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Abstract: Air conditioning (AC) is an important component of building energy consumption. Reduc-
ing building AC energy consumption has attracted significant research interest worldwide. Studies
have shown that the AC control behavior of users is a key factor affecting building AC energy
consumption; however, the existing research on the dynamic laws for the AC control behavioral
changes of users over a long period is limited. Therefore, taking a typical open office as an example,
this study collected measured data spanning different years, and explored the temporal variation
characteristics of AC operating behavior in office buildings. Based on a dynamic model framework
constructed with a three-parameter Weibull function and a time superposition function, this study
conducted modeling and analysis of dynamic AC operating behaviors in the same open-plan office
across different years. First, the AC operating behavioral model was trained in parallel using field
measurement data from different years to quantitatively analyze the patterns and extent of changes in
occupants’ AC operating behaviors. Subsequently, AC operating data from a fixed year was used as
a test set to examine the impact of behavior changes on the prediction accuracy of the AC operating
behavioral model through indicators such as open rate, on–off profiles, confusion matrices, and open
rate under different time periods/temperatures. Results indicate that, due to behavioral changes, the
maximum difference in the probability of AC opening under the same temperature can reach 96.8%.
These behavior changes occur not only in varying intensity but also function as influencing factors. If
behavior changes are ignored, prediction accuracy for AC open rates decreases by approximately
15%. This study reveals a method for dynamically adjusting the AC operating behavior model and
improving its accuracy, which can significantly improve the accuracy of AC operating behavior
modeling, the practical application effect of the behavior model, and reduce the energy consumption
and carbon emissions of buildings.

Keywords: air-conditioning operating behavior prediction; behavior change; office building

1. Introduction

Building energy conservation has attracted increasing attention worldwide in the
context of climate change and carbon emission reduction [1]. Public buildings are an impor-
tant component of building energy consumption, and reducing their energy consumption
intensity has always been an important energy conservation topic [2]. Office buildings
are one of the important components, and their annual energy consumption accounts
for approximately one-third of all public buildings [3,4]. Therefore, studying the energy
consumption operation mechanisms of office buildings and methods for reducing energy
consumption is highly significant.

Air conditioning (AC) accounts for approximately 40–60% of all operating energy
consumption in office buildings [5] and is an important way to implement energy conser-
vation and emission reduction strategies [6,7]. Achieving the maximum reduction of AC
energy consumption while meeting the reasonable energy consumption needs of users is
an important task currently being explored. Measures such as increasing the utilization rate
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of renewable energy, improving the efficiency of heat exchangers at the AC terminals, and
applying energy-saving enclosure structures can effectively reduce AC energy consumption
and provide energy-saving benefits. In addition, indoor occupants being energy users
directly affect the intensity and time distribution of energy use, and their important role in
reducing building energy consumption cannot be ignored [8,9]. Occupant behavior, like
other factors such as building size, meteorological conditions, and construction technology,
are crucial to AC energy consumption. Occupant behaviors affecting building energy
consumption can be categorized into two main types: one is the occupant behavior of
operating equipment, and the other is the occupant presence in the room [10–12]. Different
AC operating behaviors lead to different building AC energy consumption levels under
the same building envelope, meteorological parameters, and AC system performance [13].
Existing studies have shown that the AC energy consumption in buildings can be reduced
by 7~52.5% when AC operating behavior is deeply understood and occupant-centric AC
control methods are applied [14,15]. Accurately considering the impact of occupant be-
havior on actual AC usage patterns is necessary to conduct an in-depth analysis of AC
operation and energy consumption [16]. Therefore, many scholars have conducted relevant
studies recently on AC operating behavior and its models.

AC operating behavior research focuses on the control actions of occupants such
as opening, closing, and temperature adjustment of AC equipment [17,18]. Turning the
AC on and off directly affects the final state of the AC equipment and determines the
duration of the cooling loads [19]. Monitoring the behavior parameters of occupants and
other environmental data and selecting the influencing factors related to the AC operating
behavior as the model input is necessary when establishing the AC operating model.
Based on previous studies, the factors affecting AC switching can be divided into two
categories: environmental and non-environmental factors [20]. Environmental factors
include outdoor temperature, indoor temperature, and indoor thermal comfort, whereas
non-environmental factors include the time of day, occupant age, and gender. In the
process of tracing the causes of AC operating behavior, mathematical methods such as
correlation analysis [21] and causal inference analysis [22] are often used to quantitatively
characterize the relationship between external variables and occupants’ actions. Mun
et al. [23] proposed that the temperature is the main environmental factor affecting the
opening of ACs. Regarding the correlation between outdoor and indoor temperatures and
the opening of ACs, some scholars believe that the opening of ACs is directly affected by
the indoor temperature, whereas others believe that the role of outdoor temperature cannot
be ignored.

The quantitative characterization of AC operating behavior based on measured data
is a key aspect in studying AC operating behavior. The main methods include logistic
regression [24–27], the Weibull function [25,28], and the time discrete model based on the
Markov chain and Monte Carlo method [29]. Machine learning has also developed into one
important method for modeling occupant behavior in recent years because it can efficiently
use multiple factors and multiple historical data as inputs to occupant behavior models.
This includes the use of decision tree [30], XGBoost [31], and other models to predict AC
operating behavior. Among them, the logistic regression function has a better fitting effect
on the AC operating behavior, and the time discrete model based on the Markov chain
is more widely used [32]. Du et al. [24] used logistic regression to establish a prediction
model for the AC operating behavior of a typical residence in Chongqing and established
a quantitative relationship between the indoor temperature and the AC on–off state. Ren
et al. [25] conducted a questionnaire survey of residents in six cities and established an
AC operating behavior model based on the Weibull function according to the indoor
temperature and events. Jian et al. [33] proposed a framework for simulating random
AC operating behavior by combining measured data with a logistic regression function.
Mun et al. [23] compared the accuracy of AC operating prediction under different machine
learning algorithms. The prediction methods of binary logistic regression, random forest,
and support vector machine models were compared. The results showed that the random
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forest algorithm provided the best prediction performance. However, more research is
needed to model the AC operating behavior in office buildings [27,34]. In addition, some
scholars have pointed out that environmental parameters at past moments will also affect
the air-conditioning status at the current moment [35,36].

The literature review revealed that when describing AC operating behavior, most
studies mainly focus on the AC switch data of a specific year when establishing the model.
Furthermore, studies investigating the dynamic laws of changes in occupant behavior over
a longer period are limited [37]. However, owing to the influence of the environment and
the composition of occupants, changes in occupant behavior in buildings are very common.
Notably, changes in the composition of occupants are more common in office buildings,
and changes in the AC operating behaviors of occupants are more likely to occur, compared
with residential buildings where occupant turnover is less frequent. Therefore, identifying
the changing rules of occupant behavior in office spaces based on actual data, analyzing
the influence of behavioral changes on the accuracy of the AC operating behavior model,
and studying technical methods for dynamically adjusting models are necessary.

Based on the above analysis, this study used the AC operating behavior data from an
office space in Nanjing to study the changing patterns of occupant behavior. Based on the
investigation and analysis of indoor environmental parameters and occupant behavior data
in the summer over two years, this study proposed a model framework for AC operating
behavior and constructed an action-based AC operating behavior model based on the
Markov chain time discrete model. The fitting functions of the influencing factors and the
probability of turning the ACs on and off were established, and the changing patterns and
degree of AC operating behavior over time were explored based on the year. The method
of dynamically adjusting the AC operating behavior model to improve the model accuracy
was revealed through different combinations of data training sets and test sets. The research
outputs have a positive significance for increasing the accuracy of AC operating behavior
models, improving the practical application effects of behavior models, and reducing the
actual energy consumption of buildings.

2. Materials and Methods
2.1. Technical Approach

The technical approach used in this study is illustrated in Figure 1. This study first
establishes a model framework for AC operating behavior, followed by parallel training of
the model using data from 2016 and 2018 to explore the dynamic patterns of AC operating
behavior over time.

1. Data survey and testing

The dataset used in this study was collected from an open-plan office at a university
in Nanjing, China. Basic information about the indoor occupants, their daily routines, and
environmental parameters was recorded using questionnaires and field surveys. Addition-
ally, the influence of indoor and outdoor environmental factors on AC operating behavior
was analyzed. Subsequently, this study employed models, such as Weibull function and
time superposition function, to quantitatively characterize the probabilistic relationship be-
tween environmental variables and AC switch actions. Moreover, a random AC operating
behavior model was constructed using a time-discrete function based on the Markov chain.

2. Model training

Based on the constructed model framework, this study further analyzes the dynamic
patterns of AC operating behavior over time. The probability functions within the AC
operating behavior model framework were trained in parallel using base data from 2016
and 2018, thereby constructing an AC operating behavior model based on data from the
same office across different years. The two generated AC operating behavior models were
then simultaneously applied to predict the AC operating behavior in 2018, and the results
were compared with the actual behavior characteristics of 2018.
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Figure 1. Technical Approach.

3. Behavior transition analysis

Considering the stochastic nature of AC operating behavior, the model was compared
and validated using the results of 100 simulations against the actual AC switching status
in the model validation phase. The validation metrics included the switching rate, confu-
sion matrix, switch curve, and variation curve of the AC switch probability with outdoor
temperature and time of day. By comparing the differences in the AC switch probability
functions under different training datasets and examining the model accuracy, this study
explores the extent to which behavioral changes affect the predictive analysis of AC operat-
ing behavior and analyzes how to dynamically adjust the AC operating behavior model
under the influence of behavioral changes, thereby improving the prediction accuracy and
optimizing the practical application of the behavior model.

2.2. Field Measurement and Survey

Figure 2 shows the office and testing instruments used in this study. The test site is
located on the west side of the first floor of a three-story office building in Nanjing, Jiangsu
Province, China. The floor plan is shown in Figure 2A. The central area is an open-plan
office space surrounded by several offices. Because these surrounding offices are generally
enclosed, the data source for this study was the open-plan office area, as indicated by the
shaded region. The open-plan office covers an area of approximately 110 m2 (excluding
the lobby). Four cabinet-type split ACs are located at the four corners of the room, and the
ventilation system is a combination of natural and mechanical ventilation. Approximately
20 individuals, primarily architectural graduate students and professionals, occupy this
office regularly.

Measurement points were arranged within the study area, as shown in Figure 2A.
The numbers in the figure represent the measurement point distribution, and the labels
“a/b” next to the points indicate the device codes. Points 1–3 recorded the distribution of
occupants (using infrared motion sensors), points 4–5 measured the outdoor temperature
and humidity, and points 6–9 recorded the indoor temperature and on/off status of the
ACs. The measurement period spanned from 20 August to 30 September 2016, and from
29 June to 20 August 2018. All devices recorded data at 5-min intervals, and the height
of the measurement instruments from the ground was approximately 0.75 m. The data
logger used in the tests is shown in Figure 2B. The HOBO Occupancy/Light Logger has a
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detection radius of 12 m, with a horizontal detection range of 102◦ (±51◦) and a vertical
range of 92◦ (±46◦). The temperature and humidity recorder (WSZY-1) offers a resolution
of 0.1 ◦C for temperature and 0.1% RH for humidity.
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2.3. AC Behavioral Operating Model
2.3.1. AC-On Function

According to existing research results, the indoor temperature, outdoor tempera-
ture [23,38,39], and time of day [38] are considered to be three important factors affecting
the AC turn-on action. During the analysis of the measured data, it is found that indoor
temperature variations were relatively stable compared to outdoor temperature. Part of the
indoor temperature data exhibited the same variation trend as outdoor temperature, while
another part showed decreases when the AC was on and increases after it was turned off.
Quantifying the correlation between variables through correlation coefficients is commonly
used to study the connection between variables [40]. This study used the Spearman rank
correlation coefficient to determine the correlation between the influencing factors in the
environment and the action of turning on the AC. The larger the correlation coefficient, the
higher the correlation. According to the measured data, the correlation analysis and time
of day and indoor/outdoor temperature calculation with the AC turning on action demon-
strated that the turning on action correlated more with outdoor temperature (correlation
coefficient of 0.76) but showed a weak correlation with time (correlation coefficient of 0.21)
and indoor temperature (correlation coefficient of 0.56). Therefore, this study selected the
outdoor temperature as an input parameter of the AC-on function.

This study used the Weibull function to describe the AC turning on action. This
function is widely used in linear regression fitting and can use single or multiple indepen-
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dent variables as influencing factors to predict the dependent variable with a binomial
distribution. The Weibull model accurately describes the behavior of the AC turning on
based on the threshold and scope in the literature [41]. The model simplifies the interac-
tion between behavior and environment into a corresponding relationship under different
thresholds. When the environmental parameters reached the threshold requirements, the ac-
tion judgment function was immediately triggered to determine whether the corresponding
action occurred.

This study adopts this function to describe the AC turn-on behavior quantitatively.
The formula is shown in Equation (1):

P′
open =

{
1 − e−△t∗( T−T1

L )
a

(T > T1)
0 (T ≤ T1)

(1)

where P′
open is the probability of turning on the AC; T is the outdoor temperature, ◦C; T1 is

the threshold value, ◦C; L is the range of outdoor temperature, ◦C; △t is the time step, min;
and a is the coefficient of the formula.

2.3.2. AC-Off Function

The moments at which the AC turning off actions occurred were statistically analyzed
based on the measured data. The results showed that 25 out of 30 AC turning off actions in
2016 occurred at the moment people left, while 24 out of 50 AC turning off actions in 2018
occurred at the moment people left. Therefore, other factors affect the turning off of the AC
along with people leaving, and further data mining is required.

According to the analysis of the influencing factors, the cumulative impact of time was
considered to trigger the AC turning off action. The function describing the AC turning off
action is considered a probability function superimposed over time, and the probability of
the AC turning off at the current moment is affected by the previous moment. The function
prototype is expressed in Equation (2):

P′
close =


P1 ∗ (1 − P1)

n1−1 τ1 ≤ τ < τ2, Y = y
Pi ∗ (1 − Pi)

ni−1 ∗ ∏i−1
k=1(1 − Pk)

nk , τ2 ≤ τ < τn, Y = y
0 (τi+1 ≤ τ) or

(
0 ≤ τ < τi), Y = y

(2)

where P′
close is the probability that the AC is turned off at that moment, τ is the current

moment, i is the number of time periods with different AC closing probabilities from
τ1 ∼ τ, n1 is the number of time steps from τ1 ∼ τ, nk is the number of time steps from
τk−1 ∼ τk, ni is the number of time steps from τi−1 ∼ τ, P1 is the probability that the AC
is turned off during the time period τ1 ∼ τ, Pi is the probability that the AC is turned off
during the time period τi−1 ∼ τi, and Y is the year.

2.3.3. Running Judgment Logic

Figure 3 shows the judgment logic of the action-based AC operating behavioral model
within a time step, where the input parameters are the time of day, outdoor temperature,
occupancy state in the room, the AC on/off state of the previous moment, and the output
parameter is the AC on/off state of the current moment. When the AC is off at the previous
moment, it determines whether an occupant-arrival trigger condition exists. When the
trigger condition occurs, a random number is generated for comparison with the calculation
result of the AC turning-on function; when the random number is less than or equal to the
probability value of the trigger condition, the AC is turned on; otherwise, it enters into the
comparison of the next time step until the AC is turned on. If no trigger condition exists,
the AC maintains its state at the previous moment. The AC is judged when turned on at
the previous moment to see whether the factors that trigger the state change exist—that
is, whether a person left and whether the current moment is between 18:00 and 23:00. If
the time range condition is satisfied, the AC turning-off function is judged. If the trigger
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condition of people leaving occurs, the AC status will be output as “off”. When a trigger
condition does not exist, the AC maintains the on/off status of the previous moment.
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2.4. Model Validation

After discretizing the time, the simulation is performed for each step from the first
time point, and after obtaining the AC on–off state at this time point, it proceeds to
the next time point until the simulation is completed. Considering the randomness of
the model, each simulation process was repeated 100 times, and the statistical values of
the 100 simulation results were compared and analyzed with the measured data. The
following four indicators were applied in this study when analyzing the simulated and
measured data.

1. AC open rate

The AC open rate describes the proportion of AC on hours to the total hours. The
open rate is calculated as shown in Equation (3)

C =
N1

N2
(3)

where C is the open rate; N1 is the number of time points when the AC is on; and N2 is the
number of time points within the analysis time range.

2. AC on–off profile and confusion matrix

The AC on–off profile is a curve drawn according to the time and on–off status of the
AC. A confusion matrix was used to quantitatively describe the consistency between the
simulated and measured AC on–off profiles. The confusion matrix categorized the results
into four categories, as listed in Table 1. In this study, F1 [42] was used as a comprehensive
index to evaluate the accuracy of the AC on–off profile, which is a generalized evaluation
index for accuracy calculated as shown in Equation (4).

F1 =
2 × M1S1

2 × M1S1 + M0S1 + M1S0
(4)

Table 1. Confusion matrix [20].

Model Actual Measurement

1 0

Simulate
1 M1S1 M0S1

0 M1S0 M0S0
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3. Temperature/time consistency

Temperature/time consistency is the agreement between the actual AC open rate and
the average value of 100 simulations under different outdoor temperatures and times of
the day. The absolute error rate S between the actual and simulated curves was calculated
using Equation (5) to evaluate the accuracy.

S =

∫ X2
X1

|Ps−PM |
PM

dX

X2 − X1
(5)

where S is the absolute error rate, X1−X2 is the temperature/time range of the analysis, and
Ps, PM are the AC open rates obtained from the simulation and measurement, respectively.

3. Results and Analysis
3.1. The Effect of Behavior Changes on AC Operating Behavior Model
3.1.1. AC Turning On Model

The probability of the AC turning on at different outdoor temperatures under the
premise that the room is occupied was calculated, and the probability function of the
AC turning on was fitted using the least squares method. The relationship between the
outdoor temperature and the probability of the AC turning on was then obtained, the
fitting curves are shown in Figure 4. The fitting function is shown in Equation (6), and the
curve fitting goodness (R2) obtained based on the 2016 and 2018 data training were 0.88
and 0.93, respectively.
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Comparing the two AC turning-on functions, the temperature threshold and scope of the
two results for the two years were the same. However, at the same outdoor temperature, the
turning on probability based on the 2018 data was higher than that based on the 2016 data.

P′open =



{
1 − e−5∗( T−25

25 )
4.70

(T > 25, Y = 2016)
0 (T ≤ 25, Y = 2016){

1 − e−5∗( T−25
25 )

3.63
(T > 25, Y = 2018)

0.05 (T ≤ 25, Y = 2018)

(6)

3.1.2. AC Turning Off Model

Differences in the AC turning off behavior were observed between 2016 and 2018. In
2016, 83% of the AC turning off actions occurred when people left the room. Therefore, the
AC turning off action in 2016 can be simplified to relate only to the event of people leaving
the room. In 2018, only 48% of AC turning off actions occurred when people left the room.
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Further research was conducted on the occurrence patterns of people turning off their ACs
in advance in 2018, as shown in Figure 5.
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The data points in Figure 5 represent the hourly probabilities. From the values of
the AC turning off probability at different hours, it can be found that the AC turning off
probability presents three characteristic stages: (1) before 18:00, the probability of the AC
turning off at this stage is close to 0; (2) 18:00–20:00, the probability of turning off the AC
at this stage is low; and (3) 21:00–22:00, the AC is turned off with a high probability of
being triggered. These different stages are represented by different data colors and shapes
in Figure 5.

At the same time, the dotted line in Figure 5 represents the average value of the
AC turning off probability in the two time periods. According to the average value, the
mathematical probability of the AC turning off is divided into two stages with high and
low probabilities: the average AC turning off probability is 0.02 from 18:00 to 20:55 and
0.12 from 21:00 to 22:55. The probability of AC turning off at time step τ is the result of
multiplying the AC turning off probability of the current step by the AC non-turning off
probability of the previous τ−1 steps. The final AC turning off model in 2018 is shown in
Equation (7), and the generated function curves are shown in Figure 5 for AC turning off
probabilities 1 and 2, which are indicated by the two solid lines.

P′close =


0 (Y = 2016)

0.02 ∗ (1 − 0.02)n−1 (18 ≤ τ < 21, Y = 2018)
(1 − 0.02)36 ∗ 0.115 ∗ (1 − 0.12)n−1(21 ≤ τ < 23, Y = 2018)

0 ((23 ≤ τ ≤ 24) or (0 ≤ τ ≤ 17), Y = 2018)

(7)

3.2. The Effect of Behavior Changes on Model Accuracy
3.2.1. AC Open Rate

Figure 6 shows the comparison between the simulated and measured results of the AC
open rates of the models for the two years. The calculation results of the two AC operating
behavior models are relatively concentrated, and the variance is close to 0. Concurrently,
the AC operating behavior model trained based on 2018 data can accurately predict the AC
open rate, with an error of only 1.6%. However, when the influence of behavioral change is
ignored, the obtained AC operating behavior model achieves an average AC open rate of
0.33, and the prediction error is 17.5% lower than the actual value.

3.2.2. AC On–Off Profile and Confusion Matrix

Figure 7 shows the simulation results of the AC on–off profiles. Considering the
visibility of the graph, only ten results are shown on the graph. The solid color blocks in
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the figure represent the time periods when the AC is turned on. The black blocks are the
calculation results obtained from the 2018 training set, the blue blocks are the calculation
results obtained from the 2016 training set, and the red blocks are the actual measured AC
on–off states. The figure shows that both models can realistically reflect the time-by-time
on–off pattern of the AC with no frequent switching. In general, the models for the two
years describe the actual AC operating behavior to a certain extent. However, the model
results of the 2016 training set show a lower frequency of AC usage than those of the 2018
training set. Therefore, the AC usage habits of indoor occupants changed to some extent
from 2016 to 2018. The AC operating behavior described by the model obtained based
on the 2016 training set had the characteristics of a lower frequency of usage and a lower
probability of the AC turning on.
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Further quantitative analysis of the 100 simulation results was performed using the
confusion matrix, as shown in Figure 8, and the accuracy of the results was evaluated
using the F1 value. The horizontal and vertical axes in Figure 8 represent the simulated
and measured results of the AC on and off states, respectively, and the radius of the
arc represents the proportion of different results. The blue semicircles indicate that the
measured results were consistent with the simulation results, whereas the pink semicircles
indicate the opposite. The F1 value of the AC operating behavior model trained based
on 2016 data was 0.70, whereas the F1 value of the AC operating behavior model trained
based on 2018 data was 0.76. Therefore, an 8% improvement in the on–off profile accuracy
can be achieved when considering the behavioral variation.
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3.2.3. Open Rate Under Different Outdoor Temperatures

Figure 9 shows the measured and simulated probabilities of the AC-on state at differ-
ent outdoor temperatures. The difference between the results of the AC operating model
obtained from the 2016 training set and the measured results was generally greater than
that of the model obtained from the 2018 training set. Figure 9a shows that when ignoring
the influence of behavioral change, the AC operating behavior model deviates signifi-
cantly from the measured data in the low outdoor temperature zone between 24 ◦C and
28 ◦C. When the temperature was below 28 ◦C, the model-predicted open rate obtained
from the 2016 training set was below 0.3, and the probability of opening increased as the
temperature increased. Conversely, the measured open rate ranged from 0.3 to 1.0 in this
outdoor temperature range and changed negatively with the outdoor temperature. The
model obtained from the 2018 training set was consistent with the measured trends and
exhibited good accuracy.

From the calculation results of the absolute error rate S, the result of the AC operating
behavior model trained based on the 2018 data was 0.09, whereas that of the AC operating
behavior model obtained based on the 2016 data was 0.39, and the difference between
the two was approximately four times. The open rate profile under different outdoor
temperatures and the absolute error rate S generally reflect the changes in the habits of AC
users, especially in low-temperature conditions, and the behavioral change in AC usage is
more obvious.

3.2.4. Open Rate Under Different Times of the Day

Figure 10 shows a comparison of the measured and simulated probabilities of the
AC-on state at different times of the day. As shown in Figure 10a, when the influence of
behavioral changes was ignored, the model obtained from the training data in 2016 showed
a large difference in time distribution from the actual measurement. Taking 18:00 as the
dividing point, the AC shows a lower open rate when turned on and a higher open rate
when turned off. Therefore, when the influence of behavioral changes was ignored, the
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predicted AC on–off states exhibited delayed on and off phenomena over time. The model
obtained from the 2018 training set exhibited a similar phenomenon when considering
the changes in the behavior of occupants; however, the open rate values showed smaller
differences, and the time when the open rate intersects was also earlier. The simulated
and measured results intersected at 13:00, and a more accurate opening rate was observed
after 19:00.
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In addition, quantitative calculations revealed that the model trained based on the
2018 data had an absolute error rate S of 0.10, whereas the value was 0.41 for the model
trained based on the 2016 data. Based on the influence of behavioral changes, the time
for turning the AC on and off by people in the office generally increased, and the open
rate profile under different times of the day obtained by the model of the 2016 training set
lagged to some extent.
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Figure 10. Open rate at different times of the day. (a) 2016 training set; (b) 2018 training set.

4. Discussion

In studying the annual variation characteristics of AC operating behavior in office
buildings, several insights emerge regarding how occupancy patterns, environmental fac-
tors, and behavioral trends influence energy use over time. One significant observation is
the variability in AC usage based on temporal shifts, such as changes in outdoor tempera-
ture, and individual comfort preferences. These factors reveal a dynamic, rather than static,
approach to cooling consumption analysis, where AC usage does not follow a uniform
pattern but rather adapts based on specific conditions and time-based trends.

This study underscores the importance of time-sensitive behavioral models to better pre-
dict AC usage patterns, as behavioral changes can significantly affect energy predictions and,
consequently, energy efficiency strategies. For instance, seasonal shifts and daily occupancy
patterns were found to impact not only the frequency of AC usage but also the duration and
timing of AC operation. The findings suggest that ignoring these temporal factors in AC
operating behavior could lead to over- or underestimation of energy consumption, which
affects both model accuracy and the effectiveness of energy-saving measures.

In addition, it should be pointed out that the data used in this study comes from 2016
and 2018, which was 6 to 8 years ago. This period was specifically chosen because office
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usage was not impacted by the pandemic, making it a more accurate reflection of typical
office occupancy patterns and AC operating behavior. Additionally, it should be noted
that factors like climate variation also have an impact on the occupant behavior change.
Further research could enhance this understanding by examining the influence of specific
events, such as peak occupancy hours, seasonal transitions, or temperature spikes, on AC
operating behaviors. In addition, data from different seasons and multiple years can be
continuously collected to account for both seasonal and long-term shifts in occupancy
behavior, allowing for a more thorough understanding of these dynamics. Meanwhile,
incorporating more detailed behavioral data over longer periods and introducing more
advanced, complex models, such as those utilizing machine learning or deep learning,
can enhance the accuracy of AC operating behavior models, thereby contributing to more
sustainable office environments and reducing operational costs.

5. Conclusions

Currently, research on AC operating behavior lacks relevant theories and methods in
the time dimension, with limited analysis on the changes in energy use patterns caused
by dynamic temporal shifts. Therefore, this study explores AC operating behavior from a
time perspective, with a particular focus on the role of time in influencing AC operating
behavior patterns. The main conclusion of this research includes:

1. Variability in AC turning on behavior: The likelihood of turning on the AC varies
over time. With consistent thresholds and influencing factors, the probability of AC
turning on at a given outdoor temperature can differ by as much as 96.8%.

2. Changes in AC turning off behavior: Over time, the patterns of turning off the AC
also shift. These changes are reflected not only in the intensity of likelihood but also
in the influencing factors. For example, the relationship between turning off the AC
and people leaving, though initially strong, eventually shows a stronger correlation
with specific times of day.

3. Impact on Model Accuracy: Ignoring behavioral changes significantly impacts the
accuracy of the AC operating behavior model. In this study, the prediction accuracy
of the opening rate, F1 score, and temperature/time absolute error rate decreased by
15.9%, 8%, and 30%, respectively.

Additionally, the study shows that while AC operating behavior shifts over time, a
consistent functional form and logical framework can describe these patterns across differ-
ent periods. Updating the model with data that reflects behavioral changes can effectively
enhance prediction accuracy and practical model performance, improving building service
quality, and reducing operational energy consumption and carbon emissions.
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