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Abstract: We developed an evidence-based risk assessment and benchmarking framework towards
pedestrian safety. Pendulum slip resistance tests were conducted on 23 sites within a large campus
facility covering ceramic tiles, pebbles, tactile indicators, and metal coverings for manholes and
drainage. The results show frictional resistance can be reduced when tested wet and exacerbated
when it is on a slope. The results were further verified via laboratory tests under controlled conditions.
The perceived affordance of certain features such as tactile indicators providing a better grip or
traction requires urgent attention. Therefore, a data-driven approach not only enhances the accuracy
of slip risk assessments but also establishes empirically grounded benchmarks for surface safety,
ensuring effective and resource-efficient interventions. The findings contribute to the existing body
of knowledge and future research agenda in pedestrian safety, offering a robust foundation for
benchmarking and risk management efforts in diverse environments.

Keywords: slip and fall; pedestrian; slipperiness; tactile pavement; frictional resistance; public safety
and health; random forests

1. Introduction

Slips and falls are a leading cause of injuries globally and its prevention remains a
pressing public safety and health challenge. While studies on hazards and risk control
measures of slips and falls due to environmental and human factors have been widely
conducted [1], little has been reported on the risk for pedestrians when stepping over
coatings and features such as tactile indicators, metal covers for ramps and manholes, and
drainage metal grills, etc., during wet days (see Appendix A for examples from the case
study). Understanding this relationship, particularly concerning slip and fall incidents, is
a critical issue in urban environments. In tropical cities, where weather conditions and
urban infrastructure present unique challenges, understanding and mitigating the risks
associated with slip and fall accidents is essential.

In tropical cities, frequent rainfall can significantly impact surface slipperiness leading
to pedestrian slips and falls. This necessitates a thorough understanding of slip resistance.
The research by [2] highlights the role of surface roughness in measuring slipperiness,
advocating for reliable methods such as stylus-type profilometers and laser scanning
confocal microscopes to characterise slip resistance properties. The interaction between
shoe–floor surfaces is also emphasised [3], which is crucial for accurate slip resistance
assessment. These techniques are essential for designing safer pedestrian pathways.

Tropical cities experience heavy and frequent rainfall, which can create slippery con-
ditions similar to icy environments. There are numerous studies regarding slips and falls
over icy conditions; a dearth exists when it comes to tropical environments. For example,
ref. [4] discusses the effectiveness of weather warning services in Finland. This research
underscores the importance of timely weather warnings to mitigate slip and fall incidents.
Extrapolating these findings for tropical cities, enhancing weather prediction systems,
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and communicating potential hazards to the public can play a significant role in prevent-
ing accidents. Similarly, ref. [5] focuses on skid-resistant measurements in cold climates.
Their findings suggest that permeable pavements, which allow water to drain through,
could reduce surface water accumulation and improve skid resistance in wet conditions,
which does provide insights relevant to tropical cities, whereby implementing permeable
pavement solutions may help mitigate the risks associated with heavy rainfall.

Workplace injuries due to slips, trips, and falls in Singapore [6] highlight the ongoing
safety concerns in urban environments. These data underscore the necessity for the contin-
uous monitoring and improvement of pedestrian surfaces. Additionally, the assessment of
concrete finishes in community settings reveals that rougher textures do not always guar-
antee better traction in wet conditions [7]. This finding suggests that tropical cities should
prioritise innovative surface treatments and maintenance practices to enhance pedestrian
safety [7]. Similar work was performed in temperate countries; for example, a Slip and Fall
Index (SFI) was developed recently in Canada [8], which alerts the public about slippery
conditions and improves pedestrian safety.

Further research indicates that elderly populations are particularly vulnerable to falls
and preventive strategies should include designing pedestrian pathways with appropriate
textures, ensuring good drainage, and educating the public, particularly the elderly, about
the hazards [9,10]. In tropical cities, heavy rains and wet surfaces pose similar risks.

A rougher surface provides a better grip or traction to walk on but, at the same time,
it increases stainability and reduces cleanability. Other considerations include aesthetics,
glossiness, surface coolness, etc. The choice of floor surface roughness depends on the usage
with different priorities, e.g., dance floors, sports halls, wet kitchens, shopping centres, and
outdoor pavements [11]. Anti-slip treatment, a process which removes soft particles and
exposes hard particles on the flooring surface, may be used to alter the mineral structure of
the floor surface which in turn increases the slip resistance properties and makes the floor
safer when wet or lubricated.

An approved pavement material is usually safe from skids and falls when it is in a
dry and clean condition. However, when it is wet or lubricated, the effect of hydroplaning
or aquaplaning (loss of traction when a layer of water builds up between the sole of the
footwear and the surface of the pavement) may take place. The friction between the sole
of the footwear and the pavement surface depends on the ability of the sole’s grooves
to disperse water beneath. Hydroplaning or aquaplaning occurs when the sole of the
footwear encounters more water than it can dissipate, in which case, this can lead to a slip
and fall. Tactile ground surface indicators were devised in Japan in 1965 to facilitate the safe
movement of people with impaired vision. It has been widely accepted and used globally
since then. The two types of tactile indicators found in practice are (a) warning blocks
that indicate the location of hazards, and (b) directional blocks that indicate the direction
of travel (Figure 1). Among the issues raised in the guide for the proper installation of
tactile indicators is the use of the feature on slopes [12,13]. One of the main concerns is the
slipperiness [13].

ASTM E303 [14] is the international standard test method for measuring the skid
resistance of pavements and other surfaces using the British Pendulum Tester. The standard
is primarily used to determine the slip resistance of flooring materials, especially in terms
of pedestrian safety. The standard defines the test, which involves swinging a pendulum
device over a wetted surface to measure the friction (or slip resistance) of that surface.
The pendulum’s arm is equipped with a rubber slider that contacts the tested surface.
The results are reported as the British Pendulum Number (BPN), also known as the skid
resistance value (SRV). The higher the BPN, the greater the slip resistance. The ASTM E303
standard itself does not specify a single minimum value of BPN required for pedestrian
safety because the acceptable value depends on the specific conditions of use and the level
of slip resistance desired. However, industry practices and safety guidelines generally use
BPN values as a guideline depending on their geographical or functional requirements. For
example, standards in Australia, New Zealand, and Singapore [15,16] (AS/NZS 4586:2004,
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SS 485:2022), specify the slip resistance classification of pedestrian surface materials [17]
(AS/NZS 4663:2004), defining the notional contribution of the floor surface to the risk of
slipping when wet (see Table 1).
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Table 1. Wet pendulum test classification (sources: [16,17]).

Mean BPN Classification Notional* Contribution of Floor Surface to the
Risk of Slipping When Wet

>54 V Very low
45 to 54 W Low
35 to 44 X Moderate
25 to 34 Y High

<25 Z Very high
* The term “notional” has been used to highlight the need to consider all potential contributing factors to a
slip incident.

In the context of developing evidence-driven risk assessment frameworks for slip
and fall prevention, random forests (RFs) emerge as a particularly effective methodology
when compared to other machine learning techniques like support vector machines (SVMs)
and artificial neural networks (ANNs). Random forests, an ensemble learning approach,
construct multiple decision trees and aggregate their predictions, reducing overfitting
through the random sampling of data subsets and features [18]. This leads to high accuracy
and robust performance in handling complex, non-linear relationships, which are typical
in pedestrian safety scenarios. Unlike SVMs, which can be sensitive to specific parameters
like the ε-insensitive zone [19], and ANNs, which often require extensive tuning and
are prone to overfitting [20], random forests offer strong generalisation capabilities with
relatively straightforward implementation, making them a compelling choice for assessing
and mitigating slip and fall risks in large campus facilities.

Adapting an evidence-driven approach for pedestrian safety in tropical cities such as
Singapore involves the accounting of pavement operational surface slip resistance, which
is a gap found in the literature in this field. Thereby to reduce slip incidents, inform public
behaviour, and enable targeted maintenance efforts, further exploration is needed in the
tropics. To that end, the aim of this paper is to develop an evidence-based risk assessment
and benchmarking framework towards pedestrian safety by empirically evaluating the
frictional resistance of some common pavement features when wet in a large campus facility.

2. Materials and Methods

Pendulum slip tests according to SS 485:2022 were conducted on various floor surfaces
(Figures 2 and 3) across a large campus facility in a hot humid tropical city. Tests were
conducted under the following conditions: (1) as is—original state with no intervention;
(2) dry (clean)—a simple cleaning of the surface with a wet towel and dried before testing;
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(3) ASTM E303—ASTM standard condition; and (4) flow—with a flow of streaming water
from a bottle. Laboratory tests were further conducted under controlled conditions to
verify the results of some of the field tests (Figure 4).
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All tests were conducted using a portable skid resistance tester (i.e., British Pendulum
Tester) using a four S rubber. The equipment was calibrated at the site prior to each
observation. Testing for different types of conditions was performed with an initial test shot
followed by four-times actual observations under the four conditions as above. Twenty-
three tests were conducted at various locations across the large campus facility (see Table 2),
as well as ten tests conducted in the laboratory to test different tactile products under
controlled conditions. The tests were conducted from October 2023 to May 2024. The
recorded BPN numbers, pendulum travel (in mm), ambient temperature, weather data,
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qualitative comments on floor usage, exposure conditions, and human traffic levels were
recorded for each test.
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Table 2. Locations of portable skid resistance testing.

Code Floor Surface Location Exposure Travel (mm) Human Traffic

A Tile Toilet Indoor 127 High
B Tile Footpath Indoor 127 High
C Tactile Footpath Outdoor 127 Low

D Tile Disability
ramp Indoor 127 Low

E Tile Bridge Indoor 125 High
F Tile Toilet Indoor 127 High
G Tile Canteen Indoor 127 High
H Tile Lobby Outdoor 125 Low
J Tile Stairs Outdoor 124 Low
K Tactile Lobby Indoor 124 High
L Granite Stairs Indoor 125 High
M Pebble wash surface Footpath Outdoor 127 Low
N Pebble wash surface Lobby Indoor 127 Low
O Red brick Footpath Outdoor 125 Low
P Pebble wash surface Footpath Outdoor 127 Low
Q Asphalt Carpark Outdoor 125 Low
R Metal grate Footpath Outdoor 125 Low
S Tile Stairs Outdoor 125 High
T Metal grate Carpark Outdoor 127 Low
W Concrete Carpark Outdoor 125 Low
X Tactile Lobby Outdoor 127 Low
Y Manhole Footpath Outdoor 124 Low
Z Concrete Footpath Outdoor 126 High

The data gathered are subjected to a thorough statistical analysis to understand the
potential differences between the data collected at various locations and under different
conditions. Descriptive statistics were calculated for each location and condition. Once
the statistics are computed, the mean BPN value for each location is used as the baseline
for that location. The standard deviation will give you an idea of the variability in surface
performance. Box plots were created to visualise the distribution of BPN values across
different locations. This is used to observe the spread and identify outliers in the dataset.

A one-way ANOVA test was carried out to compare means across multiple groups
(i.e., different locations or conditions). Cohen’s d was computed to calculate the effect size
which is used to understand the magnitude of differences between the samples gathered
at different locations. This is used to draw insights into the magnitude of the differences
between different pairs of locations. The understanding of the skid performance over
different locations is useful in developing statistical model performance standards in
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that local context. The observed performance is then compared against the requirements
classified in Table 1.

A pedestrian slip and fall risk assessment framework is developed using a random
forest classification of this dataset. Random forests are employed to develop a predictive
model for assessing slip and fall risks in large campus facilities. They are used in this
study due to their capability of handling non-linear relationships, robustness to noise and
outliers, feature importance analysis, and avoidance of overfitting. Recent studies in the
construction and infrastructure sectors have highlighted the efficacy of random forests
in similar contexts [21–23]. The random forest algorithm utilises historical incident data,
environmental factors (e.g., floor material and environmental conditions), and foot traffic
patterns as input features. By constructing multiple decision trees trained on randomly
selected subsets of the data, the random forest algorithm aggregates the outputs of these
trees to determine the risk score for different facility zones through majority voting. This
ensemble approach effectively captures complex interactions between variables, enabling
the accurate identification of high-risk areas. The model’s robustness to overfitting and
its capability to handle both categorical and continuous variables make it well suited for
this evidence-driven analysis, enhancing the predictive accuracy of the slip and fall risk
assessment framework.

The classifications (V, W, X, Y, Z) correspond to varying degrees of slip potential, with “V”
indicating a very low risk and “Z” representing a very high risk. The data are preprocessed to
include the categorical labels based on standard thresholds: V (>54), W (45–54), X (35–44),
Y (25–34), and Z (<25). Feature engineering is conducted to include relevant contextual
information, such as location, surface type, and environmental conditions. A random forest
classifier is used to train the model on the preprocessed data. The model is designed to
predict the slip risk category (V, W, X, Y, Z) based on BPN values and additional contextual
features. The model is then evaluated to assess the model’s performance using cross-
validation, focusing on metrics such as accuracy, precision, recall, and F1 score. The
programming language Python in a Jupyter environment was used to execute these tasks.

To validate the classification model’s effectiveness in predicting slip and fall risks, the
dataset was split into training and testing sets to assess model performance and gener-
alisation. K-fold cross-validation was applied to further reduce variability and enhance
reliability across different data partitions. Additionally, scenario analysis was used to con-
sider various real-world conditions, such as changes in weather and foot traffic, to evaluate
mode robustness, providing a comprehensive validation of the proposed framework.

3. Results

Observations were made across 23 locations, thus establishing a dataset comprising
BPN values and contextual information (i.e., surface type, location, weather, and environ-
mental data). A variety of these locations are shown in Appendix B.

The box plots drawn for the different locations and conditions are given in Figures 5 and 6.
The same observations made for different tactile surfaces in the laboratory are given in
Figure 7. The box plots show that at some locations, the observations are consistently closer
to the central tendency, whereas at other locations it varies largely. In some locations, the
spread is also wide indicative of a higher variability of the BPN values. Therefore, locations
with high medians and narrower spreads can be considered as high-performing surfaces.
Interestingly, these observations also show the most consistency in the observations for
wet conditions using water flow during testing, followed by the observations made using
the ASTM E303 method. Variability during as-is surface conditions and once the surface is
cleaned and dried are similarly sporadic.

The ANOVA calculations show low p-values, suggesting statistically significant dif-
ferences between the means of the locations being compared. This indicates t significant
differences across locations. Cohen’s d results quantify the magnitude of these differences,
with large values indicating a substantial effect size. The results suggest differences that are
not just statistically significant but also practically significant. Of these observations, many
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pairwise comparisons show statistically significant differences (small p-values), indicating
that BPN values vary significantly between different locations. Additionally, overall, the
effect sizes (Cohen’s d) vary widely, with some comparisons showing large differences in
surface performance as discussed above, while others show minimal differences (small
Cohen’s d).
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Large effects were observed with significant p-values between pairs O–W, F–O, E–O,
B–O, N–W, C–F, A–W, D–K, G–O, and A–F, in descending order of effect. Locations O and
W appear multiple times with very high Cohen’s d values compared to others, indicating
that they have significantly different means from other locations. Location O with the red
brick pavement shows significant differences in many comparisons, often with a very large
effect size, suggesting it has distinct characteristics compared to other locations. Whilst
it could be due to the substrate materials’ properties, locations O and W warrant further
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examination to understand the difference from the others. These results can be used to
isolate and initiate targeted improvements of locations, i.e., to conduct risk assessments.
For example, locations with large effect sizes and significant differences in BPN values
should be prioritised for intervention to reduce slip risk. The analysis can also help establish
performance baselines by identifying which locations have consistently better or worse BPN
values, guiding maintenance efforts. The large variability in the current dataset suggests
that performance differs across different surface types, making it more suitable for setting
differentiated benchmarks. This has a key implication for achieving study objectives, as
these statistics can inform data-driven policies and guidelines to enhance pedestrian safety
across different campus locations.
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Once the statistics verified the suitability of the dataset for setting differentiated
benchmarks, the on-site observation dataset (n = 368) was used to train a random forest
classifier model. The dataset was divided into training (70%) and testing (30%) sets to
evaluate the model’s performance on unseen data. The classifier was trained to classify
locations into five risk categories (V, W, X, Y, Z) using the training data. Then, it was used
to make predictions on the test set. The results of which are used to assess the model’s
performance using metrics such as precision, recall, F1 score, and support (see Table 3).

Table 3. Random forest classification model performance.

Mean BPN Classification Precision Recall F1 Score

>54 V—very low 0.93 0.96 0.95
45 to 54 W—low 0.75 0.67 0.71
35 to 44 X—moderate 0.56 1.00 0.71
25 to 34 Y—high 0.88 0.78 0.82

<25 Z—very high 1.00 0.94 0.97
Accuracy 0.90

Macro average 0.82 0.87 0.93
Weighted average 0.91 0.90 0.90

The results indicate that the model performs exceptionally well for class V (very low
risk). This means that almost all the predictions for V were correct, and the model identified
instances of class V correctly. The model struggled to identify instances with class W
(low risk), likely due to having fewer observations. For class X (moderate risk), the model
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correctly identifies all instances with perfect recall, but there were false positives. The reason
why the model did not make many correct predictions for these classes is possibly due to the
small number of samples or overlap in features between these classes and others among the
overall datasets. The model’s performance for class Y (high risk) is good, which indicates
the model makes some correct predictions; it also misclassifies some instances. Excellent
metrics were observed with class Z (very high risk), with perfect precision and high recall
indicating the model identifies Z instances correctly. The overall accuracy indicates the
model will correctly classify 90% of the test instances. The overall performance is good
for classes with more data (i.e., V and Z), and relatively poor performance is observed in
classes W and X, which is common in datasets with imbalances.

The above metrics for the trained random forest classifier suggest that there might be
an imbalance in the dataset, with certain classes like V being overrepresented and others
like W and X underrepresented. This imbalance can lead to the model being biased towards
the majority class. The model also might be struggling with feature overlap for classes W
and X. This occurs when the features distinguishing the classes are similar or overlapping.
To overcome this, additional features and more complex interactions between features can
be considered to improve overall classification accuracy. However, random forests are
known for being able to handle imbalanced datasets more effectively than many other
classifiers [24]. Given the potential imbalance in the distribution of BPN observations (e.g.,
more surfaces may fall into the “V” category than the “X” or “Z” categories), this is a critical
advantage. Random forests can also effectively manage the noise and variability of the
data to smooth out erratic predictions [18]. Pedestrian surfaces vary widely in terms of
material, usage, and environmental exposure. Using the random forest classifier’s ability
to use categorical data with numerical data improves the adaptability to these variations
between multiple features [25], leading to the more accurate classification of slip risks
under diverse conditions.

An analysis of the feature importance shows that the condition of the surface and
temperature were the most influential factors contributing to the model’s decisions, while
human traffic (high or low) and exposure (whether indoor or outdoor) contributed the least.
This emphasises which variables are important in risk assessment and safety management.
In the context of a large campus facility located in a hot–humid tropical climate, surface
conditions and temperature emerged as the most influential factors in predicting slip risks.
The surface condition is particularly critical in such environments, as the combination of
frequent rainfall and high humidity can lead to wet, slippery surfaces, especially on outdoor
walkways and entrances. Current findings emphasise the need for constant monitoring and
maintenance, from regular cleaning to surface modification works such as the application
of anti-slip treatments to prevent accidents. Temperature was also considered as a predictor,
and high ambient temperatures may influence the surface slip resistance characteristics
leading to slip and fall hazards. This study helps understand the factors which underscore
the need for tailored risk mitigation strategies that consider the unique challenges of tropical
hot–humid climates towards public pedestrian safety.

In the scenario analysis conducted as part of this study, the robustness of the classifica-
tion model was tested for various real-world conditions that could impact slip and fall risks
in large campus facilities. The scenarios included changes in environmental conditions (i.e.,
rain and extreme temperatures) and variations in foot traffic (e.g., peak/off-peak hours).
The analysis showed that certain environmental factors, such as wet or slippery surfaces
during rainy weather, significantly increase the predicted risk scores in specific facility
areas like entrances and hallways. High foot traffic periods are likely to show elevated risk
predictions in commonly used walkways and near staircases, indicating a strong correlation
between congestion and incident risk. Conversely, scenarios involving drier weather and
low traffic volumes demonstrated reduced risk scores, reflecting the model’s sensitivity to
dynamic input variables. These results help validate the framework’s ability to adapt to
different conditions and provide insights into specific high-risk scenarios, guiding targeted
preventive measures and enhancing safety strategies in large campus facilities.
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4. Data-Driven Risk Assessment and Benchmarking Framework

The relationship between slip resistance and pedestrian safety is well documented
in the literature. Lower friction coefficients (analogous to lower BPN values) significantly
increase slip risk [26]. The random forests provide insights into the importance of different
features (e.g., specific conditions or environmental factors) in predicting the BPN value
and thus the slip potential of a surface. This capability is crucial in a risk assessment
context, as it helps prioritise which factors need the most attention in mitigating slip risks.
Risk assessment in this context involves identifying surfaces with low BPN values, which
correspond to a higher potential for slips and falls. This is crucial as slips, trips, and
falls represent significant causes of injuries in public spaces, contributing to both direct
(medical costs, legal liabilities) and indirect (lost productivity, reputation damage) costs.
Understanding the importance of various predictors allows for more targeted interventions
in surface maintenance and safety planning. A fully trained model with high prediction
accuracy can be used to classify each pedestrian surface of a large campus facility into one
of the five slip risk categories, providing a granular risk profile for different areas within
the campus.

Similarly, the classification results can be used to set baseline safety standards for
different surface types and use cases. They serve as a reference for future risk assessments
and safety improvements. Based on the risk categories, safety interventions (e.g., increased
inspections, surface treatments, signage, and maintenance schedules) can be prioritised for
areas with high and very high slip potential, based on the risk categories. Inspection and
ongoing monitoring plans can be used to update the risk assessment with new observations.
With the availability of new data, the random forest can be retrained periodically to
incorporate the latest conditions throughout the facility. This helps update the performance
standards to ensure they remain relevant and effective.

This data-driven risk assessment framework can thus be used to create benchmarks
for surface maintenance and improvements based on the performance standards. Bench-
marking as a concept in safety management is supported by the idea that standards and
thresholds should be grounded in empirical data. The authors in [27] argue that benchmark-
ing provides a critical reference point for continuous improvement in safety performance,
especially in dynamic environments, such as healthcare or large campus facilities. This
dataset provides the empirical basis needed to establish such benchmarks, ensuring that
the performance standards are not only theoretically sound but also practically applicable.

5. Discussion

This study on pedestrian surface safety using the BPN contributes significantly to
the fields of facility management and safety management by providing a comprehensive
evaluation of slip risks across various surface types and conditions. Through comparative
analysis, the research identifies the performance of different pedestrian surfaces under vary-
ing environmental conditions, such as wet and dry states, offering valuable insights into
which surfaces are safer and under what circumstances. This analysis not only aids in iden-
tifying safer pedestrian pathways but also evaluates the effectiveness of surface treatments
and modifications, thereby contributing to best practices for enhancing pedestrian safety.

One of the critical contributions of this study is the establishment of baseline BPN
values for various surface types within a large campus environment. These baselines
serve as benchmarks for future safety assessments and performance standards, allowing
for more accurate and localised safety guidelines tailored to the specific conditions of
the campus. This study also delves into how different surface conditions impact slip
resistance, providing a deeper understanding of the dynamics at play. This knowledge has
practical implications for surface maintenance and cleanliness, informing more effective
maintenance schedules and procedures to enhance safety.

BPN is a widely recognized measure often used to assess the potential slip risk of
pedestrian surfaces. Higher BPN values generally indicate better slip resistance and, con-
sequently, lower slip potential. A dataset was developed by manual data collection from
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various locations on a campus, comprising BPN values and other contextual data. A ran-
dom forest model was developed to be used to predict which conditions or locations are
most likely to result in BPN values below a critical threshold, indicating high slip potential.
This predictive modelling helps in proactive risk management by identifying and miti-
gating hazards before accidents occur. A data-driven risk assessment and benchmarking
framework is proposed, where baseline BPN values against which future BPN measure-
ments can be compared. For example, if a surface’s BPN value falls significantly below its
established baseline, it would signal that the surface has degraded or that maintenance
is needed.

Based on this framework, surfaces across the campus can be categorised. Surfaces
falling into the low slip resistance category would require attention. This framework,
therefore, can help pinpoint specific locations on campus with higher slip risks due to
lower BPN values. This information is crucial for campus safety management to target
high-risk areas with interventions such as resurfacing, improved cleaning protocols, or
the installation of slip-resistant materials. It contributes to informed decision making.
By understanding the conditions that lead to low BPN values, facility managers can
make informed decisions about where to allocate resources most effectively to enhance
pedestrian safety. This framework is robust and adaptable to be continually improved with
ongoing monitoring data. Periodic updates to the dataset can retrain the model to ensure
the benchmarks and safety interventions remain relevant, contributing to a continuous
improvement process in campus safety management.

The proposed approach leverages empirical data to assess and manage slip risks,
making the process more objective and evidence-based. This is a significant improvement
over relying solely on expert judgment or anecdotal evidence. The findings from this study
can be further integrated to update performance standards and guidelines for different floor
covering materials, ensuring that these guidelines reflect the most current and relevant data.
Moreover, this approach helps clearly communicate recommendations for maintaining and
improving surface performance, including specific actions to take when BPN values fall
below acceptable levels. And, by extension, to ensure the pedestrians using the campus
facilities are safe from slips and falls by helping to effectively allocate resources to safety
awareness activities.

At the same time, it ensures an evidence-based approach to pedestrian safety aware-
ness programmes. For example, from the three benchmark locations A to C, when tested
with a film of sprayed water (ASTM E303), although all show a reduction in BPN, the
final BPNs for all the cases are ranked from “moderate” to “low risk.” However, when
tested on other locations, the results show that with a film of sprayed water, the frictional
resistance of the wet surfaces for all cases was reduced 2 to 3 times compared to that of the
corresponding dry surfaces. Similar results were obtained for features including ceramic
tiles, pebbles, tactile indicators, and metal coverings for manholes and drainage. This study
reinforces the need for awareness of pedestrians when walking over features installed on
rough concrete pavements. Those features may appear as slip-resistant as the adjacent
rough concrete pavement when dry but may be up to three times more slippery when wet.
The perceived affordance to the general public that a feature such as a tactile indicator
would give a higher grip or traction requires urgent attention.

The situation can be further exacerbated when a pedestrian is using a slope, in which
case the frictional resistance required can be computed based on the forward force and the
weight of the pedestrian. In these cases, a higher “Pendulum Test Value” (PTV) to prevent
slips on slopes is required. The Health and Safety Executive (HSE) recommends that for a
horizontal floor where a Pendulum Test Value of 36 PTV on a wet or contaminated floor
is required to ensure a “Low Slip Potential”, for every one degree of slope, the PTV value
shall be increased by 1.75 PTV. It is suggested to use approximately 2 PTV per degree to
allow for tolerancing and floor wear [10].

These considerations and features are to be applied to the classifier in future work.
Further future work may include spatial mapping of the classified risk categories onto a



Buildings 2024, 14, 3700 12 of 16

campus layout to visualise areas of varying slip potential. This mapping helps identify
high-risk zones (Y and Z categories) that require immediate attention.

The integration of advanced statistical models, including random forest classifiers,
marks a significant advancement in the predictive modelling of slip risks. Unlike tradi-
tional threshold-based assessments, the random forest approach considers a broader set
of features, allowing for more nuanced and accurate predictions of slip potential. This
innovation is particularly valuable in complex pedestrian environments where safety is
a priority. This study’s classification framework, which categorises surfaces into specific
risk levels, provides actionable insights for targeted safety interventions. This targeted
approach ensures that resources are allocated efficiently, focusing on the highest-risk areas
to enhance overall pedestrian safety.

Furthermore, this research contributes to the development of benchmarking standards
for slip resistance, offering a consistent framework for evaluating and improving pedestrian
safety across different environments. These standards can be adopted by other facility
typologies, contributing to a broader impact on pedestrian safety management.

From an academic perspective, this work bridges the gap between infrastructure
management, safety engineering, and machine learning, demonstrating the applicability
of data-driven approaches in solving practical safety challenges. The findings not only
contribute to the existing body of knowledge but also pave the way for future research
and development in pedestrian surface safety, offering a robust foundation for ongoing
improvements in facility asset and safety management.

6. Conclusions

Pendulum slip resistance tests were conducted on 23 sites covering ceramic tiles,
pebbles, and features such as tactile indicators and metal coverings for manholes and
drainage. The results show that the reduction in frictional resistance can be reduced when
tested wet for all cases. Similar observations were derived from laboratory tests under
controlled conditions. Pedestrians must pay special attention when stepping over features
including tactile indicators, manhole covers, coatings, etc., when wet. The reduction in
frictional resistance is further exacerbated if the features are installed on a slope. The
perceived affordance of certain features such as tactile indicators providing a better grip or
traction requires urgent attention.

By integrating statistical analyses with machine learning models, this study offers a
robust framework for assessing slip risks, benchmarking surface performance, and guiding
targeted safety interventions within large and complex environments, such as a university
campus. This data-driven approach not only enhances the accuracy of slip risk assessments
but also establishes empirically grounded benchmarks for surface safety, ensuring that
interventions are both effective and resource-efficient.

This study makes a significant contribution to the field of pedestrian safety and
risk management by demonstrating how advanced analytical methods can improve the
understanding and management of slip risks. The proposed framework and the insights
derived from the BPN dataset offer a replicable model that can be adapted by other
institutions, providing a strong foundation for future benchmarking and risk management
efforts in diverse environments.
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