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Abstract: This paper shows the optimal cost design for T-shaped combined footings of reinforced
concrete (RC), which are subjected to biaxial bending in each column to determine the steel areas
and the thickness of the footings assuming a linear distribution of soil pressure. The methodology
used in this paper is as follows: First, the minimum contact surface between the footing and the
ground is investigated. The design equations for the combined footing are then used to determine
the objective function and its constraints to obtain the lowest cost, taking into account the ACI code
requirements. Flowcharts are shown for the lowest cost and the use of Maple 15 software. The current
model for design is developed as follows: A footing thickness is proposed, and then it is verified
that the thickness complies with the effects produced by moments, bending shears, and punching
shears. Furthermore, four numerical examples are presented under the same loads and moments
applied to each column, with different conditions applied to obtain the optimal contact surface and
then the minimum cost design. The results show that the optimal cost design (lowest cost) is more
economical and more accurate than any other model, and there is no direct proportion between the
minimum contact surface and lowest cost for the design of T-shaped combined footings. In this
way, the minimum cost model shown in this work can be applied to the design of rectangular and
T-shaped combined footings using optimization techniques.

Keywords: optimal design; T-shaped combined footings; minimum cost; optimal contact surface

1. Introduction

Optimization is based on mathematically modeling the main characteristics that define
the qualities of engineering problems and then, using an algorithm or mathematical model
and with the help of a computer, finding the optimal solution.

Mathematical models for structure foundations have aroused great interest among
researchers. The main contributions to the optimal design of RC foundations are as follows:
Vrecl-Kojc presented an optimization method for anchored pile walls and the impacts of sev-
eral parameters on costs using a nonlinear programming approach [1]. Wang and Kulhawy
studied a design including construction economics, and their results presented foundations
with minimal construction costs [2]. Kortnik optimized the planning procedure for high-
security pillars for subterranean excavation of natural rock blocks [3]. Wang investigated a
design perspective that includes economic design optimization with reliable methodologies
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developed to act rationally in the face of geotechnically related uncertainties [4]. Chagoyén
et al. estimated the optimal design for foundations considering the minimum cost crite-
rion [5]. Basudhar et al. proposed an optimal cost for a circular footing under generalized
loads using the unconstrained sequential minimization technique together with Powell’s
conjugate direction method [6]. Rizwan et al. presented a computational procedure to find
the optimal cost design for RC combined footings (minimum cost); the software they used
is based on the application of the Visual Basics Net programming language to develop the
structural analysis, design, and optimization of the combined footings [7]. Jagodnik et al.
reviewed the deformation of a Winkler’s soil-supported beam using Bernoulli theory via
the mixed finite element method [8]. Al-Ansari formulated a model to estimate the optimal
cost design for RC isolated footings by applying the design constraints of the ACI building
code [9]. Jelusic and Zlender estimated an optimized model to obtain the safety factors of
walls with different inclinations, the terrain slope angle, the length of the nails, and the
diameter of the bore [10]. Al-Ansari presented an analysis and optimal cost design for
casing footings with different proportions according to the ACI design code to minimize the
cost of a foundation [11]. Sadoğlu studied an optimization problem on symmetrical gravity
retaining walls of different heights for continuous functions [12]. El-Sakhawy et al. pre-
sented different foundation shapes that resemble the distribution of footing stresses on the
underlying soft soils to minimize their effect; they used elliptical, trapezoidal, and inverted
folded foundations as alternatives to conventional shallow flat footings [13]. Ukritchon
and Keawsawasvong presented a practical method to optimize the design of a continuous
footing under vertical and horizontal loads; their design problem, which was to estimate the
optimal dimension of the footing and the minimum amount of reinforcing steel required,
was formulated in a nonlinear minimization form [14]. Velázquez-Santillán et al. estimated
an optimal cost design for RC rectangular combined footings [15]. Luévanos-Rojas et al.
formulated a model to obtain the minimum dimensions and the equations for design of
RC T-shaped combined footings [16,17]. Nigdeli et al. presented a methodology based on
the cost optimization of RC footings by employing several classical algorithms recently
developed to address non-linear optimization problems [18]. Islam and Rokonuzzaman
developed an optimized foundation design process using genetic algorithms; the objective
function of these algorithms is the reduction of construction costs, which include design
parameters and design requirements such as optimization variables and constraints [19].
Using Excel, Rawat and Mittal studied a solution-based model which aims to provide a
procedure that reduces construction costs by simultaneously integrating design parameters
and requirements as optimization variables and constraints, respectively [20]. Chaudhuri
and Maity estimated the optimal cost for an isolated foundation as per Indian Standard
(IS) Code 456:2000 [21]. Nawaz et al. used a generalized reduced gradient method for the
optimal cost design of isolated footings in cohesive soils [22]. Waheed et al. presented
a parametric study using a practical metaheuristic tool for the optimal cost design of
RC isolated footings [23]. Nigdeli and Bekdas investigated the orientation of a column
located eccentrically with respect to the center of the footing in an optimal design [24].
Kashani et al. estimated the optimal cost design for combined footings using five swarm
intelligence algorithms: particle swarm optimization (PSO), accelerated particle swarm
optimization (APSO), whale optimization algorithm (WOA), ant lion optimizer (ALO),
and moth flame optimization (MFO) [25]. Aishwarya and Balaji analyzed and designed a
corner combined footing for eccentrically loaded rectangular columns which transfers the
center of gravity of the loads to the center of gravity of the footing [26]. López-Machado
et al. performed a comparison of the structural designs of two six-story RC buildings
considering the soil–structure interaction [27]. Komolafe et al. studied square and circular
footings resting on non-cohesive soils from geotechnical, structural, and construction cost
perspectives [28]. Ekbote and Nainegali investigated asymmetrical close-spaced footings
supported on reinforced soil [29]. Solorzano and Plevris formulated an optimal cost design
for rectangular footings using genetic algorithms according to the American Concrete
Institute (AC() design code [30]. Chaabani et al. analyzed the ultimate bearing capacity of
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continuous footings on a reinforced sand layer over clay with voids [31]. Gnananandarao
et al. performed several loading tests of a T-shaped skirted footing by varying the skirt
depth and the relative sand density [32]. Shaaban et al. investigated a general equation
to determine the maximum pressure at the base of a trapezoidal and triangular footing
under biaxial bending [33]. Al-Ansari and Afzal investigated a simplified analysis for the
design of square, triangular, circular and trapezoidal reinforced concrete footings support-
ing a square column under biaxial bending [34]. Ranadive and Mahiyar experimentally
studied several tests of T-shaped footings subjected to dynamic loading [35]. Khare and
Thakare determined the ultimate bearing capacity of T-shaped footings assuming that the
soil beneath the foundations is homogeneous [36]. Sivanantham et al. determined the
influence of the filling in an RC frame supported on slopes subjected to lateral loads [37].
Helis et al. obtained the bearing capacity of circular footings rested on sandy soils using
two reinforcement systems, the grid and the geogrid anchor [38].

After reviewing of the literature, there were two works closest to the topic of T-shaped
combined: Luévanos-Rojas et al. developed a model to estimate the smallest contact area
with the ground and the dimensions of the footing [16]. Luévanos-Rojas et al. presented the
equations for the design of RC T-shaped combined footings [17]. These works do not show
the complete minimum cost design. That is, only the equations for the design are presented,
and the methodology by integration is presented to then determine the integration constant.
The solved examples are obtained by trial and error, and this does not guarantee that it is
the minimum cost design. Therefore, there are no works on the subject with the current
knowledge on structural design to optimize RC T-shaped combined footings.

This paper presents the optimal cost design of RC T-shaped combined footings under
biaxial bending at each column to obtain the thicknesses and steel areas of the footings.
This paper shows the objective function and constraint functions for the design of T-shaped
combined footings. The current design model is developed as follows: the thickness of
the footings is proposed, and then it is verified that the thickness complies with the effects
produced by moments, bending shears and punching shears. In addition, four numerical
examples are presented under the same loads and moments applied on each column with
different conditions to obtain the optimal contact surface and then the optimal cost design
of RC T-shaped combined footings to observe the accuracy of the optimal model shown in
this paper.

2. Mathematical Models

The paa (available allowable ground pressure) is estimated by the following equa-
tion [16,17]:

paa = pa − γw f − γws, (1)

paa = pa − γcd(d + r)− γsd(H − d − r), (2)

where: pa = allowable ground pressure (kN/m2), γwf = footing weight (kN/m2), γws = weight
of soil fill (kN/m2), γsd = soil density (kN/m3), γcd = concrete density = 24 kN/m3, H = depth
of the foundation measured from the base of the foundation to the free surface of the soil (m),
r = coating of the foundation (m), d = effective depth of foundation (m).

If the load combinations include earthquake and/or wind, the allowable soil pressure
should be increased by 33% [39].

Figure 1 shows a T-shaped combined footing supporting two rectangular columns of
various dimensions (one interior column and one boundary column) under biaxial bending
(two-way bending) at each column.
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Figure 1. T-shaped combined footing that assumes a linear distribution of soil pressure.

Table 1 presents the pressure coordinates at each vertex of the footing (X and Y axes).

Table 1. Coordinates of the pressures on the footing for longitudinal analysis.

Pressures
pn (kN/m2) p1 p2 p3 p4 p5 p6 p7 p8

Coordinates
x1 = a/2 x2 = −a/2 x3 = a/2 x4 = b2/2 x5 = −b2/2 x6 = −a/2 x7 = b2/2 x8 = −b2/2
y1 = yt y2 = yt y3 = yt − b1 y4 = yt − b1 y5 = yt − b1 y6 = yt − b1 y7 = −yb y8 = −yb

Table 2 shows the coordinates of the pressures at each vertex of the footing due to
column 1 (X1 and Y1 axes), and the coordinates of the pressures at each vertex of the footing
due to column 2 (X2 and Y2 axes).

Table 2. Coordinates of the pressures on the footing for the cross-sectional analysis.

Pressures
pn (kN/m2)

Pressures Due to P1
pn (kN/m2)

Pressures Due to P2
pn (kN/m2)

p1 p2 p9 p10 p11 p12 p13 p14

Coordinates x1 = a/2 x2 = −a/2 x9 = a/2 x10 = −a/2 x11 = b2/2 x12 = −b2/2 x13 = b2/2 x14 = −b2/2
y1 = w1/2 y2 = w1/2 y9 = −w1/2 y10 = −w1/2 y11 = w2/2 y12 = w2/2 y13 = −w2/2 y14 = −w2/2

2.1. Minimum Contact Surface

In this subsection, it is assumed that the ground contact area works completely under
compression to determine the smallest area.

The objective function to determine the minimum contact surface with the ground
“Smin” is as follows [16]:

Smin = (a − b2)b1 + bb2. (3)

The constraint functions are

pn =
R
S
+

MxTyn

Ix
+

MyTxn

2Iy
, (4)

R = P1 + P2, (5)

MxT = Mx1 + Mx2 + R
(

yt −
c2

2

)
− P2L, (6)
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MyT = My1 + My2, (7)

yt =
(a − b2)b1

2 + b2b2

2S
, (8)

yb =
(2b − b1)(a − b2)b1 + b2b2

2S
, (9)

Ix =
a2b1

4 + 2ab1b2(b − b1)
(

2b2 − bb1 + b1
2
)
+ b2

2(b − b1)
4

12S
, (10)

Iy =
b1a3 + (b − b1)b2

3

12
, (11)

0 ≤



p1
p2
p3
p4

p5
p6
p7
p8


≤ paa, (12)

c2

2
+ L +

c4

2
≤ b, (13)

where R = resultant force (kN); MxT and MyT = resultant moments about the X and Y axes
(kN-m); xn and yn = coordinates of the point under study (m); Ix and Iy = moments of
inertia about the X and Y axes (m4).

2.2. Minimum Cost Design

In this subsection, it is assumed that the contact area on the soil is known (Section 2.1)
to obtain the lowest design cost due to the moments, bending shears and punching shears
acting on the footing.

The factored soil pressures anywhere on the contact surface of the footing due to the
factored load and the factored moments for the T-shaped combined footing are obtained as
shown below.

The pressure in the main direction (Y axis) is

pu(x, y) =
Ru

S
+

MuxTy
Ix

+
MuyTx

Iy
, (14)

where Ru = factored resultant force, MuxT and MuyT = factored resultant moments in two
directions (X and Y).

The pressure in the transverse direction to the main direction (X1 axis) is

puP1(x1, y1) =
Pu1

w1a
+

12[Mux1 + Pu1(w1 − c2)/2]y
w1

3a
+

12Muy1x
w1a3 , (15)

where w1 = width of analysis surface for column 1 of w1 = c2 + d/2, Pu1 = factored axial
load in column 1, Mux1 = factored moment in X1 axis of column 1, Muy1 = factored moment
in Y1 axis of column 1.

The pressure in the transverse direction to the main direction (X2 axis) is

puP2(x2, y2) =
Pu2

w2b2
+

12[Mux2 + Pu2(w2 − c4)/2]y
w23b2

+
12Muy2x

w2b2
3 , (16)

where w2 = width of analysis surface for column 2 in the transverse direction of w2 = c4
+ d/2 + v (if d/2 ≤ v → v = d/2, and if d/2 ≥ v → v = b − L − (c2 + c4)/2), Pu2 = factored
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axial load in column 2, Mux2 = factored moment in X2 axis of column 2, Muy2 = factored
moment in Y2 axis of column 2.

2.2.1. Moments

The factored moments according to the ACI code are shown on the axes: a, b, c, d, e, f
and g (see Figure 2).
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The factored moments applied to the footing on axes a and b (axes parallel to the Y
axis) are obtained:

Mua = −
∫ w1

2

− w1
2

∫ a
2

c1
2

puP1(x1, y1)
(

x − c1

2

)
dxdy, (17)

Mua = −Pu1(a − c1)
2

8a
−

Muy1(2a + c1)(a − c1)
2

4a3 , (18)

Mub = −
∫ w2

2

− w2
2

∫ b2
2

c3
2

puP2(x2, y2)
(

x − c3

2

)
dxdy, (19)

Mub = −Pu2(b2 − c3)
2

8b2
−

Muy2(2b2 + c3)(b2 − c3)
2

4b2
3 . (20)

The factored moments acting on the footing on the axes c, d, e, f and g (axes parallel to
the X axis) are obtained:

Muc =
Pu1c2

2
+ Mux1 −

∫ yt

yt−c2

∫ a
2

− a
2

pu(x, y)(y − yt + c2)dxdy, (21)

Mud = Pu1

(
b1 −

c2

2

)
+ Mux1 −

∫ yt

yt−b1

∫ a
2

− a
2

pu(x, y)(y − yt + b1)dxdy. (22)
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If the maximum positive moment Mue is located in the interval yt − c2/2 ≥ ym ≥ yt − b1:

Mue = Pu1

(
yt − ym − c2

2

)
+ Mux1 −

∫ yt

ym

∫ a
2

− a
2

pu(x, y)(y − ym)dxdy, (23)

If the maximum positive moment Mue is located in the interval yt − b1 ≥ ym ≥ yt − L
− c2/2:

Mue = Pu1(yt − ym − b1) + Mux1 −
∫ yt

yt−b1

∫ a
2

− a
2

pu(x, y)(y − ym)dxdy −
∫ yt−b1

ym

∫ b2
2

− b2
2

pu(x, y)(y − ym)dxdy, (24)

Mu f = Pu1
(

L − c4
2
)
+ Mux1 −

∫ yt
yt−b1

∫ a
2
− a

2
pu(x, y)

(
y − yt + L + c2

2 − c4
2
)
dxdy

−
∫ yt−b1

yt−L− c2
2 +

c4
2

∫ b2
2

− b2
2

pu(x, y)
(
y − yt + L + c2

2 − c4
2
)
dxdy,

(25)

Mug = Pu1
(

L + c4
2
)
+ Pu2c4

2 + Mux1 + Mux2 −
∫ yt

yt−b1

∫ a
2
− a

2
pu(x, y)

(
y − yt + L + c2

2 + c4
2
)
dxdy

−
∫ yt−b1

yt−L− c2
2 − c4

2

∫ b2
2

− b2
2

pu(x, y)
(
y − yt + L + c2

2 + c4
2
)
dxdy

(26)

The positive maximum moment Mue is obtained as follows: Case (1) Equation (23)
is derived, and this equation is set equal to zero to find the position of the maximum
moment ym (if it falls within the interval yt − c2/2 ≥ ym ≥ yt − b1), and then substituted
into Equation (23); Case (2) Equation (24) is derived, and this equation is set equal to zero
to find the position of the maximum moment ym (if it falls within the interval yt − b1 ≥ ym
≥ yt − L − c2/2), and then substituted into Equation (24).

2.2.2. Bending Shears

The factored bending shears according to the ACI code are presented on the axes: h, i,
j, k, l and m (see Figure 3).
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௬௬ିమିௗ , (31)

𝑉௨ = 𝑃௨ଵ − න න 𝑝௨ሺ𝑥, 𝑦ሻ𝑑𝑥𝑑𝑦ଶିଶ
௬௬ିభ , (32)

𝑉௨ = 𝑃௨ଵ − න න 𝑝௨ሺ𝑥, 𝑦ሻ𝑑𝑥𝑑𝑦ଶିଶ
௬௬ିభ − න න 𝑝௨ሺ𝑥, 𝑦ሻ𝑑𝑥𝑑𝑦మଶିమଶ

௬ିభ௬ିିమଶ ାరଶ ାௗ , (33)

𝑉௨ = 𝑃௨ଵ − න න 𝑝௨ሺ𝑥, 𝑦ሻ𝑑𝑥𝑑𝑦ଶିଶ
௬௬ିభ − න න 𝑝௨ሺ𝑥, 𝑦ሻ𝑑𝑥𝑑𝑦మଶିమଶ

௬ିభ௬ିିమଶ ିరଶ ିௗ , (34)

2.2.3. Punching Shears 
The factored punching shears according to the ACI code are presented on the pe-

rimeter formed by points 9, 10, 11 and 12 for column 1 (boundary column), and by points 
13, 14, 15 and 16 for column 2 (interior column) (see Figure 4). 

The factored punching shears applied to the footing due to each column are 
obtained: 

Figure 3. Bending shears (critical sections).

The factored bending shears applied to the footing in the h and i axes (axes parallel to
the Y axis) are obtained:

Vu f h = −
∫ w1

2

− w1
2

∫ a
2

c1
2 +d

puP1(x1, y1)dxdy, (27)
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Vu f h = −Pu1(a − c1 − 2d)
2a

−
3Muy1

[
a2 − (c1 + 2d)2

]
2a3 , (28)

Vu f i = −
∫ w2

2

− w2
2

∫ b2
2

c3
2 +d

puP2(x2, y2)dxdy, (29)

Vu f i = −Pu2(b2 − c3 − 2d)
2b2

−
3Muy2

[
b2

2 − (c3 + 2d)2
]

2b2
3 . (30)

where d = effective depth of the footing.
The factored bending shears applied to the footing on the j, k, l and m axes (axes

parallel to the X axis) are obtained:

Vu f j = Pu1 −
∫ yt

yt−c2−d

∫ a
2

− a
2

pu(x, y)dxdy, (31)

Vu f k = Pu1 −
∫ yt

yt−b1

∫ a
2

− a
2

pu(x, y)dxdy, (32)

Vu f l = Pu1 −
∫ yt

yt−b1

∫ a
2

− a
2

pu(x, y)dxdy −
∫ yt−b1

yt−L− c2
2 +

c4
2 +d

∫ b2
2

− b2
2

pu(x, y)dxdy, (33)

Vu f m = Pu1 −
∫ yt

yt−b1

∫ a
2

− a
2

pu(x, y)dxdy −
∫ yt−b1

yt−L− c2
2 − c4

2 −d

∫ b2
2

− b2
2

pu(x, y)dxdy, (34)

2.2.3. Punching Shears

The factored punching shears according to the ACI code are presented on the perimeter
formed by points 9, 10, 11 and 12 for column 1 (boundary column), and by points 13, 14, 15
and 16 for column 2 (interior column) (see Figure 4).
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The factored punching shears applied to the footing due to each column are obtained:

Vup1 = Pu1 −
∫ yt

yt−c2− d
2

∫ c1
2 + d

2

− c1
2 − d

2

pu(x, y)dxdy, (35)

Vup2 = Pu2 −
∫ yt−L− c2

2 +
c4
2 + d

2

yt−L− c2
2 −− c4

2 −s

∫ c3
2 + d

2

− c3
2 − d

2

pu(x, y)dxdy, (36)

where s must satisfy the following relationships: if d/2 ≤ b − L − c2/2 − c4/2 → s = d/2,
and if d/2 ≥ b − L − c2/2 − c4/2 → s = b − L − c2/2 − c4/2.

2.2.4. Objective Function for Minimum Cost

The minimum cost of the T-shaped combined footing is

Cmin = VcCc + VsγsCs, (37)

where Cmin = minimum cost (dollars), Vc = volume of concrete (m3), Cc = cost of concrete
including materials and labor (dollars/m3), Vs = volume of steel (m3), Cs = cost of steel
(dollars/kN), γs = density of steel = 76.94 kN/m3, Cs = cost of steel (dollars/kN).

The volumes for the T-shaped combined footings are

Vs =
(

AsyTb + AsyBb

)
b +

(
AsyTb1 + AsyBb1

)
b1 +

(
AsxTa + AsP1a + AsxBa

)
a +

(
AsxTb2 + AsP2b2 + AsxBb2

)
b2 , (38)

Vc = [(a − b2)b1 + bb2]t −
(

AsyTb + AsyBb

)
b −

(
AsyTb1 + AsyBb1

)
b1 −

(
AsxTa + AsP1a + AsxBa

)
a

−
(

AsxTb2 + AsP2b2 + AsxBb2

)
b2,

(39)

where t = total thickness of the footing (m), AsyTb = steel area at the top with width b2

(Y-axis direction) (m2), AsyBb = steel area at the bottom with width b2 (Y-axis direction)
(m2), AsyTb1 = steel area at the top with a width (a − b2) which is the excess part of width
b2 (Y-axis direction) (m2), AsyBb1 = steel area at the bottom with a width (a − b2) which is
the excess part of width b2 (Y-axis direction) (m2), AsxTa = steel area at the top with width
b1 (X-axis direction) (m2), AsP1a = steel area at the bottom under column 1 with width w1
(X-axis direction) (m2), AsxBa = steel area in the X-axis direction at the bottom with a width
(b1 − w1) which is the complementary part of width w1 (m2), AsxTb2 = steel area in the
X-axis direction at the top with width (b − b1) which is the complementary part of the
width b1 (m2), AsP2b2 = steel area in the X-axis direction at the bottom under column 2 with
width w2 (m2), AsxBb2 = steel area in the X-axis direction at the bottom with a width (b − b1
− w2) which is the complementary part of the width w2 (m2).

Substituting Equations (38) and (39) into Equation (37) gives

Cmin = Cc{[(a − b2)b1 + bb2]t −
(

AsyTb + AsyBb

)
b −

(
AsyTb1 + AsyBb1

)
b1

−
(

AsxTa + AsP1a + AsxBa
)
a −

(
AsxTb2 + AsP2b2 + AsxBb2

)
b2 }

+γsCs[
(

AsyTb + AsyBb

)
b +

(
AsyTb1 + AsyBb1

)
b1

+
(

AsxTa + AsP1a + AsxBa
)
a +

(
AsxTb2 + AsP2b2 + AsxBb2

)
b2].

(40)

Now, substituting γsCs = αCc (where α = γsCs/Cc) into Equation (40) gives:

Cmin = Cc{[
(

AsyTb + AsyBb

)
b +

(
AsyTb1 + AsyBb1

)
b1 +

(
AsxTa + AsP1a + AsxBa

)
a

+
(

AsxTb2 + AsP2b2 + AsxBb2

)
b2](α − 1)

+[(a − b2)b1 + bb2](d + r)}.
(41)

where r = concrete cover, t = d + r.
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2.2.5. Constraint Functions

For moments:

|Mua|, |Mub|, |Muc|, |Mud|, |Mue|,
∣∣∣Mu f

∣∣∣, ∣∣Mug
∣∣ ≤ f fydAs

(
1 −

0.59As fy

bwd f ′c

)
, (42)

where fy = specified yield strength of steel reinforcement (MPa), f’c = specified compressive
strength of concrete at 28 days (MPa), the width of the study surface bw for Mua is c2 + d/2,
for Mub is c4 + d/2 + v (If d/2 ≤ v → v = d/2, and if d/2 ≥ v → v = b − L − c2/2 − c4/2),
for Muc is a, for Mud, Mue, Muf, and Mug is b2 [39].

For bending shears:∣∣∣Vu f h

∣∣∣, ∣∣∣Vu f i

∣∣∣, ∣∣∣Vu f j

∣∣∣, ∣∣∣Vu f k

∣∣∣, ∣∣∣Vu f l

∣∣∣, ∣∣∣Vu f m

∣∣∣ ≤ 0.17∅v

√
f ′cbwsd, (43)

where the width of the analysis surface bws for Vufh is c2 + d/2, for Vufi is c4 + d/2 + v (If d/2
≤ v → v = d/2, and if d/2 ≥ v → v = b − L − c2/2 − c4/2), for Vufj is a, for Vufk, Vufl and
Vufm is b2 [39].

For punching shears:

∣∣Vup1
∣∣, ∣∣Vup2

∣∣ ≤


0.17∅v

(
1 + 2

βc

)√
f ′cb0d

0.083∅v

(
αsd
b0

+ 2
)√

f ′cb0d
0.33∅v

√
f ′cb0d

, (44)

where βc = ratio of the long side to the short side of the column, b0 = perimeter for punching
shear (m), αs = 20 for corner columns, αs = 30 for edge columns, and αs = 40 for interior
columns [39].

For steel percentages [39]:

ρP1a, ρP2b2 , ρyTb, ρyBb ≤ 0.75
[

0.85β1 f ′c
fy

(
600

600 + fy

)]
, where : 0.65 ≤ β1 =

(
1.05 − f ′c

140

)
≤ 0.85, (45)

ρP1a, ρP2b2 , ρyTb, ρyBb ≥


0.25

√
f ′c

fy
1.4
fy

. (46)

For reinforcing steel areas [39]:

AsP1a = ρP1aw1d, (47)

AsP2b2 = ρP2b2 w2d, (48)

AsxTa = 0.0018b1d, (49)

AsxTb2 = 0.0018(b − b1)d, (50)

AsxBa = 0.0018(b1 − w1)d, (51)

AsxBb2 = 0.0018(b − b1 − w2)d, (52)

AsyTb = ρyTbb2d, (53)

AsyTb1 = 0.0018(a − b2)d, (54)

AsyBb = ρyBbb2d, (55)

AsyBb1 = 0.0018(a − b2)d. (56)

Figure 5 presents the Maple 15 software flowchart for the optimal design of RC T-
shaped combined footings. Figure 6 presents the flowchart of the algorithm for optimal
design of RC T-shaped combined footings.
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3. Numerical Problems

The design of an RC T-shaped combined footing supporting two square columns is
presented in Figure 1, with the following data: the two columns are of 40 × 40 cm, L = 6.00 m,
H = 2.0 m, f’c = 28 MPa, fy = 420 MPa, qa = 250.00 kN/m2, γcd = 24 kN/m3, γsd = 15 kN/m3,
r = 8 cm, α = 90. Loads and moments applied to the foundation are shown in Table 3.

Table 3. Loads and moments applied to the foundation.

Column PD
kN

PL
kN

MDx
kN-m

MLx
kN-m

MDy
kN-m

MLy
kN-m

1 600 600 160 140 120 80
2 500 500 80 70 120 80

Loads and moments applied to the T-shaped combined footing by the columns are as
follows: P1 = 1200 kN, P2 = 1000 kN, Mx1 = 300 kN-m, Mx2 = 150 kN-m, My1 = 200 kN-m,
My2 = 200 kN-m, R = 2200 kN, MyT = 400 kN-m, and MxT depends on Equation (6).

Four cases are presented to determine the minimum design cost considering the same
loads applied to the RC T-shaped combined footings. Case 1 considers a ≥ 0 m, b ≥ 6.40 m,
b1 ≥ 1.00 m, b2 ≥ 1.50 m, b ≥ b1. Case 2 takes into account a ≥ 0 m, b ≥ 6.40 m, b1 ≥ 1.00 m,
b2 ≥ 2.00 m, b ≥ b1. Case 3 considers a ≥ 0 m, b ≥ 6.40 m, b1 ≥ 1.00 m, b2 ≥ 2.50 m, b ≥ b1.
Case 4 (rectangular combined footing) takes into account a ≥ 0 m, b ≥ 6.40 m, a = b2, b = b1.

To start the solution process, the minimum thickness proposed by the ACI code is
25 cm for all cases “paa = 217.75 kN/m2”.

The factored loads and the factored moments acting on the footing are obtained by
U = 1.2D + 1.6L (D = dead load and L = live load) [38].

The factored loads and the factored moments acting on the footing are as follows:
Pu1 = 1680 kN, Pu2 = 1400 kN, Mux1 = 416 kN-m, Mux2 = 208 kN-m, Muy1 = 272 kN-m,
Muy2 = 272 kN-m. The factored resultant force and the factored resultant moments are
Ru = 3080 kN, MuyT = 544 kN-m, and MuxT depends on Equation (6).

Table 4 shows the solution for case I.

Table 4. Case 1.

First Iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

217.50 25.00 17.00 0 2.92 6.40 3.69 1.50 217.75 78.86 217.75 184.02 112.59 78.86 184.02 112.59 14.83

Proposed dimensions and properties: a = 3.00 m, b = 6.40 m, b1 = 3.70 m, b2 = 1.50 m, yt = 2.71 m, S = 15.15 m2, Ix = 45.51 m4, Iy = 9.08 m4

First iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

−59.23 87.50 0.00333 0.00333 0.00333 0.00588 24.42 24.42 45.08 29.33 58.27 42.52 43.75 23.62 77.21 23.62 27.61Cc

Second iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

211.00 100 92.00 0 2.97 6.40 3.80 1.50 211.00 79.06 211.00 178.40 111.66 79.06 178.40 111.66 15.17

Proposed dimensions and properties: a = 3.00 m, b = 6.40 m, b1 = 3.80 m, b2 = 1.50 m, yt = 2.72 m, S = 15.30 m2, Ix = 45.67 m4, Iy = 9.28 m4

Second iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

−27.69 88.04 0.00333 0.00333 0.00333 0.00583 24.66 24.66 46.91 27.89 58.64 41.20 44.02 23.77 76.97 23.77 27.92Cc

Table 5 presents the solution for case 2.
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Table 5. Case 2.

First Iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

217.50 25.00 17.00 3.26 4.74 6.40 1.00 2.00 217.75 65.70 217.75 173.76 109.59 65.65 173.48 109.30 15.54

Proposed dimensions and properties: a = 4.80 m, b = 6.40 m, b1 = 1.00 m, b2 = 2.00 m, yt = 2.72 m, S = 15.60 m2, Ix = 60.67 m4, Iy = 12.82 m4

First iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

−28.62 85.38 0.00441 0.00333 0.00333 0.00371 31.15 23.53 2.66 70.28 15.37 82.99 56.92 43.03 63.41 43.03 27.43Cc

Second iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

211.45 95 87.00 −51.39 4.91 6.40 1.00 2.00 210.67 64.87 211.45 168.24 108.92 65.71 172.77 113.45 15.71

Proposed dimensions and properties: a = 5.00 m, b = 6.40 m, b1 = 1.00 m, b2 = 2.00 m, yt = 2.69 m, S = 15.80 m2, Ix = 61.66 m4, Iy = 14.02 m4

Second iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

−114.99 86.38 0.00448 0.00333 0.00333 0.00360 32.16 23.95 2.61 71.02 15.55 83.96 57.58 46.64 62.20 46.64 27.99Cc

Table 6 shows the solution for case 3.

Table 6. Case 3.

First Iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

217.50 25.00 17.00 651.51 3.29 6.40 1.70 2.50 217.75 99.77 199.85 185.73 96.00 81.88 136.10 46.37 17.34

Proposed dimensions and properties: a = 3.30 m, b = 6.40 m, b1 = 1.70 m, b2 = 2.50 m, yt = 3.02 m, S = 17.36 m2, Ix = 61.86 m4, Iy = 11.21 m4

First iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

896.97 74.63 0.00412 0.00333 0.00333 0.00433 23.79 19.23 12.45 52.75 22.84 63.14 62.19 10.75 80.73 10.75 27.55Cc

Second iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

212.35 85 77.00 594.19 3.43 6.40 1.64 2.50 212.35 95.29 196.80 180.95 95.59 79.74 135.98 50.62 17.53

Proposed dimensions and properties: a = 3.50 m, b = 6.40 m, b1 = 1.70 m, b2 = 2.50 m, yt = 2.97 m, S = 17.70 m2, Ix = 63.51 m4, Iy = 12.19 m4

Second iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

768.82 76.51 0.00413 0.00333 0.00333 0.00407 24.74 19.96 12.64 53.95 23.41 64.73 63.76 13.77 77.84 13.77 28.42Cc

Table 7 presents the solution for case 4.

Table 7. Case 4.

First Iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

217.50 25.00 17.00 1050.00 2.88 6.40 - - 217.75 127.48 - - - - 111.03 20.76 18.45

Proposed dimensions and properties: a = 2.90 m, b = 6.40 m, yt = 3.20 m, S = 18.56 m2, Ix = 63.35 m4, Iy = 13.01 m4

First iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

1464.00 70.24 0.00415 0.00358 0.00333 0.00592 21.92 18.87 61.92 - 80.92 - 67.90 - 12.06 - 29.97Cc
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Table 7. Cont.

Second iteration: Stage 1

paa t d MxT a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8 Smin
(kN/m2) (cm) (cm) (kN-m) (m) (kN/m2) (m2)

212.80 80 72.00 1050.00 2.94 6.40 - - 212.80 125.91 - - - - 108.10 21.21 18.80

Proposed dimensions and properties: a = 3.00 m, b = 6.40 m, yt = 3.20 m, S = 19.20 m2, Ix = 65.54 m4, Iy = 14.40 m4

Second iteration: Stage 2

MuxT d ρP1a ρP2b2 ρyBb ρyTb
AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1 Cmin(kN-m) (cm) (cm2)

1464.00 71.43 0.00414 0.00356 0.00333 0.00551 22.38 19.25 62.81 - 82.28 - 71.42 - 11.81 - 31.03Cc

The procedure used to obtain the solution for each case is as follows:

1. First iteration: Stage 1. Start with the minimum thickness of t = 25 cm; therefore,
d = 17 cm, since the ACI proposes a minimum of r = 7.5 cm (here, it is assumed
r = 8 cm). With the known data, the minimum area is obtained. Subsequently, the
dimensions of the footing are proposed (a, b, b1 and b2), and the properties of the
footing are obtained (yt, S, Ix and Iy).

2. First iteration: Stage 2. Now, the factored resultant force and the factored resultant
moments are obtained (Ru, MuxT and MuyT). The moments, the bending shears as a
function of d and the punching shears as a function of d that act are then determined.
With all these data, the minimum cost of the footing is determined.

3. Second iteration: Stage 1. Now, as the thickness of the footing has increased, the same
procedure as in the first iteration of stage 1 is developed.

4. Second iteration: Stage 2. The same procedure as in the first iteration of stage 2 is
developed.

5. Final iteration: Stage 1. Now, with the adjusted dimensions of the second iteration of
stage 1, it is developed to determine the minimum area and the pressures acting on
the footing (Results section).

6. Final iteration: Stage 2. Now, with the adjusted dimensions of the second iteration of
stage 2, it is developed to determine the effective depth, the percentage of reinforcing
steel, the reinforcing steel area, and the optimal cost design of the footing (Results
section).

4. Results and Discussion

Tables 8–10 show the final results for the four cases to determine the optimal cost for
the design of RC T-shaped combined footings.

Table 8. Minimum surface.

Sides of the Footing
m

Soil Pressure on the Footing at Each Vertex
kN/m2 Smin

m2

a b b1 b2 p1 p2 p3 p4 p5 p6 p7 p8

Case 1: t = 100 cm, qaa = 211.00 kN/m2, MxT = −15.49 kN-m

3.00 6.40 3.80 1.50 207.52 78.22 208.81 176.48 111.84 79.51 177.36 112.72 15.30

Case 2: t = 95 cm, qaa = 211.45 kN/m2, MxT = −77.85 kN-m

5.00 6.40 1.00 2.00 207.19 64.50 208.45 165.65 108.57 65.77 172.47 115.39 15.80

Case 3: t = 85 cm, qaa = 212.35 kN/m2, MxT = 553.45 kN-m

3.50 6.40 1.70 2.50 207.62 92.81 192.80 176.40 94.39 77.99 135.45 53.44 17.70

Case 4: t = 80 cm, qaa = 212.80 kN/m2, MxT = 1050.00 kN-m

3.00 6.40 6.40 3.00 207.52 124.19 104.98 104.98 21.65 21.65 104.98 21.65 19.20
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Table 9. Moments that act on the footing.

Case Mua
kN-m

Mub
kN-m

Muc
kN-m

Mud
kN-m

ym
m

Mue
kN-m

Muf
kN-m

Mug
kN-m

1 582.16 224.06 −704.06 −2123.21 −0.07 * −2429.38 −47.72 0

2 1008.43 319.74 −675.93 −1283.65 −0.18 ** −1966.06 −40.00 0

3 689.39 412.34 −693.66 −1908.80 0.19 ** −2170.32 −47.98 0

4 582.16 503.29 −1369.06 —- 0.41 −3033.87 −49.94 0

* Mue is located on a. ** Mue is located on b2.

Table 10. Minimum cost for design of T-shaped combined footings.

Effective Depth
d

cm

Reinforcing Steel Areas
cm2

Cmin

AsP1a AsP2b2 AsxBa AsxBb2 AsxTa AsxTb2 AsyBb AsyBb1 AsyTb AsyTb1

Case 1: t = 100 cm, ρP1a = 0.0033333, ρP2b2 = 0.0033333, ρPyBb = 0.0033333, ρPyTb = 0.0053119

92.00 26.37 26.37 48.69 28.81 61.27 43.06 46.00 24.84 73.30 24.84 28.73Cc

Case 2: t = 95 cm, ρP1a = 0.0043918, ρP2b2 = 0.0033333, ρPyBb = 0.0033333, ρPyTb = 0.0035472

87.00 31.90 24.21 25.84 71.49 15.66 84.56 58.00 46.98 61.72 46.98 28.11Cc

Case 3: t = 85 cm, ρP1a = 0.0040647, ρP2b2 = 0.0033333, ρPyBb = 0.0033333, ρPyTb = 0.0040163

77.00 24.57 20.15 12.68 54.26 23.56 65.14 64.17 13.86 77.31 13.86 28.52Cc

Case 4: t = 80 cm, ρP1a = 0.0040545, ρP2b2 = 0.0034871, ρPyBb = 0.0033333, ρPyTb = 0.0054209

72.00 22.19 19.08 63.24 —- 82.94 —- 72.00 —- 11.71 —- 31.14Cc

Table 8 shows the resultant moments about the X axis, sides of the foundation, the
soil pressure on the foundation at each vertex, and the minimum surface of the foundation
above ground (Final iteration).

Four cases are presented in Table 8 to determine the minimum surface for T-shaped
combined footings. The known parameters are as follows: the resultant force is R = 2200 kN
and the moment in the Y axis direction is MyT = 400 kN-m for all cases, and the design
variables to be obtained are as follows: the dimensions a, b, b1 and b2 are assumed non-
negative, the pressures generated by loads in each vertex of the footing due to the ground
are assumed non-negative, and the total moment is in the X axis direction. The results
obtained for the four cases are as follows: (1) The smallest contact surface is presented
in case 1, of Smin = 15.30 m2, and the largest contact surface is presented in case 4, of
Smin = 19.20 m2; (2) The largest total moment on the X axis in absolute value occurs in case 4,
of 1050.00 kN-m, and the smallest total moment on the X axis in absolute value occurs in
case 1, of 15.49 kN-m; (3) The pressures generated by the loads at each vertex are greater
than or equal to zero; also, the pressures generated by loads at each vertex are less than or
equal to the available allowable ground pressure paa; (4) The smallest thickness occurs in
case 4, of t = 80 cm, and the largest thickness occurs in case 1, of t = 100 cm.

Table 9 shows the ultimate moments acting on the footing (final iteration).
Table 9 presents the moments applied to the T-shaped combined footing for the four

cases. The largest moment around the a axis (Mua) occurs in case 2, of 1008.43 kN-m, and
the smallest moment occurs in cases 1 and 4, of 582.16 kN-m. The largest moment around
the b axis (Mub) occurs in case 4, of 503.29 kN-m, and the smallest moment occurs in case 1,
of 224.06 kN-m. The largest moment around the c axis (Muc) in absolute value occurs in
case 4, of 1369.06 kN-m, and the smallest moment in absolute value occurs in case 2, of
675.93 kN-m. The largest moment around the d axis (Mud) in absolute value occurs in
case 1, of 2123.21 kN-m, and the smallest moment in absolute value occurs in case 2, of
1283.65 kN-m (for case 4, it does not exist). The largest moment around the e axis (Mue) in
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absolute value occurs in case 4, of 3033.87 kN-m in ym = 0.41 m, and the smallest moment
in absolute value occurs in case 2, of 1966.06 kN-m in ym = −0.18 m. The largest moment
around the f axis (Muf) in absolute value occurs in case 4, of 49.94 kN-m, and the smallest
moment in absolute value occurs in case 2, of 40.00 kN-m. The moment around the g axis
(Mug) is equal to zero for all the cases.

Table 10 shows the effective depth of the footing, the percentage of reinforcing steel,
the area of reinforcing steel, and the optimal cost for the footings design (final iteration).

Table 10 presents the lowest cost for the design of T-shaped combined footings for the
four cases. The known parameters are the dimensions a, b, b1 and b2; the factored moments
Mua, Mub, Muc, Mud, Mue, Muf and Mug; the factored bending shears Vufh, Vufi, Vufj, Vufk,
Vufl and Vufm are presented as a function of “d”; the factored punching shears Vup1 and
Vup2 are presented as a function of “d”. The design variables to obtain the lowest cost are
the effective depth of the footing d; the percentages of reinforcing steel ρP1a, ρP2b2, ρyBb
and ρyTb; the reinforcing steel areas AsyTb, AsyBb, AsyTb1, AsyBb1, AsxTa, AsP1a, AsxBa, AsxTb2,
AsP2b2, AsxBb2. The results obtained for the four cases are as follows: (1) The lowest cost
for the design is presented in case 2, of Cmin = 28.11 Cc, and the highest cost for the design
is presented in case 4, of Cmin = 31.14 Cc (rectangular combined footings). (2) The lowest
effective depth of the footing appears in case 4, of d = 72.00 cm, and the highest effective
depth of the footing appears in case 1, of d = 92.00 cm.

The order from lowest to highest of the cases studied is as follows: (1) For the minimum
contact surface, it is 1, 2, 3 and 4. (2) For the minimum design cost, it is 2, 3, 1 and 4.

Figure 7 shows the minimum costs of the RC T-shaped combined footings to verify the
proposed model for the four cases, varying “d” to observe the cost behavior in each case. It
is clearly observed that by increasing “d”, the costs increase for all cases; this is presented
from the minimum cost that appears in Table 10. On the other hand, the effective depth “d”
cannot be reduced because it is restricted by the bending shears or the punching shears,
which must meet a minimum thickness.
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5. Conclusions

This paper presents the design of lower-cost RC T-shaped combined footings under
biaxial bending at each column.
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The constant (known) parameters to obtain the minimum contact surface are P1, P2,
Mx1, Mx2, My1, My2, R, MyT, L, qaa, c1, c2, c3, c4, and the decision variables (unknown) are
MxT, a, b, b1, b2, Smin, p1, p2, p3, p4, p5, p6, p7, p8.

The constant (known) parameters to find the least design cost are a, b, b1, b2, factored
moments (Mua, Mub, Muc, Mud, Mue, Muf and Mug), factored bending shear as a function of
d (Vufh, Vufi, Vufj, Vufk, Vufl and Vufm), factored punching shear as a function of d (Vup1 and
Vup2), and the decision variables (unknown) are Cmin, d, ρP1a, ρP2b2, ρyBb, ρyTb, AsyTb, AsyBb,
AsyTb1, AsyBb1, AsxTa, AsP1a, AsxBa, AsxTb2, AsP2b2 and AsxBb2.

The most relevant conclusions are as follows:

1. The minimum contact surface and the optimal cost design of the T-shaped combined
footings in this paper are more accurate and converge faster.

2. The optimal cost design of rectangular combined footings presented in this paper
is more accurate than that presented by Velázquez-Santillán et al. [15], because the
moments Mx1 and Mx2 acting on the footing are not considered in the analysis for the
minimum contact surface and the lowest design cost [15].

3. If the moment about the X axis is zero, the resultant force is located at the center of
gravity of the footing.

The model proposed for the lowest design cost n presented in this paper for the RC
T-shaped combined footings under biaxial bending at each column can be applied to two
other cases: (1) concentric axial load applied on the footing due to each column; (2) a
concentric axial load and a moment applied on the footing due to each column.

The optimal model described in this paper is applied only to the design of lower-cost
RC T-shaped combined footings, assuming that this structural member is rigid and the
supporting soil layers are elastic and comply with the biaxial bending equation, that is, the
pressure variation is linear.

Suggestions for future research:

1. Minimum cost design for other types of foundations using the optimization process
to include sustainability considerations, such as minimizing environmental impact or
carbon footprint.

2. Minimum surface for RC T-shaped combined footings assuming that the foundation
area is partially supported.

3. Minimum cost for RC T-shaped combined footings assuming that the foundation area
is partially supported.
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