curves

Figure 7 depicts the experimentally determined curves of vertical deflection along the
length. While the development of vertical displacement at various points along the span is
essentially synchronous for initial loads, for higher load levels, the vertical deflection at
midspan develops dramatically, while that at other points grows uniformly. At every load
level, the predicted values of the half-sine curve closely match the experimental values.
The vertical displacement curve can therefore be expressed using a Formula (3).
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y = δa3sin
π

le
x (3)

where le is the span length between the HSFRCFST beam’s centerline in mm, which is set to
1000 mm in this experiment; δa3 is the vertical displacement at the span’s center in mm. The
section curvature (φ) of the HSFRCFST beam can be obtained by a second-order derivative.
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φ = δa3

(
π

le

)2
sin

π

le
x (4)

In Formula (4), the midspan section curvature (φm) can be obtained when x is equal
to le/2.

φm = δa3

(
π

le

)2
(5)

3.3. Moment–Curvature Behavior

The curves of the midspan moment (M)–curvature (φm) of HSFRCFST beams are
shown in Figure 8. Formula (6) was used to calculate the midspan moment M values.

M =
1
2

Pa (6)

where P represents the applied force measured in kN and a represents the shear span of the
HSFRCFST beam (250 mm in this experiment).

Buildings 2024, 14, x FOR PEER REVIEW 11 of 19 
 

0 250 500 750 1000

7

6

5

4

3

2

1

0

le (mm)

δ u
 (m

m
)

0.2Mu 0.4Mu 0.6Mu 0.8Mu

0.95Mu Half-sine curve
 

0 250 500 750 1000

9

8

7

6

5

4

3

2

1

0

le (mm)

δ u
 (m

m
)

0.2Mu 0.4Mu 0.6Mu 0.8Mu

0.95Mu Half-sine curve
 

(i) SS-0-SC80/1.2 (j) NS-0-SC80/1.2 

Figure 7. Deflection curves of the experimentally obtained values along the length (unit: mm). 

3.3. Moment–Curvature Behavior 
The curves of the midspan moment (M)–curvature (φm) of HSFRCFST beams are 

shown in Figure 8. Formula (6) was used to calculate the midspan moment M values. 𝑀 = 12 𝑃𝑎 (6) 

where P represents the applied force measured in kN and a represents the shear span of 
the HSFRCFST beam (250 mm in this experiment). 

0.00 0.02 0.04 0.06 0.08
0

55

110

165

220

275

M
 (k

N
·m

)

φm (m-1)

PS-120-SC80/1.2
PS-90-SC80/1.2
PS-60-SC80/1.2
PS-60-SC80/0.8
PS-60-SC80/1.6
PS-60-SC50/1.2
PS-60-SC60/1.2
PS-60-CC80/0
SS-0-SC80/1.2
NS-0-SC80/1.2

 
Figure 8. Midspan moment (M)–curvature(φm) curves of HSFRCFST beams. 

The flexural capacity of HSFRCFST beams was obtained with the exception of the 
premature failure of PS-60-SC80/1.2 due to end weld cracking. Due to the significant bend-
ing stiffness, these curves have a linear climbing portion, a softening part, and no apparent 
falling segment once the moment capacity is reached. Table 3 lists the bearing properties 
of HSFRCFST beams. 

  

Figure 8. Midspan moment (M)–curvature (φm) curves of HSFRCFST beams.

The flexural capacity of HSFRCFST beams was obtained with the exception of the
premature failure of PS-60-SC80/1.2 due to end weld cracking. Due to the significant
bending stiffness, these curves have a linear climbing portion, a softening part, and no
apparent falling segment once the moment capacity is reached. Table 3 lists the bearing
properties of HSFRCFST beams.
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Table 3. Test results of the beams.

Identifier δu
(mm)

Bsi
(kN·m2)

Bss
(kN·m2)

Pu
(kN)

Mc,t
(kN·m)

Mc,c
(kN) Mc,t/Mc,c

PS-120-SC80/1.2 3.0 8588.2 8035.9 1189.8 148.7 -- --
PS-90-SC80/1.2 5.6 11,683.6 10,483.7 1952.2 244.0 252.9 0.965
PS-60-SC80/1.2 5.5 11,445.4 10,921.3 2020.4 252.6 250.2 1.010
PS-60-SC80/0.8 4.8 12,976.9 11,812.2 2103.2 262.9 250.3 1.050
PS-60-SC80/1.6 5.7 12,713.3 12,062.6 2148.8 268.6 260.0 1.033
PS-60-SC50/1.2 4.6 9687.5 9373.0 1698.7 212.3 208.3 1.019
PS-60-SC60/1.2 5.1 11,119.6 10,121.1 1806.8 225.9 231.2 0.977
PS-60-CC80/0 5.2 11,666.6 10,958.9 1959.0 244.9 246.4 0.994
SS-0-SC80/1.2 6.6 11,594.0 10,323.6 1925.5 240.7 252.7 0.953
NS-0-SC80/1.2 7.6 9000.8 8257.6 1614.8 201.9 -- --

3.4. Subsection

Bending stiffness is a crucial criterion for evaluating the local buckling behavior
and elastic deformation capacity of CFST beams. In this section, the bending stiffness of
HSFRCFST beams is calculated using moment–curvature curves at the midspan. According
to Table 3, secant stiffness at 0.2 Mmax is used to establish the initial bending stiffness (Bsi),
while secant stiffness at 0.6 Mmax is used to define the serviceability bending stiffness
(Bss). As shown in Table 4, many prediction formulas for the bending stiffness of CFST
members have been proposed in existing codes and regulations. Table 5 and Figure 9
show the predicted values for the bending stiffness of the test beam based on current
codes and regulations. Prediction values B1, B2, B3, B4, B5, and B6 correspond to the codes
GB50936 (2014), DBJ/T13-51-2010 [62], AIJ-SRC (2001) [63], AISC-360 (2016) [64], Euro-
code4 (2004) [65], and BS5400 (2005) [66], respectively. B1/Bsi, B2/Bsi, B3/Bsi, B4/Bsi, B5/Bsi,
and B6/Bsi have mean values of 1.171, 0.967, 0.612, 0.976, 0.893, and 1.099, respectively, and
standard deviations of 0.161, 0.139, 0.099, 0.140, 0.127, and 0.178. B1/Bss, B2/Bss, B3/Bss,
B4/Bss, B5/Bss, and B6/Bss have average values of 1.263, 1.043, 0.661, 1.053, 0.963, and 1.187,
with standard deviations of 0.170, 0.149, 0.108, 0.150, 0.136, and 0.194, respectively. All
existing codes and regulations, with the exception of AIJ-SRC (2001) and Euro-code4 (2004),
provide dangerous forecasts for serviceability bending stiffness. The overestimation of the
reinforcement effect of infilled concrete by codes and regulations can also be explained.
As a result, Euro-code 4 (2004) can predict the bending stiffness of HSFRCFST beams
for serviceability.
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Table 4. Prediction formulae for bending stiffness.

Code Number Recommended Formula Elastic Modulus Value

GB50936 (2014) Bs = EcIc + EsIs Es = 205,800 MPa; Ec = 100,000/(2.2 + 34.7/ fcu) MPa
DBJ/T13-51-2010 Bs = EcIc + 0.8EsIs Es = 206,000 MPa; Ec = 4700

√
fc MPa

AIJ-SRC (2001) Bs = EcIc + 0.2EsIs Es = 205,800 MPa; Ec = 21,000
√

fc/19.6 MPa
AISC-360 (2016) Bs = EcIc + 0.85EsIs Es = 210,000 MPa; Ec = 4700

√
fc MPa

Europe 4 (2004) Bs = EcIc + 0.6EsIs Es = 206,000 MPa; Ec = 22,000( fc/10)0.3 MPa
BS5400 (2005) Bs = EcIc + EsIs Es = 206,000 MPa; Ec = 450 fcu MPa

Table 5. Prediction values for bending stiffness of the test beam (unit: kN·m2).

Identifier B1 (kN·m2) B2 (kN·m2) B3 (kN·m2) B4 (kN·m2) B5 (kN·m2) B6 (kN·m2)

PS-120-SC80/1.2 13,010.0 11,001.1 7095.9 11,103.5 10,028.0 12,994.9
PS-90-SC80/1.2 12,751.1 10,414.7 6504.1 10,517.2 9646.9 11,639.6
PS-60-SC80/1.2 12,720.7 10,354.2 6443.0 10,456.6 9606.5 11,511.6
PS-60-SC80/0.8 12,960.8 10,881.0 6974.7 10,983.4 9951.2 12,693.7
PS-60-SC80/1.6 12,925.2 10,797.6 6890.6 10,900.0 9897.6 12,490.4
PS-60-SC50/1.2 12,258.4 9597.5 5679.4 9700.0 9085.3 10,058.3
PS-60-SC60/1.2 12,481.1 9915.0 5999.8 10,017.5 9308.1 10,660.7
PS-60-CC80/0 12,947.8 10,847.8 6941.2 10,950.2 9929.9 12,618.4
SS-0-SC80/1.2 13,044.4 11,086.8 7182.5 11,189.3 10,082.4 13,220.8
NS-0-SC80/1.2 12,214.1 10,207.6 6802.1 10,297.0 9500.1 11,687.7

As shown in Table 3, the Bsi values of PS-60-CC80/0, PS-60-SC80/0.8, PS-60-SC80/1.2,
and PS-60-SC80/1.6 beams with the same stiffener are 11,666.6 kN·m2, 12,976.9 kN·m2,
11,445.4 kN·m2, and 12,713.3 kN·m2, respectively. In comparison to the infill conventional
concrete with HSFRC, the infill HSFRC with steel fiber volume percentages of 0.8%, 1.2%,
and 1.6% increased Bsi by 11.2%, −1.9%, and 9.0%, respectively, while Bss improved by 7.8%,
−0.3%, and 10.1%. These results indicate that steel fiber can enhance bending stiffness to a
certain degree. When the steel fiber volume percentage exceeded 0.8%, the enhancement
effect became negligible. Adding steel fibers can bridge the matrix of concrete to eliminate
internal cracks and transmit stress, thereby sharing the load with uncracked concrete. When
the steel fiber content increase, the bonding area between steel fibers and concrete matrix
will relatively decrease, and the spacing between steel fibers will also decrease, which will
lead to a decrease in bonding strength and weaken the reinforcing effect of steel fibers on
concrete, affecting the performance of beams. When the steel fiber content increases to
the threshold, the reinforcing effect of steel fibers will be limited due to factors such as
dispersion uniformity and bonding strength.

The Bsi of PS-60-SC50/1.2, PS-60-SC60/1.2, and PS-60-SC80/1.2 HSFRCFST beams
with the same steel fiber volume fraction and stiffener type, as seen in Table 3, are
9687.5 kN·m2, 11,119.6 kN·m2, and 11,445.4 kN·m2, respectively. In comparison to PS-
60-SC50/1.2 with the desired compressive strength grade of 50 MPa, PS-60-SC60/1.2 with
the target compressive strength grade of 60 MPa, and PS-60-SC80/1.2 with the desired
compressive strength grade of 80 MPa, Bsi increased by 14.8% and 18.2%, respectively.
These findings demonstrate that the bending stiffness of HSFRCFST beams is significantly
impacted by the compressive strength of the infill HSFRC.

According to Table 3, the Bsi values for PS-120-SC80/1.2, PS-90-SC80/1.2, and PS-60-
SC80/1.2 are 8588.2 kN·m2, 11,683.6 kN·m2, and 11,445.4 kN·m2, respectively, based on
the equivalent compressive strength and steel fiber volume fraction of the infill HSFRC.
In contrast to the Bsi of PS-120-SC80/1.2, the Bsi of PS-90-SC80/1.2 and PS-60-SC80/1.2
increased by 36.0% and 33.3%, respectively, while the Bss increased by 30.5% and 35.9%. It
is worth noting that PS-60-SC80/1.2 has a higher bending stiffness than its counterparts
when the distance between the circular holes is two or three times the diameter. To achieve
a higher bending stiffness, the distance between circular holes in HSFRCFST beams with
perfobond stiffeners can be two or three times the diameter. In addition, additional circular
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concrete dowels reinforce the joint action between the exterior rectangular steel tubes and
the infill HSFRC, delaying the buckling of the exterior steel tubes.

As shown in Table 3, the Bsi values of PS-90-SC80/1.2, SS-0-SC80/1.2, and NS-0-
SC80/1.2 HSFRCFST beams with the equivalent compressive strength and steel fiber
content of the infill concrete are 11,683.6 kN·m2, 11,594.0 kN·m2, and 9000.8 kN·m2, respec-
tively. In comparison to PS-90-SC80/1.2 with a perfobond stiffener, SS-0-SC80/1.2 with a
steel plate stiffener, and NS-0-SC80/1.2 without a stiffener, Bsi was reduced by 0.8% and
23.0%, respectively, while Bss was reduced by 1.5% and 21.2%. The type of stiffener has a
substantial impact on the bending stiffness, and a perfobond stiffener can greatly increase
the bending stiffness of HSFRCFST beams.

3.5. Moment Capacity

The value of the moment capacity (Mc,t) is expressed using Formula (6) and presented
in Table 3. Figure 10 displays the relationship between the moment capacity of HSFR-
CFST beams and the strength grade of infill HSFRC. The moment capacity of HSFRCFST
beams rose linearly with infill concrete’s compressive strength. When PS-60-SC80/1.2 was
compared to PS-60-SC50/1.2, the responding growth rate was 38.1% for infill concrete’s
compressive strength and 19.0% for moment capacity. According to the experimental find-
ings, the moment capacity is significantly affected by the strength grade of the infill HSFRC.
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Mu/fscωsc is utilized to remove the impact of infill concrete compressive strength and
cross-sectional dimensions on the ultimate load. Figure 11 depicts the response change as
the amount of steel fiber rose. The average nominal strength fsc and rectangular section
modulus ωsc are determined using Formula (7) and Formula (8), respectively.

fsc = fc(0.07θ + 1.92) (7)

ωsc =
bh2

6
(8)

where h and b denote the height and width, respectively, of the rectangular section of the
HSFRCFST beams.

Using the same strength grade of infill HSFRC, the moment capacity of HSFRCFST
beams increases approximately linearly when steel fiber content varies from 0% to 1.6%
by volume. It is easier to increase moment capacity when the steel fiber percentage in the
research range is 1.2%. This is the amount of steel fiber recommended for use. As the
strength grade of the infill HSFRC decreases, the confinement index increases significantly;
consequently, the enhancement effect of the moment capacity is improved to some extent.

Based on the analysis of the flexural capacity and the calculation formula proposed by
China code GB 50936, the moment capacity of HSFRCFST beams was correlated with the
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strength grade of infill HSFRC, the confinement coefficient, rectangular section modulus,
and volume percentage of steel fiber, and could be predicted as follows:

Mu = γmωsc fsc (9)

γm = −5.449 + 3.884v f − 8.067θ + 15.085
√

θ (10)

where γm denotes the plastic development coefficient of the HSFRCFST beams with a
rectangular cross-section.
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Table 3 shows the flexural capacity according to Formula (9). The mean value of
My/Mc is 1, and the standard deviation is 0.034. This provides support for the idea that
the suggested formula may be utilized to reliably determine the flexural capacity of HSFR-
CFST beams.

3.6. Ductility Index

The CFST beam’s deformation performance is commonly quantified using the ductility
index (DI), which can be determined using the following Formula (11).

DI =
δu − δhy

δhy
(11)

δhy =
fy
(
3l2

e − 4a2)
12Esh

(12)

where δu is the maximum vertical displacement of the test beams. The calculated DI is
presented in Table 6. Except for the PS-120-SC80/1.2’s premature failure, all DI range from
1.16 to 2.57. The results indicate that all of the test beams exhibit excellent ductility.

Table 6. The ductility index and rotational capacity.

Identifier δhy (mm) δu (mm) DI θlimit θp Rc

PS-120-SC80/1.2 2.13 3 0.41 0.018850 0.002598 6.26
PS-90-SC80/1.2 2.13 5.6 1.63 0.035186 0.003133 10.23
PS-60-SC80/1.2 2.13 5.5 1.58 0.034558 0.003310 9.44
PS-60-SC80/0.8 2.13 4.8 1.25 0.030159 0.003039 8.92
PS-60-SC80/1.6 2.13 5.7 1.68 0.035814 0.003169 10.30
PS-60-SC50/1.2 2.13 4.6 1.16 0.028903 0.003288 7.79
PS-60-SC60/1.2 2.13 5.1 1.39 0.032044 0.003047 9.52
PS-60-CC80/0 2.13 5.2 1.44 0.032673 0.003148 9.38
SS-0-SC80/1.2 2.13 6.6 2.10 0.041469 0.003114 12.32
NS-0-SC80/1.2 2.13 7.6 2.57 0.047752 0.003364 13.20
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3.7. Rotational Capacity

The concrete-filled steel tubular beam must have a rotational capacity (Rc) greater than
3.0, as specified in code AISC-360(2016). According to the analyses in Sections 3.2 and 3.3,
there is no softening stage in the moment–curvature curves of the test beams, and the
vertical displacement curves can be predicted by the half-sine curve. Consequently, the
maximum rotation φmax can be used as the limit rotation φlimit, and the Rc can be expressed
by Formula (13).

Rc =
φlimit − φp

θp
(13)

φp =
Pa(l e − a)

2Bi
(14)

φlimit = φmax =
2δuπ

le
(15)

where δu is the maximum vertical displacement of the test beams.
Table 6 contains the calculated Rc value. Rc ranges from 6.26 to 13.20, which is greater

than 3.0. All of the test beams have sufficient rotational capacity to meet the specifications,
as shown by the experimental results.

4. Conclusions

Under pure bending, ten rectangular HSFRCFST beams with stiffeners were investi-
gated experimentally. Based on the experimental data, we can infer the following:

• The bending stiffness and moment capacity of HSFRCFST beams increase when
subjected to pure bending by incorporating steel fiber into the infill concrete. When
the steel fiber volume percentage is 1.2%, a significant effect can be obtained. The
infill HSFRC with steel fiber volume percentages of 0.8%, 1.2%, and 1.6% increases
the initial bending stiffness by 11.2%, −1.9%, and 9.0%, respectively. As the steel
fiber content increases, the ductility index of the beam also increases. The failure
mode of HSFRCFST beams is not drastically changed by the presence of steel fiber.
The compressive strength of infill concrete affects the moment capacity and bending
stiffness but has a negligible effect on the failure modes.

• The type of stiffener modifies the failure modes of HSFRCFST beams when subjected
to pure bending. In comparison to HSFRCFST beams with perfobond stiffener, steel
plate stiffener, and without stiffener, the initial bending stiffness is reduced by 0.8%
and 23.0%, respectively. The circular hole spacing in perfobond stiffeners may manage
the crack spacing of the infill concrete on the tension side, as well as improve the
bending stiffness and moment capacity of HSFRCFST beams, and its works optimally
with the infill concrete when it is two to three times the diameter.

• The bending stiffness of HSFRCFST beams for serviceability can be predicted using
Euro-code 4 (2004). The flexural capacity of HSFRCFST beams can be reliably predicted
by the proposed formula. The ductility and rotational capacity of HSFRCFST beams
are sufficient for engineering applications.

• Rectangular HSFRCFST beams with stiffeners have good ductility and rotational
capacity, which can increase the moment capacity and reduce the member section
size. When reinforcing rebars are replaced with ribs, steel tubes, and steel fibers, the
engineering expense of HSFRCFST beams is comparable to or somewhat higher than
that of ordinary concrete members.
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