
Citation: Awad, R.; Budayan, C.;

Gurgun, A.P. Construction and

Demolition Waste Generation

Prediction by Using Artificial Neural

Networks and Metaheuristic

Algorithms. Buildings 2024, 14, 3695.

https://doi.org/10.3390/

buildings14113695

Academic Editors: Carlos Morón

Fernández and Daniel Ferrández Vega

Received: 14 October 2024

Revised: 10 November 2024

Accepted: 17 November 2024

Published: 20 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Construction and Demolition Waste Generation Prediction by
Using Artificial Neural Networks and Metaheuristic Algorithms
Ruba Awad 1,*, Cenk Budayan 2 and Asli Pelin Gurgun 1

1 Civil Engineering Department, Yildiz Technical University, Istanbul 34220, Türkiye; apelin@yildiz.edu.tr
2 Civil Engineering Department, Middle East Technical University, Northern Cyprus Campus,

Mersin 99738, Türkiye; cbudayan@metu.edu.tr
* Correspondence: eng.r.m.awad@hotmail.com or ruba.awad@std.yildiz.edu.tr

Abstract: In the actual estimation of construction and demolition waste (C&DW), it is significantly
relevant to effective management, design, and planning at project stages, but the lack of reliable
estimation methods and historical data prevents the estimation of C&DW quantities for both short-
and long-term planning. To address this gap, this study aims to predict C&DW quantities in
construction projects more accurately by integrating the gray wolf optimization algorithm (GWO)
and the Archimedes optimization algorithm (AOA) into an artificial neural network (ANN). This
study uses data concerning the actual quantities of work in 200 real-life construction and demolition
projects performed in the Gaza Strip. Different performance parameters, such as mean absolute
error (MAE), mean square error (MSE), root mean squared error (RMSE), and the coefficient of
determination (R2), are used to evaluate the effectiveness of the models developed. The results of this
study have shown that the AOA-ANN model outperforms the other models in terms of accuracy
(R2 = 0.023728, MSE = 0.00056304, RMSE = 0.023728, MAE = 0.0086648). Moreover, this new hybrid
model yields more accurate estimations of C&DW quantities with minimal input parameters, making
the process of estimation more feasible.

Keywords: construction and demolition projects; waste estimation; GWO (gray wolf optimization);
AOA (Archimedes optimization algorithm); ANN (artificial neural network); Gaza-Palestine

1. Introduction

The global construction industry is a major contributor to waste generation, due to its
production of massive volumes of landfill garbage resulting from consuming considerable
amounts of natural resources [1–3]. Construction and demolition (C&D) operations gen-
erate over ten billion tons of garbage globally each year [4]. Furthermore, the volume of
waste grows each year. For instance, the generation of construction and demolition waste
(C&DW) in the United States exhibited a significant increase, reaching 342% between 1990
and 2018 [5]. With continuous urbanization, C&DW generation is predicted to increase [6].
Thus, good C&DW management is critical for sustainable growth.

For effective C&DW management, quantification of C&DW plays a key role, as this es-
timation is instrumental in the formulation and execution of sustainable waste management
plans, enabling contractors and relevant authorities to proactively plan and address waste
disposal [7]. Additionally, companies can understand the criticality of waste generated in
their projects, and they become more aware of waste management, becoming more eager
to develop and employ management plans. By developing effective waste management
plans, companies can significantly contribute to achieving sustainable development goals
in construction and demolition projects [1].

Moreover, policymakers can gain critical insights from accurate C&DW estimations
to create effective regulations and make informed decisions [8]. Furthermore, accurately
quantifying C&DW can affect the success of any project, especially given the rising costs
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associated with waste disposal due to factors such as landfill fees, regulations, and envi-
ronmental concerns [9]. Thus, companies can use these amounts to prepare their waste
disposal budget [10] and plan waste-hauling trucks [11]. As a result, the construction
industry demands smart, competent, and precise methods for C&DW management [12].
However, construction companies struggle to effectively manage C&DW due to its large
volume and complex composition [13], and attaining a satisfactory level of prediction
accuracy for C&DW remains a challenging endeavor due to the intricate nature of the
problem and the macro-level socioeconomic impact [14].

There are different efforts made to estimate the C&DW in the literature. Tradition-
ally, companies try to estimate their waste manually; however, manual calculations are
impractical since a vast amount of waste data emerge throughout the project, and data
on construction waste have been steadily rising as information levels have improved [12].
Therefore, computer-based models are essential for accurate analysis, streamlined processes,
and timely project completion. However, existing methods, aside from estimation and
prediction techniques, lack the capability to accurately and easily assess waste generated
by C&D projects [15]. Gao et al. [12] stated that machine learning can offer solutions to
these challenges, providing a solid foundation for decision-making [16], prediction [17,18],
and detection [19]. Currently, researchers are focusing on developing optimal strategies
that integrate artificial intelligence (AI) models with preprocessing techniques, such as data
cleaning, feature selection, and normalization, to enhance forecasting solutions.

In this research study, machine learning methods were applied to improve the preci-
sion of generated quantities estimation of C&DW and to assess the effectiveness of these
predictive models in determining the most accurate estimation model. In this study, the ar-
tificial neural network (ANN) method was chosen to estimate, given the well-documented
good performance of ANN in the literature. For instance, Ombres et al. [20] successfully
employed ANN to model the bond capacity between steel-reinforced grout composite
systems and concrete. Similarly, Umuhoza et al. [21] utilized ANN to predict the quality
performance of building construction projects. To enhance the estimation capabilities of
the ANN, this study integrates two optimization algorithms: the gray wolf optimization
algorithm (GWO) and the Archimedes optimization algorithm (AOA). Additionally, hybrid
approaches have been recently explored in the literature, with various studies demonstrat-
ing improvements in prediction performance. Consequently, two representative hybrid
models, namely AOA-ANN and GWO-ANN, have been proposed toward achieving the
above. These models were evaluated using different performance metrics to ensure the
robustness and accuracy of the predictive models, providing a thorough assessment of their
performance in predicting C&DW generation. The purposes of this study are as follows:

1. Increasing awareness among all construction stakeholders about C&DW management
and integrating developed techniques into estimation processes.

2. Proposing hybrid algorithms and comparing their results to identify the most accurate
model.

The methodology used in this study is as follows: First, it conducts a literature review
to explore existing studies on C&DW estimation, informing the development of a more
precise estimation methodology. The methodology deployed for this research is provided
through a section summarizing data description and model development. Then, the
performance of the proposed models is compared to determine the best model for C&DW
estimation. Finally, the study concludes by providing discussions on research limitations
and directions for future work and summarizes the most important findings.

2. Literature Review
2.1. Machine Learning Usage in C&DW Estimation

Accurate predictive value in quantitative terms of C&DW is of significant importance
with regard to effective waste management. Among the machine learning methods, ANN,
Random Forest (RF), Support Vector Machine (SVM), and other commonly used techniques
have found remarkable success in application, especially related to data-based decision-
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making obtained from laboratory and computer simulations [22]. Hence, due to its great
utility for prediction, various machine learning and statistical analysis algorithms have
been deployed for predicting C&DW.

Akanbi et al. [23] predicted the recoverable tons of salvage and waste material from
the buildings before demolition using a deep neural network. After verifying four distinct
case study scenarios, it was discovered that their machine learning (ML) approach greatly
increased waste estimation accuracy. In the same way, Lu et al. [17] created an ML regression
model to calculate the generation of waste in pre-renovation construction projects. They
demonstrated significant improvements in the accuracy of waste estimation by comparing
their model’s performance with the prevailing approach.

ML techniques, particularly ANN, have been extensively applied to predict waste pro-
duction based on historical data. For instance, Coskuner et al. [24] employed a multi-layer
perceptron artificial neural network (MLP-ANN) to predict annual waste generation rates
from construction and demolition, domestic, and commercial sources in the Kingdom of
Bahrain. This model, trained with data spanning from 1997 to 2016, achieved strong perfor-
mance metrics, with an R2 of 0.91, demonstrating its robustness. Similarly, Soni et al. [25]
assessed various ML models, including ANN and hybrid models like GA-ANN, for pre-
dicting municipal solid waste (MSW) in New Delhi, India. Their findings showed that
GA-ANN outperformed other models with an R2 of 0.87. Additionally, G.-W. Cha et al. [26]
compared ANN, support vector regression (SVR), and a random forest autoencoder for
forecasting demolition waste using six input parameters and 782 data points in Korea,
achieving an R2 of 0.68. These studies illustrate the effectiveness of ML algorithms in mod-
eling waste generation and highlight their varying performance across different datasets
and contexts.

Likewise, a study by Cha et al. [27] developed models using RF and Gradient Boosting
Machine (GBM). They could predict demolition waste given a similar dataset. They com-
pared the performance of these methods and found that it was relatively more stable and
accurate than the predictions found through GBM. Nagalli [28] compared the performance
of construction waste estimation models developed using different combinations of ANN.
From these comparisons, the best results were obtained using two neurons in the hidden
layer and two training cycles. He concluded that machine learning methods provide better
results than linear multiple regression, which is widely used in the literature. More studies
using machine learning methods for waste estimation can be found in Gao et al. [12].

2.2. Hybrid Model Approach

Although traditional studies that employ a single machine learning method often yield
satisfactory results, currently, a contemporary approach, known as the hybrid approach, has
gained widespread adoption in the literature. Ongoing studies aim to enhance forecasting
model accuracy through the exploration of various tests that integrate AI models and
preprocessing techniques to identify the most effective forecasting solutions. Notably,
some studies have highlighted the efficiency of metaheuristic algorithms in prediction
models [27]. These algorithms encompass evolutionary methods like the genetic algorithm
and AOA, as well as swarm-based approaches such as bee colony optimization, ant colony
optimization, and GWO.

In C&DW estimation studies, hybrid modeling has also been employed. Wu et al. [14]
innovatively introduced and evaluated an AI predictive standard known as Gene Expres-
sion Programming, in addition to multiple linear models and ANN in Hong Kong. The
proposed model aims to forecast C&DW using a dataset aggregated from 1991 to 2010. The
result showed that gross domestic product proved to be an effective model for prediction.
In another study, Lee et al. [9] devised a novel hybrid model that predicts both the cost and
amount of construction waste throughout the initial stages of projects of multifamily resi-
dential buildings. This innovative approach combines ant colony optimization with ANN.
They concluded that their hybrid model provided more efficient and accurate estimates
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compared to simple ANN. In other words, they recommended hybrid models instead of
traditional models.

Song et al. [18] proposed a model for predicting the quantity of each C&DW component
in China. They developed their model by integrating the gray model (GM) and SVR. In
their model, the SVR adjusted the residual series, and GM performed the estimation of the
discharge of each component based on the outputs of the SVR process. They concluded
that the proposed model is effective and provides valuable insight for policymakers.

Cha et al. [29] predicted the rate of waste production during building demolition
projects using four models. Two of these models were traditional models developed
using ANN and SVR. The remaining two were hybrid models that integrated the ANN
and SVR with the Categorical Principal Components Analysis (CAPTCA). By comparing
the performance of these models, they found that hybridization significantly improved
prediction accuracy. In particular, the CATPCA-SVR model outperformed all other models
in terms of prediction ability.

Although the superior advantages of GWO [30] and AOA [31], these metaheuristic
algorithms are rarely used in C&DW estimation. Whereas the effectiveness of GWO and
AOA with machine learning methods has been examined in the literature. For instance,
Ewees and Elaziz [32] introduced a novel approach for predicting Biochar yield. In their
model, the GWO and adaptive network-based fuzzy inference system (ANFIS) methods
were integrated, and these methods operated in two distinct phases. In the initial phase,
GWO was employed to adeptly learn the ANFIS parameters accurately using the training
set. Subsequently, the second phase involves the evaluation of the performance of the pro-
posed ANFIS-GWO method by using the testing set. To gauge its effectiveness, three tests
were conducted, utilizing six datasets with five inputs. The outcomes of the ANFIS-GWO
model were then compared with those of three other algorithms: the original ANFIS,
ANFIS-GA, and ANFIS-particle swarm optimization (PSO). Notably, the ANFIS-GWO
model outperformed the standard ANFIS and other models by a margin of 35%.

Turabieh [33] explored the effectiveness of combining two computational intelligence
methods—GWO and ANN—for predicting heart disease. The study found that the pro-
posed hybrid model, ANN-GWO, achieved high-performance results. Golafshani et al. [34]
similarly constructed hybrid models for the prediction of compressive strength in normal
and high-performance concretes, employing ANN, ANFIS, and GWO. They stated that
the training and generalization capability of both the ANFIS and ANN models improved
when they hybridized with GWO. After conducting their study, they concluded that the
ANN model with the GWO and LM algorithms had better results when compared with the
other models that were developed.

Liang et al. [35] delved into a hybrid model designed to foresee month-to-month
municipal solid waste production in seven Iranian megacities. The model integration in-
volved coupling the ANN model with optimization algorithms such as AOA, GA, PSO, and
sine-cosine algorithm. Improved gamma testing determined the optimal input combination.
The ANN-AOA exhibited a commendable capacity to predict various target variables.

Abo Mhady et al. [36] proposed hybrid models for estimating at-completion (EAC)
estimation in construction projects. In their model, they used AOA to optimize the input
parameters, and the outputs of this process were used by ANFIS and ANN to estimate EAC.
They compared the results of these models with those of traditional estimation models
that were separately developed using ANFIS and ANN. They concluded that AOA-ANN
outperformed other models, and the accuracy of the estimations increased significantly
with the employment of AOA.

Consequently, the hybrid approach can be an innovative approach to overcome the
challenges related to the estimation of C&DW. ANNs have proven their efficacy in address-
ing intricate and challenging problems across various industries and research domains.
A substantial body of literature has attested to the robustness of ANN in the C&DW
field [9,24]. Furthermore, the AOA and GWO methods provide reliable results in different
industries; therefore, they have potential for C&DW estimation. The extensive application
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of ANN across various research fields underscores the need to evaluate their performance
alongside AOA and GWO for future C&DW projections in the construction industry. There-
fore, this study develops two hybrid models integrating the ANN with the AOA and
GWO methods.

3. Research Methodology

To conduct this study, the methodology involved diving into the relevant literature on
waste generation, leveraging machine learning algorithms, and tapping into metaheuristic
techniques in construction projects. The research methodology used in this study is shown
in Figure 1. The methodology consists of these steps: (1) Literature Review: The aim of
this step is to identify and extract the variables used in the C&DW estimation models
proposed in the literature (2) Data Collection: A dataset of information for 200 projects,
including the amount of waste (no. of trucks), year of construction, duration of project, total
area of the building, number of floors, and site access; (3) Preprocessing Step: Improved
predictive model performance through the elimination of outliers and normalization of raw
data; (4) Feature Selection: Applied feature selection (input combination) based on AOA or
GWO, determining the most relevant variables for the models; (5) Model Development:
Employed ANN algorithm to estimate C&DW amount; and (6) Model Evaluation: Utilized
performance metrics, namely mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), as well as R2, R (correlation coefficient), for verification and
evaluation of the models.
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Figure 1. Research methodology.

3.1. Data Collection

Based on a thorough review of relevant studies, it is clear that waste management is a
significant and widely recognized issue. Many scientific research efforts have focused on
understanding, characterizing, and measuring the waste produced during construction
and demolition operations. A literature review was conducted to reveal the variables used
in C&DW estimation. Table 1 summarizes eight factors contributing to waste generation
identified in studies conducted before 2023 to provide a comprehensive overview. Table 1
also indicates which studies used these variables.

Furthermore, six experts, whose demographic profile is shown in Table 2, discussed
the validity of these variables to ensure that these variables are related to C&DW quantity
emerging in a project. According to Table 2, the demographic profile of the experts shows
that they are experienced and knowledgeable. The identified variables were presented to
the experts individually. For each variable, the experts shared their opinions regarding
its validity for C&DW estimation, along with their reasoning. If the experts reached a
consensus on the validity of a variable, it was accepted as valid. In cases where there was
disagreement among the experts, they engaged in discussions until they could arrive at
a consensus. At the end of this process, experts verified all variables. Therefore, these
variables, or inputs, form the basis for the hybrid model developed in this study.

Two data sources were used in this study: the Ministry of Public Works and Housing,
and expert contractors and engineers from Palestinian construction companies. To collect
data, a form was developed based on the variables extracted from the literature. In the data
collection stage, twenty experts participated. The profiles of these experts are presented
in Figure 2 to show that these experts have the required authority to provide data about
the variables. Among these participants, thirteen worked as project managers on their
projects, while seven were site managers. All participants demonstrated prominent levels
of experience in construction projects. Additionally, the study included participants from
both public and private organizations to ensure a diverse demographic representation.
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Table 1. Identified variables for C&DW.

No Variable Description References

1 Project name Documented Name

2 Quantity of waste

The amount of waste: number of
trucks that came out of the

demolition of the building (a truck
that contains a box of size

2.45 m × 6 m × 1.5 m).

3 Type of project Construction or demolition project. [8,27,37]

4 Date (Year) The starting date of project
(2000–2023). [9,17]

5 Project location North, Gaza, Medial Area, Khan
Younis, Rafah. [8,9,26,27,37–39]

6 Project duration The time required to complete the
project (months). [28,38–41]

7 Building use

Only residential,
commercial/residential, only

commercial, public, infrastructure,
and others.

[8,23,26,27,37,38,42]

8 Total building area
The area of all built floors includes
the first-floor area and typical floor

area (square meters).
[8,9,14,18,23,24,27,37,38,42]

9 Access to the site

There are three levels of access to the
site: easy access from the borders

and the availability of wide
highways; medium ease of access;

and difficult access.

[38,42]

10 Number of floors Number of floors in the construction. [9,23,42]

Table 2. Demographic profile of experts.

Expert No. Degree Position Year of Experience

01 Associate Prof. Associate Prof. 25
02 Prof. Dr. Senior lecturer 10

03–06 Master’s Degree Project manager 8–25
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Communication with experts took place in two stages: face-to-face interactions in
which the researcher explained the problem, the data needed, and each variable for the prob-
lem. Therefore, the possibility of any misunderstanding could be avoided. Afterward, the
researcher sent an Excel sheet for data collection via email. After the data collection stage, a
total of two hundred data points from construction and demolition projects were obtained.

3.2. Phase of Preprocessing

This phase prepares the data for developing a prediction model and enhancing its
robustness through three primary stages. Initially, data points that had either missing or
redundant information were removed, thereby eliminating elements that did not contribute
to the model’s effectiveness when training on a particular object. Subsequently, the data
were split into training and testing groups, with 70% (140 data points) allocated for train-
ing purposes and 30% (60 data points) reserved for testing and validation to ensure that
the model undergoes substantial training. Lastly, normalizing the dataset is an essential
step due to the presence of multiple groups with diverse dimensions in the dataset. This
diversity can affect prediction efficiency and accuracy reliability. Additionally, this nor-
malization stage facilitates the establishment of a standardized scale for data parameters
without altering variations within the feature range. Specifically, the training, testing, and
validation data were independently normalized using the min-max method, as represented
by the following formula:

Ni =
Yi − Ymin

Ymax − Ymin
(1)

where Ni is the normalized variable, while Yi, Ymax, and Ymin are the original value, maxi-
mum, and minimum value of each variable, respectively [43].

3.3. Hybrid Model Development

Improvement strategies have been used in various AI applications. Four principal
classifications included a substantial portion of these applications: the selection of features,
the training of neural networks, improvement of SVM, and the application of clustering [43].
Among these, feature selection stands out as a crucial process in ML and data mining. The
primary objective of feature selection (input selection) is to reduce the number of inputs,
retaining the most representative ones while eliminating redundant, noisy, and irrelevant
features. However, determining the optimal set of inputs is considered complex and
challenging, especially when dealing with severe features [44]. In this study, the estimation
model was optimized by integrating two metaheuristic algorithms for selecting features. In
this study, feature selection was performed based on two criteria: minimizing RMSE and
maximizing R. At the end of this process, the best input combinations were obtained, and
these combinations were used by the ANN algorithm’s training process to estimate C&DW.
The methods used in the development of hybrid models are described as follows.

3.3.1. Gray Wolf Optimization (GWO)

Mirjalili [45] introduced the GWO algorithm. GWO was inspired by the cooperative
hunting behavior of gray wolves. Gray wolves are members of the Canadian wolf family,
live in groups of 5 to 12 wolves, and are considered the top of the food chain. Typically,
these wolf packs have a hierarchical structure defining their social dynamics, and they
contain alpha, beta, and omega group members. At the apex of this hierarchy is the alpha
wolf, assuming the leadership role within the pack and being responsible for dictating
hunting strategies, rest periods, and movement patterns. Following the alphas, the pack has
beta wolves, who serve as the support system to the alphas by aiding in making decisions
and facilitating group activities. Beta wolves also serve as potential candidates for assuming
alpha positions in the future, acting as both alpha assistants and mediators within the
group. The omega gray wolves are in the lowest tier, and their role often involves sacrificial
acts for the benefit of the pack. Omegas are the last to partake in meals and play a crucial
role in maintaining pack cohesion. Wolves that do not fit within the alpha, beta, or omega
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categories are termed obedient or delta wolves. Delta wolves adhere to the leadership of
alpha or beta wolves and oversee the activities of omega wolves, including scouting and
sentinel duties [46].

The GWO algorithm was developed with consideration of the social behavior of
wolves. In this algorithm, the wolf alpha represents the primary solution, while the wolf
beta and the wolf gamma represent the subsequent two best solutions. Other solutions are
categorized as omega. As a result, the optimization of the GWO algorithm is driven by
alpha, beta, and gamma wolves, with omega wolves aligning with these classifications.

Regarding the gray wolves’ hunting behavior, they exhibit a tendency to encircle their
prey during hunting. To mathematically model this turning behavior, Equations (2) and (3)
are presented [45].

→
Dα = |

→
C1·

→
Xα −

→
X|,

→
Dβ = |

→
C2·

→
Xβ −

→
X|,

→
Dδ = |

→
C3·

→
Xδ −

→
X| (2)

→
X1 =

→
Xα −

→
A1·

→
Dα,

→
X2 =

→
Xβ −

→
A2·

→
Dβ,

→
X3 =

→
Xδ −

→
A3·

→
Dδ (3)

In the given context, the symbol t denotes the repetition count, while A and C denote
vector coefficients. Here, P and X represent the position vectors of the prey and a gray
wolf, respectively. The determination of vectors A and C follows the calculations outlined
in Equations (4) and (5).

→
A = 2

→
a ·→r 1 −

→
a (4)

→
C = 2

→
r 2 (5)

As
→
a linearly decreases from 2 to 0 over the course of iterations, r1 and r2 denote

random vectors.
To mathematically emulate the gray wolves’ hunting behavior, it is assumed that

the alpha (the prime candidate solutions), the beta, and the delta wolves possess suffi-
cient awareness regarding the probable location of the prey. Consequently, the initial
three superior solutions are preserved, compelling other search agents (omegas) to adjust
their positions relative to the top search agents, as delineated in Equations (6)–(12).

→
Dα = |

→
C1·

→
Xα −

→
X| (6)

→
Dβ = |

→
C2·

→
Xβ −

→
X| (7)

→
Dδ = |

→
C3·

→
Xδ −

→
X| (8)

→
X1 =

→
Xα −

→
A1·

→
Dα (9)

→
X2 =

→
Xβ −

→
A2·

→
Dβ (10)

→
X3 =

→
Xδ −

→
A3·

→
Dδ (11)

→
X(i + 1) =

→
X1 +

→
X2 +

→
X3

3
(12)

The ultimate position can randomly occur within a circle defined by the alpha, beta,
and delta positions in the search space. Essentially, their positions serve as estimations for
the prey’s position, prompting other wolves to update their positions in a random manner
around the prey.

3.3.2. Archimedes Optimization Algorithm (AOA)

The AOA algorithm serves the dual purpose of determining the optimal initial weight
for models and optimizing and adjusting the model parameters. This metaheuristic model,
known as AOA, can be applied to solve various mathematical optimization problems,
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demonstrating its efficiency in reaching global solutions in a shorter period [47]. The
AOA method proceeds through seven stages, as stated in Table 3, to discover near-global
solutions. Table 3 also represents the calculation and optimization methods for each stage.

Table 3. Stages of hyperparameter tuning process for AOA.

Stage Calculation Optimization

1st Initiation Volume Lower and upper boundaries

2nd Upgrade volumes
and densities Density Optimal density

3rd Transfer operator and
density factor Density factor Maximum number of iterations

4th Exploration Acceleration Collision

5th Exploitation Acceleration No collision

6th Normalization
Acceleration Acceleration Access the percentage

7th Evaluation Fitness Optimal solution

Stage 1—Initiation:
In this stage, a population, including the immersed solution (object), is characterized

by density, volume, and acceleration. All solutions are initially placed at random positions
beneath the fluid, as expressed in Equation (13), and the fitness value for each solution
is assessed.

Oi = lbi + rand(0, 1)× (ubi − lbi), ∀i ∈ {1, 2, 3, . . . , N} (13)

Voli = rand(0, 1) (14)

Deni = rand(0, 1) (15)

ACCi = lbi + rand(0, 1)× (ubi − lbi), ∀i ∈ {1, 2, 3, 4, . . . , N} (16)

In the above equations, Oi represents the ith solution in the population, and N denotes
the size of the population. ubi and lbi denote the upper and lower limit of the ith solution.
Deni, Voli, and ACCi represent the density, volume, and acceleration of the ith solution,
respectively. The term rand(0, 1) denotes a randomly selected scalar with a value between
zero and one.

Stage 2—Upgrade volumes and densities:
This involves the enhancement of both the volume and density for all solutions.

Deni
(t+1) = Deni

t + rand(0, 1)×
(

Denbest − Deni
t) (17)

Voli
(t+1) = Voli

t + rand(0, 1)×
(

Volbest − Voli
t
)

(18)

During this stage, Deni(t) denotes density and Voli(t) denotes the volume of the i-th
solution during the t-th iteration. Denbest denotes the optimal (best) density, and Volbest
denotes the volume of the object comprising the best ability standards.

Stage 3—Transfer operator and density factor:
The algorithm addresses collisions between objects until they reach an equilibrium state.

The mathematical expression for this stage can be represented by the following equation:

TF = exp
{

t − tmax

tmax

}
(19)

TF denotes the transfer operator, which facilitates the transition of the search process
from the exploration to the exploitation stage. tmax is the maximum number of iterations.
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Additionally, a reduced density factor (d) plays a role in aiding the AOA to converge
toward a global solution.

dt+1 = exp
{

t − tmax

tmax

}
−
(

t
tmax

)
(20)

Stage 4—Exploration:
During the “Exploration” stage, collisions among solutions take place. In this stage,

when TF is less than or equal to 0.5, an arbitrary material (mr) is selected, and the accelera-
tion of an object is updated using the following equation:

ACCt+1 =
Denmr + Volmr × ACCmr

Deni
(t+1) × Voli

(t+1)
(21)

In the equation, Denmr is the density, Volmr is the volume, and ACCmr is the arbitrary
material acceleration, respectively [48].

Stage 5—Exploitation:
In stage 5, which is marked by the absence of collisions among solutions, the accelera-

tion of each solution is upgraded when TF ≥ 0.5:

ACCt+1 =
Denbest + Volbest × ACCbest

Deni
(t+1) × Voli

(t+1)
(22)

While ACCbest represents the solution acceleration with optimal fitness.
Stage 6—Normalization acceleration:
Known as “Normalization acceleration”, it involves normalizing the acceleration to

assess the percentage change:

ACCi−norm
t+1 = g × ACCi

t+1 − min{ACC}
max{ACC} − min{ACC} + z (19) (23)

Here, “g” and “z” represent the normalization range, and ACCi−norm
t+1 is used to

determine the percentage by which each agent moves.
Additionally, positions are updated throughout this stage. When the exploration phase

exists (TF ≤ 0.5), the i-th object’s position for the coming iteration t plus 1 is determined
using Equation (24) [49].

xi
t+1 = xi

t + C1 × randACCt+1
i−norm × d ×

(
xrand − xi

t) (24)

Here, C1 is a constant equal to two. On the other hand, when an exploitation phase
exists (TF > 0.5), the objects update their positions using Equation (25).

xi
t+1 = xbest

t + F × C2 × randACCt+1
i−norm × d ×

(
T × xbest − xi

t) (25)

Here, C2 has a value equal to 6, and t is directly proportional to the transfer operator,
which increases with time, defined as t = C3 × TF. T grows over time within the range
(C3 × 0.3, 1), taking a certain rate from the optimal position initially. The initial low rate
results in a substantial difference between the current position and the optimal position,
which leads to a high step size in the random walk. As the search progresses, this rate
increases gradually to reduce the difference between the current and optimal positions,
thereby achieving a balance between exploitation and exploration.

The flag F is utilized to alter the motion direction according to Equation (26):

F =

{
+1 i f P ≤ 0.5
−1 i f P > 0.5

(26)

Here P = 2 × rand − C4.
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Stage 7—Evaluation:
In the evaluation stage, fitness values of all solutions are calculated, and a record of

the optimal solution is obtained, which leads to the update of the optimal solution (xbest),
Denbest, Volbest, and ACCbest.

3.3.3. Artificial Neural Network (ANN)

The concept of the ANN stems from the intricate biological system of the human brain,
which is characterized by a vast network of interconnected elements known as neurons.
Mathematically, the ANN can be modeled as dynamic systems using a set of combined
differential equations [50,51].

A fundamental model of an ANN comprises the input, hidden, and output layers.
Each layer contains a varying number of neurons or nodes. The information relevant
to a specific problem determines the number of nodes or cells in the input and output
layers [51,52].

ANNs endeavor to establish relationships between input-output data pairs and identify
the optimal number of nodes in the hidden layers through trial-and-error methods [24,33].
Typically, the collected data undergo randomization and are then considered under three
distinct groups: training, validation, and testing. The dataset for training serves as the
foundation for teaching the ANN to establish relationships between the input and output
pairs through weight and bias adjustments [33]. Numerous traditional training algorithms
commence with randomly initialized weights and biases, which progressively converge
toward the best solution. However, the application of an ANN generally involves two key
calculations: (1) Feed Forward and (2) Back Propagation. In the Feed Forward step, weights,
representing the values expressing the impact of the input set, are initially assigned randomly,
and the system generates outputs for the given sample. The back-propagation algorithm,
which is a widely used ANN training algorithm, adjusts biases and weights originating
from the last layer and progresses toward the first layer. To determine the best biases and
weights for minimizing differences between predicted and actual values, ANN training is
performed [24]. Coskuner et al. [24] summarized many traditional optimization algorithms
that can be employed during the training phase of ANN such as Conjugate Gradient [53],
Levenberg–Marquardt [44,54], and Gradient Descent, Gradient Descent with Momentum,
Gradient Descent with Adaptive Learning Rate, and Gradient Descent with Momentum
and Adaptive Learning Rate [55]. Table 4 furnishes a comparative overview of the ANNs.

Table 4. A summary of ANNs based on previous studies.

Methods ANN

Model Architecture
This model is like a web of interconnected nodes or neurons.
Typically, it is organized into three layers: the input, hidden, and
output layers [12,56].

Approach Black box [12,57].

Number of Data
Researchers have suggested that to yield meaningful and
dependable results with an ANN, the size of the data should be
approximately ten times the number of weights in the network [58].

Advantages

ANN models exhibit remarkable flexibility and are adept at
capturing intricate and nonlinear relationships between
independent and dependent variables. They are invaluable for
modeling a broad spectrum of complex scenarios [12,59].
ANN models exhibit computational efficiency, making them well
suited for handling extensive datasets [12].
Training ANN models offers versatility through a range of
optimization algorithms, enabling fine-tuning and adjustment of
model performance to meet specific requirements [34].
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Table 4. Cont.

Methods ANN

Disadvantages

ANN models are prone to overfitting when handling noisy data,
which leads to potential shortcomings in generalization
performance [12,59].
The black-box structure of ANN models contributes to their
reduced interpretability, which poses a challenge in understanding
the reasoning behind predictions [12]. Unlike some models, the
output of an ANN model is not presented in a readily
human-readable form [60].

3.3.4. Hybrid Models

Two hybrid models were proposed in this study. The first model combines GWO
with ANN, while the second model combines AOA with ANN. The flowcharts of the
proposed algorithms are shown in Figures 3 and 4. The hybrid model is used to optimize
the performance of the ANN in terms of input selection and accuracy enhancement. The
details of the proposed models are elaborated as follows:
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The GWO-ANN Hybrid Model Steps are as follows:
Step 1—Data Normalization: Normalize the dataset to ensure uniformity across features.
Step 2—Feature Selection with GWO: Apply GWO to select the optimal input

feature combination.
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The GWO Optimization Process is as follows:

• Initialize GWO Parameters: Set the initial positions and parameters of the gray wolves.
• Select Leadership Hierarchy: Identify the α (leader), β (second), and δ (third) wolves.
• Iteration Process: Loop through iterations, evaluating the objective function.
• Update Positions: Update the positions of gray wolves based on their interaction with

α, β, and δ wolves.
• Termination Check: If termination criteria are satisfied or the maximum number of

iterations is reached, obtain the solution α.

Step 3—Data Splitting: Divide the dataset into training and testing subsets.
Step 4—Set ANN Parameters: Configure the architecture and parameters of the ANN.
Step 5—Train ANN: Train the ANN model using the training data.
Step 6—Evaluate Performance: Test the model on the test data and evaluate the results.
Step 7—Result Check: If the results meet the required criteria, end the process. If not,

return to the GWO optimization process.
The AOA-ANN Hybrid Model Steps are as follows:
Step 1—Data Normalization: Normalize the input data for consistency.
Step 2—Feature Selection with AOA: Use the AOA to select the optimal input

feature combination.
Step 3—Data Splitting: Split the data into training and testing sets.
The AOA Optimization Process is as follows:

• Initialize AOA: Set AOA parameters and select the initial population.
• Fitness Assessment: Evaluate the initial fitness of the population.
• Update Objects: Update object density, volume, TF, distance, acceleration, and position

based on AOA equations.
• Check TF: Depending on the TF value, update forces and object positions.
• Iteration Loop: Repeat object updates until the maximum iteration or population size

is reached.
• Optimum Solution: Print the final optimized solution.

Step 4—Set ANN Parameters: Define the ANN structure and parameters.
Step 5—Train ANN: Train the ANN model using the training data.
Step 6—Evaluate Performance: Test the ANN on the test set and evaluate

its performance.
Step 7—Result Check: If the results are acceptable, end the process. Otherwise, return

to AOA for further optimization.

3.4. Performance Evaluation of Models

It is recommended that different performance metrics be employed for the evaluation
of the performance of the developed models [22]. Additionally, in this study, to gauge
the efficacy of the created models, diverse performance parameters, namely MAE, MSE,
RMSE, and the R2 were utilized, with their corresponding equations as shown in Table 5.

The Taylor diagram and scatter chart are valuable tools for evaluating machine learning
models; thus, they are used for comparing predictions related to C&D waste. These
diagrams provide a clear visual summary of how well different models capture data
variability and correlation. They help analysts assess the strengths and weaknesses of each
model comprehensively [61]. The Taylor diagram specifically uses performance metrics
such as standard deviation, RMSE, and R² to gauge how closely estimated values align
with experimental results [34]. Meanwhile, the scatter chart employs various performance
metrics, including MAE and MSE, to evaluate model performance.
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Table 5. The equations of performance criteria used in model evaluation.

Performance Metric Min Max Equation

MAE 0 +∞ MAE = 1
n ∑n

i=1 |Api − Aai|
MSE 0 +∞ MSE = 1

n ∑n
i=1

(
Aai − Api

)2

RMSE 0 +∞ RMSE =

√
1
n ∑n

i=1

(
Api − Aai

)2

R2 0 1 R2 =

(
∑n

i=1(Aai−Aa)∑n
i=1(Api−Ap)√

∑n
i=1(Aai−Aa)

2
∑n

i=1(Api−Ap)
2

)2

Important Note: In the provided equations, Aa represents the actual value, Ap represents the predicted value, and
Aa and Ap denote the averages of the actual and predicted values, respectively. The variable ‘n’ represents the
total number of data points. The model(s) with the highest R2 and lowest MAE, RMSE, and MSE values should be
chosen as the optimal model(s).

4. Results and Discussion
4.1. Analysis of Data

In the first step, the collected data were analyzed using descriptive statistical analysis,
which was performed using Microsoft Excel, to reveal its characteristics. Descriptive
statistics can provide an overall perspective. The results of these analyses are presented
in Table 6 and Figure 5. The quantity of waste (in terms of trucks) was identified as the
model’s output and given the abbreviation Oi; the remaining variables were identified as
the model’s inputs and given the names P1, P2, P3, P4, P5, P6, P7, and P8.

Table 6. Descriptive statistics of continuous variables.

Item Symbol Min Mean Max Stand.
Deviation Variance

Amount of Waste
(No. of Trucks) Oi 1 80 810 167.05 27,906.83

Starting year of
the project P2 2010 2018 2023 3.78 14.28

Duration of project
(Months) P4 0.5 10 36 6.09 37.11

Total building area P6 200 5245 27,000 4949.11 24,493,672.28

Number of floors P8 1 4.63 17 3.22 10.34
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To mitigate the disproportionate influence of the Year of Construction (P2) and Total
Building Area (P6) due to their wide ranges compared to those of other variables, these
variables were scaled. This involved converting the original values (2010, 2011, 2013,
2014, 2015, . . ., 2023) and (200, . . ., 27,000) to a scaled range of (1, 2, 3, 4, 5, . . ., 13) and
(0.2, . . ., 27.00), respectively.

In the context of AI, categorical variables must be encoded into numerical data to
be processed by AI models. This encoding process entails assigning a unique numerical
value to each category. For example, in this study, geographical locations were encoded as
follows: North was represented by the value 1, Gaza by 2, Medial Area by 3, Khan Younis
by 4, and Rafah by 5. Similarly, building usage categories were encoded with the values
1, 2, 3, 4, and 5, representing only residential, commercial/residential, only commercial,
public, infrastructure, and other categories, respectively.

4.2. Required Parameters for Each Technique

A model for predicting the waste produced by construction and demolition projects in
the Gaza Strip was developed using the MATLAB R2021a program. Before using GWO,
AOA, and ANN for prediction, it is essential to comprehend them. For this situation,
each strategy required a rundown of data to begin demonstrating. The essential boundary
settings of each calculation are presented in Table 7.

Table 7. Initial parameters of the metaheuristic and machine learning algorithms.

Algorithm/Model Parameter’s Settings Value

GWO
Number of agents 30

Maximum iteration 10

AOA
Population size 30

Maximum iteration 10

ANN

Number of inputs 8
Number of hidden layers 1

Number of outputs 1
Number of nodes in hidden layer 10

Algorithm for training Levenberg–Marquardt
back-propagation algorithm

Maximum iteration 1000
Transfer function type for hidden

and output layers Sigmoid and linear function

4.3. Results of Stand-Alone Predictive Models

The stand-alone proposed ANN with ten and seventeen nodes in the hidden layer was
applied to the data. Table 8 presents the performance prediction indicators using all the
chosen inputs. It is observable that the ANN with ten nodes outperformed the ANN with
seventeen nodes in terms of prediction skills (minimum error). The ANN with ten nodes
achieved the following performance metrics: MAE, RMSE, and MSE of 0.012322, 0.034859,
and 0.0012152; and R2 of 0.98615 in quantitative terms. A scatter plot was included to
illustrate the variation between the actual and predicted waste generation amounts for the
stand-alone ANN models. Please refer to the two scatter plots in Figure 6. After analyzing
the model, it was found that the best number of hidden nodes was different from the
number of hidden nodes used in previous studies [62,63], which is twice the number of
inputs plus one.

Table 8. Evaluation of ANN models during the testing modeling phase.

Model MAE MSE R2 RMSE

ANN with ten nodes 0.012322 0.0012152 0.98615 0.034859
ANN with seventeen nodes 0.036166 0.003871 0.96064 0.062217
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Figure 6. The scatter plot graphical visualization for developed ANN models with different nodes.

4.4. Results of Hybrid Predictive Models

This study uses a systematic approach to optimize prediction accuracy by selecting
the most optimal input combinations for the seven hybrid models. To achieve this, GWO
and AOA were employed, which can identify the most influential input variables for
accurate C&DW prediction. These optimization techniques select the combinations based
on two criteria: minimizing the root mean squared error (RMSE) and maximizing R2.

Table 9 presents the combination of inputs and prediction skill outcomes of the hybrid
models (GWO-ANN and AOA-ANN). The results of hybrid models are presented in
Table 10. Model 5 (AOA-ANN with five inputs) was found to be the most accurate in terms
of predicting waste generation. Quantitatively, model 5 achieved better results, with MAE,
RMSE, and MSE values of 0.0086648, 0.023728, and 0.00056304 respectively, and an R2

value of 0.99333. Traditional ANN, on the other hand, had lower prediction indicators with
values of 0.012322, 0.034859, 0.0012152 and 0.98615. The proposed data-intelligence model
5 showed significant improvement in performance. To visually represent the variation
between actual and predicted waste generation, scatter plots were created for both the
stand-alone AOA-ANN and GWO-ANN models.

Figure 7 shows scatter plots with Cartesian coordinates illustrating the relationship
between predicted waste generation (y-axis) and actual data (x-axis). Blue points in the
plots represent the correlation between predicted and actual data for the test cases in
this study.

Figure 8 presents the Taylor diagrams for the top-performing models assessed on the
dataset. The diagrams reveal that the hybrid ANN model with AOA algorithms provides
the most accurate predictions, with AOA-ANN model 5 showing the highest performance
among the models. Additionally, among the hybrid ANN models using GWO algorithms,
GWO-ANN model 7 exhibits the best predictive ability compared to the other GWO-ANN
models. Figure 8 provides a comprehensive comparison of various models, including the
traditional ANN and the best-performing models utilizing the GWO-ANN and AOA-ANN
techniques. The evaluation is based on three performance metrics: MAE, RMSE, and MSE.
The figure clearly illustrates that the AOA-ANN model significantly outperforms the other
models for all these metrics. This indicates that the AOA-ANN (model 5) approach delivers
superior accuracy and reliability in predictions compared to both the standard ANN model
and the GWO-ANN models.
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Table 9. The combination of input used in the hybrid models.

No. Models
Input/Variable

GWO-ANN AOA-ANN

1 Model 1 P5 P4
2 Model 2 P6, P2 P6, P1
3 Model 3 P4, P8, P5 P8, P1, P3
4 Model 4 P5, P2, P1, P4 P8, P6, P7, P1
5 Model 5 P7, P8, P6, P1, P2 P6, P1, P5, P2, P8
6 Model 6 P7, P3, P2, P8, P4, P5 P5, P1, P3, P2, P6, P7
7 Model 7 P5, P2, P4, P8, P6, P3, P1 P1, P7, P3, P6, P8, P4, P5

Table 10. The evaluation for the hybrid models through the testing modeling phase.

Model MAE MSE R2 RMSE

GWO-ANN

Model 1 0.019014 0.0014154 0.98331 0.037622
Model 2 0.02301 0.0020101 0.97686 0.044834
Model 3 0.014414 0.0012981 0.98495 0.036029
Model 4 0.028611 0.002881 0.96748 0.053675
Model 5 0.015772 0.0014574 0.98409 0.038177
Model 6 0.03422 0.0039633 0.95306 0.062955

Model 7 1 0.012154 0.00085292 0.99033 0.029205

AOA-ANN

Model 1 0.023863 0.0020703 0.97805 0.045501
Model 2 0.018417 0.0014887 0.9825 0.038583
Model 3 0.015966 0.00121 0.98669 0.034785
Model 4 0.011764 0.0012868 0.98605 0.035871

Model 5 2 0.0086648 0.00056304 0.99333 0.023728
Model 6 0.013769 0.00089333 0.98958 0.029889
Model 7 0.013227 0.00077767 0.99104 0.027887

1 This model shows superior performance compared to other GWO-ANN models. 2 This model shows superior
performance compared to other AOA-ANN models.
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Figure 8. Comprehensive performance analysis of the best models: (a) the Taylor diagram and
(b) scatter chart for the best developed models for testing datasets.

5. Research Shortcomings and Future Work

This study also has some limitations and can be summarized as follows:
Firstly, collecting data in C&DW studies is a challenging stage, as it requires extensive

document and bill review due to the site engineers’ limited involvement in waste manage-
ment. However, in Palestine, the widespread reuse of waste, due to limited access to new
materials, facilitated data collection. For collecting this data, which is not available online,
personal and professional connections were used. All data were collected by connecting
with the professionals personally, ensuring its reliability.

Another critical limitation is that this study is based on Palestinian data. Due to the
complex structure of the developed models, they may have limitations in their applicability
to other regions. Due to variations in construction practices and data availability, it is
difficult to generalize the findings of machine learning waste estimation models [17]. To
address this, the models should be reevaluated for other regions of the world, and the
required modifications should be performed before the implementation of the models.

While the study provides an estimate of total C&DW, it does not offer a detailed com-
position of the waste. Nevertheless, this information can still be valuable for construction
companies in planning waste disposal budgets and hauling coordination. Additionally,
general composition proportions from existing research [11,64] can be used to approximate
the weight of individual components.

Finally, the number of the data points can be another issue; however, several C&DW
estimation studies have employed a similar number of data points. The primary goal of this
research was to demonstrate the effectiveness of hybrid models in waste prediction, and
the promising results highlight their potential in civil engineering. However, it is important
to note that the accuracy of the models may improve with a larger dataset.

6. Conclusions

A substantial portion of all waste generated comes from C&D projects. In the con-
struction industry, finding solutions to reduce C&DW is a significant challenge. This study
aims to enhance our understanding of waste produced at construction and demolition sites
through the application of AI modeling techniques. By leveraging AI, we seek to develop
insights and predictive models that can help identify patterns, optimize resource allocation,
and ultimately minimize waste generation in construction activities. For this purpose, the
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study included two main parts: data collection and hybrid model development. The main
findings of this study are as follows:

• The hybrid models, GWO-ANN and AOA-ANN, demonstrate superior accuracy in
predictions while requiring fewer parameters compared to the stand-alone ANN. The
application of metaheuristic techniques, specifically AOA and GWO, plays a pivotal
role in selecting optimal input combinations for the ANN machine learning algorithm,
thereby enhancing the accuracy of the estimations.

• In this study, the best model was selected based on the higher R2 with minimum MAE,
MSE, and RMSE among the proposed C&DW prediction models. The results showed
that AOA-ANN achieved the best performance by incorporating five variables: total
building area, type of project, type of building, starting year of the project, and number
of floors. This model provided the lowest MAE (0.0086648), RMSE (0.023728), and
MSE (0.00056304) with the highest R2 value (0.99333) compared to the models based
on other input combinations.

• The GWO-ANN yielded the best result with a combination of seven variables: type
of building, starting year of the project, duration of project, site access, total building
area, location, and type of project. This model achieves MAE, RMSE, and MSE values
of 0.012154, 0.029205, and 0.00085292, respectively, with an R2 value of 0.99033.

• Notably, AOA-ANN (model-5) outperformed the GWO-ANN (model-7), albeit with a
greater number of features, enhancing its ability to comprehend the internal mapping
relationship between predictors and predictions.

• This study demonstrates that hybrid models developed by integrating metaheuristic
techniques with machine learning methods can be highly beneficial for C&DW man-
agement. Project supervisors can better control project time and cost by estimating
waste amounts more accurately using data from fewer parameters.
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