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Abstract: Prefabricated construction has become a significant trend in the international building
industry, yet its promotion in China faces cost challenges. This study explores the effect of building
information modelling (BIM) technology on the various phases of prefabricated buildings, focusing
on the entire lifecycle cost to reduce the overall cost. Key factors influencing the lifecycle as the whole
cost control of prefabricated buildings are identified via the top 35 highly cited BIM papers; 15 experts
were invited to evaluate the factors influencing the lifecycle cost control of prefabricated buildings,
and 22 factors were identified to construct the surveys. The results of 364 valid questionnaires were
analysed. Research indicates that BIM significantly impacts cost control across various stages of the
lifecycle of prefabricated buildings. BIM’s impact on cost control, ranked from highest to lowest, is
as follows: construction and installation phase, production and transportation phase, operational
maintenance phase, and design phase. By minimising costs at each stage, BIM enhances design effi-
ciency, simulates production and logistics, reduces rework during construction, and, when integrated
with artificial intelligence, BIM optimises operation and maintenance management. Leveraging BIM
technology to its full potential effectively reduces the lifecycle costs of prefabricated buildings.

Keywords: prefabricated buildings; entire lifecycle cost; BIM; structural equation modelling; cost
management

1. Introduction

Modern society places greater emphasis on sustainable development, requiring vari-
ous industries to upgrade and change their energy structures [1]. As a traditional energy-
consuming sector, the construction industry consumes vast amounts of global energy
annually and generates significant amounts of solid waste and greenhouse gases [2]. Pre-
fabricated buildings, with advantages such as energy efficiency, high productivity, and
environmental friendliness, are increasingly being adopted worldwide as a sustainable
construction model to improve productivity and mitigate the negative environmental
impacts of traditional construction activities [3]. Prefabricated buildings have become a
development trend in the construction industry and an effective pathway toward green
and eco-friendly practices [4].

Despite numerous advantages, the development of prefabricated buildings in China
started late, with immature market conditions and technologies [5], leading to higher aver-
age costs for prefabricated building projects [6]. These factors have significantly constrained
the growth of prefabricated buildings. Currently, cast-in-place remains the dominant con-
struction method, and the overall proportion of prefabricated buildings is still relatively
small [7], with significant regional disparities in development indirectly contributing to
cost differences between prefabricated buildings and traditional constructions in different
regions. Constraints related to transportation reduce on-site construction flexibility, and
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a lack of professional construction personnel directly or indirectly limits the widespread
application of prefabricated components [8], further increasing costs [9]. Compared to
traditional cast-in-place methods, higher costs of prefabricated buildings [10] have be-
come a major obstacle to their development. There is an urgent need to standardise the
management of prefabricated buildings, reduce entire lifecycle costs, and promote their
widespread application.

Building information modelling (BIM) technology, based on digital modelling and
information sharing, is widely applied and can effectively facilitate intelligent building
management and operations [11]. BIM, through the rich data integration of building mod-
els, promotes industrialised construction [5], enhances the performance of prefabricated
buildings, and offers significant potential for the industry’s development [5]. It can reduce
errors and rework in the design phase, improve project collaboration efficiency, optimise
material procurement and inventory management, enhance construction efficiency, shorten
construction timelines, and facilitate entire lifecycle cost control [12]. Giuseppe Piras
et al. [13] conducted a case study on the Lazio Region Headquarters, a project leveraging
BIM technology, artificial intelligence, machine learning, and the Internet of Things to
implement spatial management strategies. Liu et al. [14] demonstrated the application of
BIM technology to prefabricated buildings through a case study, highlighting its ability
to provide an effective communication platform for all participants in the construction
process. Rafael et al. [15] proposed a “Cloud BIM” model to enhance coordination among
designers. Bortolini et al. [16] utilised the synergy between BIM 4D models and lean
production principles to improve logistics planning and control in prefabricated buildings.
Akanbi et al. [17] developed a BIM-based whole-life performance estimator (BWPE) to
enhance the management of prefabricated components during the recycling phase. These
studies underscore BIM’s role in prefabricated building design, construction, logistics,
and recycling stages. However, there is currently limited research on the entire lifecycle
stages, and few studies address the regulatory role of BIM in cost control for prefabricated
construction. As the stages within the lifecycle are interdependent, BIM can be used to plan
comprehensively across the entire process. Although BIM offers numerous benefits, more
professionals need to be skilled in BIM technology, resulting in additional costs associated
with modelling. This shortage is one of the factors limiting the widespread adoption of BIM.
Industrialisation is the future trend in the construction industry, and BIM is gradually being
applied to prefabricated buildings. However, its impact on the entire lifecycle cost control
for prefabricated buildings remains limited. Exploring the impact of BIM technology on the
whole lifecycle costs of prefabricated buildings, integrating BIM with artificial intelligence,
and fully leveraging BIM’s moderating effect on construction cost control for prefabricated
buildings is crucial for reducing costs, driving the development of intelligent building
operations and promoting the widespread adoption of prefabricated buildings.

The study takes an entire lifecycle perspective on projects to consider the potentially
complex interactions among factors influencing the cost of prefabricated buildings. Struc-
tural equation modelling (SEM) investigates the cost composition and influencing factors
associated with prefabricated buildings. It comprehensively discusses the methods to fully
utilise BIM technology in the context of cost control at various phases during prefabricated
building construction, with the aim of further clarifying BIM’s functional mechanisms and
effectively reducing the entire lifecycle costs of prefabricated buildings.

This study examines BIM’s impact on the lifecycle costs of prefabricated buildings.
Section 2 covers the materials and methods, Section 3 shows the results, and Section 4
encompasses the discussion and the conclusions.

2. Materials and Methods
2.1. Variable Proposition and Model Construction
2.1.1. Selection and Determination of Variable Factors

EPC refers to a project management framework where engineering, procurement,
construction, and trial operations are all handled by a single contractor [18]. This contractor
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assumes full responsibility for the project’s quality, safety, timeline, and cost control. The
entire lifecycle of prefabricated buildings mainly consists of four phases: the design phase,
the production and transportation phase, the construction and installation phase, and the
operation and maintenance phase. Each phase has varying degrees of influence on the cost
of prefabricated buildings. The variables are first proposed to explore the moderating effect
of BIM at different phases.

First, an initial selection of variable factors that may influence the lifecycle cost control
of prefabricated buildings was conducted through a literature review. Using regional and
international databases such as CNKI, VIP, Wanfang, CSCD, Elsevier SDOL, SpringerLink,
SCI Expanded, ESI, EI Compendex Web, JCR, and ASCE, keywords such as “prefabricated
buildings”, “BIM technology”, and “lifecycle cost control” were used to yield approximately
250 relevant articles. The collected literature was then organised, and focused filtering was
conducted on investment risks in prefabricated residential projects. Priority was given to
literature from SCI, EI, CSCD, CSSCI, and core Chinese journals, with a final selection of
35 papers based on their high citation frequency in recent years. The factors influencing the
lifecycle cost control of prefabricated buildings were summarised from these sources.

Subsequently, a panel of experts convened to ensure the scientific accuracy of the
variable selection process. The panel comprised 15 members: three from real estate de-
velopment firms, three from prefabricated component suppliers, three from architectural
design firms, three from construction firms, and an additional three scholars and experts
from universities engaged in research on the cost of prefabricated buildings. These experts
discussed and evaluated the variable factors influencing the lifecycle cost control of pre-
fabricated buildings, ultimately identifying the most significant variables [19]. The basic
information on the experts is shown in Table 1.

Table 1. Basic information on experts.

No. Affiliation Position Category

1 Real estate developer Management personnel

2 Real estate developer Management personnel

3 Real estate developer Management personnel

4 Prefabricated component supplier Technical personnel

5 Prefabricated component supplier Technical personnel

6 Prefabricated component supplier Management personnel

7 Architectural design firm Technical personnel

8 Architectural design firm Technical personnel

9 Architectural design firm Management personnel

10 Construction company Technical personnel

11 Construction company Technical personnel

12 Construction company Management personnel

13 Ordinary higher education institution Research personnel

14 Ordinary higher education institution Research personnel

15 Ordinary higher education institution Research personnel

After discussions with the expert panel, the final primary indicators were determined,
including the design, production, transportation, construction, installation, operation,
maintenance, BIM technology, and cost control of prefabricated buildings. A total of
23 secondary indicator measurement items were identified, as shown in Table 2.
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Table 2. System for lifecycle cost management of prefabricated buildings based on BIM.

Latent Variable Identifier Number Measurement Index Indicator Source

A: design

A2 Research on and development of new building
materials and PC components [20–25]

A3 Split design degree of PC component [20–22,25]
A5 Integration degree of design–construction [20–22,26]
A6 The degree of design standardisation [20–22,27]
A9 Integration level of the prefabrication industry chain [28,29]

C: production and
transportation

C2 Versatility of production equipment [20–22,27]
C3 Transportation solutions [21,28,30–32]
C4 The rate of damage during transportation [32–34]

D: installation and
construction

D1 Management and technical level of the on-site workers [22,35]
D3 The level of collaboration among various trades [20,22,27]
D4 Degree of installation mechanisation [22,27]
D7 Secondary handling of PC components [36,37]

F: operation and
maintenance

F1 Rational development of a green operation plan by
artificial intelligence (AI) [22,24,35,38]

F2 Tracks and maintenance of the buildings and facilities
via BIM database [39–41]

F3 Demolition and recycling utilisation rate [27,38]

G: BIM

G3 BIM 5D technology [39,40,42]
G4 Integration of BIM and RFID technology [43–46]
G5 Combination of BIM and cloud computing technology [39,40]

G6 Information platform construction for BIM lifecycle
cost control [39–41]

H: cost of
prefabricated

buildings

H1
The EPC contractor’s capability to control costs and

estimate the investment required for
prefabricated projects

[47–54]

H2 Cost control effectiveness for construction [20,38,51]
H3 Cost-driven stakeholder collaboration mechanism [47,51–54]

In the above table, PC components refer to prefabricated concrete elements [55]. Pre-
fabricated buildings are manufactured in factories through standardised and mechanised
processes. The secondary variable factors at each stage can influence the costs at that
particular stage. Similarly, the secondary variables related to BIM may affect how much
BIM influences the regulation of prefabricated buildings. Effective cost control at each stage
is essential to the overall lifecycle cost. The cost of prefabricated buildings is a limiting
factor concerning their widespread adoption, and the ability to control costs to some ex-
tent determines whether prefabricated buildings can be promoted and implemented on a
large scale.

2.1.2. Questionnaire Development and Data Collection

Based on the variables proposed in Table 2, the questionnaire used a five-point Likert
scale to quantify the indicators. Respondents quantified the impact of each variable on
the entire lifecycle of prefabricated buildings by assigning values between 1 and 5, where
higher values corresponded to a greater level of impact [56]. Considering online surveys’
efficiency and convenience, this study used the Wenjuanxing platform for distribution.
Since the research focuses on prefabricated buildings in China, the target audience for the
survey was the Chinese population. The questionnaire was distributed to respondents via
online platforms. The respondents included construction personnel, designers, government
construction department personnel, etc. A total of 364 valid questionnaires were collected.
The statistical assessment of the respondents’ age structure, educational background, and
years of experience is shown in Figure 1.
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Figure 1. Respondent demographics: (a) Age, (b) Education level, (c) Years of working. 

Figure 1 shows that most respondents were between 31 and 35 years old, predomi-
nantly held a bachelor’s degree, and had 11 to 15 years of work experience. This profile is 
consistent with typical civil engineering professionals, supporting the reliability of the 
questionnaire data. A data table was compiled showing the extent of the impact of each 
variable on the entire lifecycle cost control of prefabricated buildings. 

2.1.3. The Analysis of the Reliability and Validity of the Questionnaire 
Reliability is an important indicator for measuring data consistency. Before conduct-

ing data analysis, it is essential to test the reliability first. The study used the Cronbach’s 
alpha coefficient to measure the internal consistency of the survey questionnaire [57]. 

Validity is an important indicator for measuring data effectiveness. Based on factor 
analysis, various indicators such as the Kaiser–Meyer–Olkin (KMO) value, commonalities, 
variance explained, and factor loadings can be calculated to confirm data validity. The 
factor analysis can only be conducted if the KMO value reaches 0.7 or above and the sig-
nificance level of the Bartlett’s sphericity test meets the two-tailed test criteria. These con-
ditions indicate that the questionnaire data are suitable for factor analysis [58]. We used 
SPSSAU for data testing. 

2.2. Hypotheses and Model Establishment 
2.2.1. Reliability and Validity Testing of the Measurement Model 

Before validating the measurement model, it is necessary to test its reliability. The 
standardised factor loadings (SFL), composite reliability (CR), and average variance ex-
tracted (AVE) of the variables were calculated using the software SPSSAU24.0. These met-
rics help explain and reflect the measurement model’s internal consistency and reliability. 

Discriminant validity is an essential concept in the measurement model, used to as-
sess whether a measurement tool can distinguish between different concepts or constructs 
[59]. When the square root value of the AVE for any latent variable is higher than the ab-
solute value of the correlation between those variables and other latent variables, it indi-
cates good discriminant validity among the latent variables. The reliability and validity of 
the model were tested. 

2.2.2. Model Establishment 
Structural equation modelling is a statistical framework that analyses the relation-

ships among latent variables through the covariance matrix of observed variables. In 

Figure 1. Respondent demographics: (a) Age, (b) Education level, (c) Years of working.

Figure 1 shows that most respondents were between 31 and 35 years old, predomi-
nantly held a bachelor’s degree, and had 11 to 15 years of work experience. This profile
is consistent with typical civil engineering professionals, supporting the reliability of the
questionnaire data. A data table was compiled showing the extent of the impact of each
variable on the entire lifecycle cost control of prefabricated buildings.

2.1.3. The Analysis of the Reliability and Validity of the Questionnaire

Reliability is an important indicator for measuring data consistency. Before conducting
data analysis, it is essential to test the reliability first. The study used the Cronbach’s alpha
coefficient to measure the internal consistency of the survey questionnaire [57].

Validity is an important indicator for measuring data effectiveness. Based on factor
analysis, various indicators such as the Kaiser–Meyer–Olkin (KMO) value, commonalities,
variance explained, and factor loadings can be calculated to confirm data validity. The
factor analysis can only be conducted if the KMO value reaches 0.7 or above and the
significance level of the Bartlett’s sphericity test meets the two-tailed test criteria. These
conditions indicate that the questionnaire data are suitable for factor analysis [58]. We used
SPSSAU for data testing.

2.2. Hypotheses and Model Establishment
2.2.1. Reliability and Validity Testing of the Measurement Model

Before validating the measurement model, it is necessary to test its reliability. The stan-
dardised factor loadings (SFL), composite reliability (CR), and average variance extracted
(AVE) of the variables were calculated using the software SPSSAU24.0. These metrics help
explain and reflect the measurement model’s internal consistency and reliability.

Discriminant validity is an essential concept in the measurement model, used to assess
whether a measurement tool can distinguish between different concepts or constructs [59].
When the square root value of the AVE for any latent variable is higher than the absolute
value of the correlation between those variables and other latent variables, it indicates good
discriminant validity among the latent variables. The reliability and validity of the model
were tested.

2.2.2. Model Establishment

Structural equation modelling is a statistical framework that analyses the relationships
among latent variables through the covariance matrix of observed variables. In construct-
ing the factors influencing the model, this study follows Davis [60] and Venkatesh et al.’s
approaches [61]. The research categorises latent variables into exogenous and endoge-
nous constructs. Endogenous variables are those influenced by any variable within the
model, while exogenous variables, unaffected by others, directly impact other variables.
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When the model’s fit meets the criteria, a larger path coefficient indicates a greater de-
gree of influence [62]. Based on the characteristics of latent and observed variables, five
dimensions—BIM technology, design, PC component production and transportation, con-
struction installation, and operation and maintenance—were classified as exogenous latent
variables. The 22 secondary indicators listed in Table 2 were designated as endogenous
observed variables. An endogenous latent variable representing the cost of prefabricated
constructions was introduced to establish a structural equation model for studying cost
control factors throughout the lifecycle of prefabricated buildings within a BIM-based
EPC framework.

As part of the path analysis, we first established a structural model of the influenc-
ing factors for lifecycle cost control of prefabricated buildings based on BIM technology,
grounded in the theoretical model’s path hypotheses. We then defined the relationships
among the potential variables according to the theoretical framework. Subsequently, by
incorporating effective sample data from questionnaires, we solved the constructed model,
which involved model fitting. Ultimately, we derived the standardised coefficients for each
variable in the model, allowing us to estimate the path coefficients and conduct significance
tests [63].

Figure 2 illustrates the theoretical model developed to examine the cost control factors
of BIM technology throughout the entire lifecycle of assembled buildings.
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Here, we propose the following five hypotheses:

Hypothesis 1. The BIM information technology has a positive impact on the design costs of
prefabricated buildings.

Hypothesis 2. BIM information technology has a positive impact on the production costs of PC
components in prefabricated buildings.

Hypothesis 3. BIM information technology positively impacts the construction and installation
costs of prefabricated buildings.



Buildings 2024, 14, 3709 7 of 20

Hypothesis 4. BIM information technology positively impacts the operation and maintenance
costs of prefabricated buildings.

Hypothesis 5. BIM information technology positively impacts the entire lifecycle cost of prefabri-
cated buildings.

3. Results

The lifecycle stages of prefabricated buildings include the design stage, the production
and transportation stage, the installation and construction stage, and the operation and
maintenance stage. The relationships among these four stages and their abbreviations are
illustrated in Figure 3.
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3.1. Results of the Reliability and Validity Analysis of the Questionnaire
3.1.1. Results of the Questionnaire Data Reliability Analysis

After testing, the Cronbach’s alpha reliability coefficients for the six first-order variable
indicators in the model of factors influencing the lifecycle cost control of prefabricated
buildings were shown in Figure 4.
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Figure 4. Results from the reliability coefficient analysis.

The value of the Cronbach’s alpha coefficient represents the reliability of the ques-
tionnaire. Specifically, a Cronbach’s alpha value > 0.8 indicates very high reliability, a
Cronbach’s alpha value between 0.7 and 0.8 indicates good reliability, a Cronbach’s al-
pha value between 0.6 and 0.7 indicates acceptable reliability, and a Cronbach’s alpha
value < 0.6 indicates poor reliability [57].
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An analysis of Figure 4 reveals that the reliability coefficients for phases A, D, F, and
H were all greater than 0.8, while phase C had the lowest reliability coefficient, i.e., 0.742,
which is still above 0.7, indicating good reliability. The overall reliability coefficient for all
phases was 0.943. Based on this comprehensive analysis, the reliability coefficients for the
variables in the questionnaire are considered to be high, indicating that the reliability of the
questionnaire is strong, providing researchers with more dependable analytical results that
accurately reflect the relationships among the various variables [64]. Upon validation, the
data were deemed suitable for further analysis.

3.1.2. Results of the Questionnaire Validity Analysis

Based on the analysis, the validity test results for our data were obtained. The results
show that the questionnaire’s KMO value was 0.932. The approximate chi-square value
for Bartlett’s test of sphericity was 5285.83, with 276 degrees of freedom (df) and a p-value
significance of 0. The results indicate that the variables in the questionnaire data were
correlated and that the data concentration was good.

Figure 5 illustrates the factor loadings and Figure 6 shows the cumulative variance
after performing an orthogonal rotation of the data.

Figure 5 shows that the factor loadings of the variables within the same measurement
dimension were relatively high, with the minimum being 0.602 for the factor loading of F3
on F, which is greater than the factor loadings of other indicators on different dimensions.
This indicates a high level of correlation among these variables within the dimension. From
Figure 6, it can be seen that the cumulative explained variance of the test indicators reached
69.33% > 50%. This suggests that the six common factors extracted effectively explained
the information contained in the questionnaire.
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Figure 5 shows that the factor loadings of the variables within the same measurement 
dimension were relatively high, with the minimum being 0.602 for the factor loading of 
F3 on F, which is greater than the factor loadings of other indicators on different dimen-
sions. This indicates a high level of correlation among these variables within the dimen-
sion. From Figure 6, it can be seen that the cumulative explained variance of the test indi-
cators reached 69.33% > 50%. This suggests that the six common factors extracted effec-
tively explained the information contained in the questionnaire. 
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3.2. Results of the Reliability and Validity Testing of the Measurement Model
3.2.1. Results of the Reliability Testing of the Measurement Model

In the validation analysis of the measurement model, composite reliability (CR) and
average variance extracted (AVE) were used to explain and reflect the internal consistency
reliability of the measurement model. A higher CR value indicates a higher degree of
internal consistency among the measurement indicators of a latent variable. p represents
the significance probability value. When p < 0.001, it is indicated as “***”. the absolute
value of the standardized path coefficient (standardized factor loading) is greater than
0.5, AVE > 0.5, and CR > 0.7, indicating that the measurement model has good internal
consistency [65]. The specific values from the model are presented in Table 3.

Table 3. Factor loadings, CR, and AVE metrics for the measurement model.

Latent Variable Observed Variable
Standardized
Loadings (Std.

Estimate)

Composite
Reliability

(CR)

Average
Variance

Extracted (AVE)

A: design

A2: research and development of new building
materials and PC components 0.762 ***

0.857 0.501
A3: split design degree of PC components 0.754 ***

A5: integration degree of design–construction 0.682 ***
A6: the degree of design standardization 0.674 ***
A9: integration level of the prefabrication

industry chain 0.766 ***

C: PC component
production

C2: versatility of production equipment 0.644
0.749 0.500C3: transportation solutions 0.705 ***

C4: the rate of damage during transportation 0.768 ***

D: installation
and construction

D1: management and technical level of the
on-site workers 0.636

0.841 0.572D3: the level of collaboration among various trades 0.838 ***
D4: degree of installation mechanization 0.811 ***

D7: secondary handling of PC components 0.723 ***
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Table 3. Cont.

Latent Variable Observed Variable
Standardized
Loadings (Std.

Estimate)

Composite
Reliability

(CR)

Average
Variance

Extracted (AVE)

F: operation and
maintenance

F1: rational development of a green operation plan
by artificial intelligence (AI) 0.731

0.779 0.54F2: tracks and maintenance of the buildings and
facilities via a BIM database 0.726 ***

F3: demolition and recycling utilization rate 0.747 ***

G: BIM

G3: BIM 5D technology 0.637

0.874 0.583

G4: integration of BIM and RFID technology 0.784 ***
G5: combination of BIM and cloud

computing technology 0.783 ***

G6: information platform construction for BIM
lifecycle cost control 0.781 ***

H: cost of
prefabricated

buildings

H1: the EPC contractor’s capability to control costs
and estimate the investment required for

prefabricated projects
0.99

0.925 0.806
H2: cost control effectiveness for construction 0.779 ***

H3: cost-driven stakeholder collaboration mechanism 0.911 ***

Note: *** indicates that the significance level is very significant.

The standardized factor loadings (SFL) of the variables obtained following analyses
are shown in Figure 7, while the composite reliability (CR) and average variance extracted
(AVE) are presented in Figure 8.

The measurement model must meet the criteria of SFL ≥ 0.5, CR value ≥ 0.7, and
AVE ≥ 0.5 to satisfy the reliability requirements. From Figure 7, it can be observed that the
variable with the minimum SFL value was D1, whose value was 0.636 > 0.5. As shown in
Figure 8, the variable with the minimum AVE value was C, whose value was 0.5 ≥ 0.5. The
variable with the minimum CR value was C, whose value was 0.749 > 0.7. These results
indicate that the measurement model had good internal consistency.
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Figure 7. Standardised factor loadings (SFL) of the measurement model. Figure 7. Standardised factor loadings (SFL) of the measurement model.
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Figure 8. Average variance extracted (AVE) and composite reliability (CR) of the measurement model.

3.2.2. Results of the Validity Testing of the Measurement Model

The validity of the measurement model based on the data is shown in Figure 9.
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Figure 9. Absolute values of correlation coefficients for the primary variables.

Figure 9 shows that the square root value of the AVE for the six latent variables ranged
from 0.707 to 0.898, while the correlations between different variables ranged from 0.453 to
0.656. Comparing these values, the square root value of the AVE for each latent variable was
higher than the absolute value of its correlation with other latent variables, demonstrating
good discriminant validity among the latent variables.

3.3. Structural Equation Modeling Results

Using the path analysis function of AMOS, 364 valid data points in the SAV format
from the SPSS questionnaires were imported to solve the constructed model, a process
which involved fitting the model. After running the model and the program, clicking “view
text” generated a report. The “Estimates” section provides the standardized coefficients for
each variable in the model, allowing for the estimation of path coefficients and significance
testing [66]. The results are shown in Table 4.
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Table 4. Results of running the structural equation model.

X → Y
Unstandardized

Regression
Coefficient

SE z
(CR Value) p

Standardized
Regression
Coefficient

Significance

A: design → H: cost of prefabricated
buildings 0.266 0.101 2.642 0.008 0.188 Significant

C: production
and

transportation
→ H: cost of prefabricated

buildings 0.254 0.127 2 0.045 0.174 Significant

D: installation
and construction → H: cost of prefabricated

buildings 0.459 0.140 3.268 0.001 0.294 Significant

F: operation and
maintenance → H: cost of prefabricated

buildings 0.324 0.112 2.895 0.004 0.232 Significant

G: BIM → A: design 0.859 0.091 9.385 0 0.767 Significant

G: BIM → C: production and
transportation 0.894 0.098 9.119 0 0.823 Significant

G: BIM → D: installation and
construction 0.866 0.092 9.414 0 0.854 Significant

G: BIM → F: operation and maintenance 0.890 0.092 9.645 0 0.785 Significant

A: design →
A2: research and

development of new building
materials and PC components

1.202 0.095 12.709 0 0.766 Significant

A: design → A3: split design degree of PC
components 1.181 0.093 12.629 0 0.76 Significant

A: design → A5: integration degree of
design–construction 0.998 0.088 11.303 0 0.669 Significant

A: design → A6: the degree of design
standardization 1.000 - - - 0.679 Significant

A: design → A9: integration level of the
prefabrication industry chain 1.191 0.094 12.699 0 0.766 Significant

C: production
and

transportation
→ C2: versatility of production

equipment 1.000 - - - 0.644 Significant

C: production
and

transportation
→ C3: transportation solutions 1.027 0.100 10.247 0 0.673 Significant

C: production
and

transportation
→ C4: the rate of damage during

transportation 1.249 0.112 11.168 0 0.772 Significant

D: installation
and construction →

D1: management and
technical level of the on-site

workers
1.000 - - - 0.641 Significant

D: installation
and construction → D3: the level of collaboration

among various trades 1.256 0.106 11.8 0 0.788 Significant

D: installation
and construction → D4: degree of installation

mechanization 1.139 0.100 11.365 0 0.75 Significant

D: installation
and construction → D7: secondary handling of

PC components 1.190 0.104 11.391 0 0.734 Significant

F: operation and
maintenance →

F1: rational development of a
green operation plan by
artificial intelligence (AI)

1.000 - - - 0.726 Significant

F: operation and
maintenance →

F2: tracks and maintenance of
the buildings and facilities via

a BIM database
1.105 0.092 12.07 0 0.726 Significant

F: operation and
maintenance → F3: demolition and recycling

utilization rate 1.219 0.099 12.265 0 0.741 Significant



Buildings 2024, 14, 3709 13 of 20

Table 4. Cont.

X → Y
Unstandardized

Regression
Coefficient

SE z
(CR Value) p

Standardized
Regression
Coefficient

Significance

G: BIM → G3: BIM 5D technology 1.000 - - - 0.621 Significant

G: BIM → G4: integration of BIM and
RFID technology 1.250 0.106 11.806 0 0.769 Significant

G: BIM → G5: combination of BIM and
cloud computing technology 1.209 0.110 11.026 0 0.701 Significant

G: BIM →
G6: information platform

construction for BIM lifecycle
cost control

1.313 0.113 11.601 0 0.751 Significant

H: cost of
prefabricated

buildings
→

H1: the EPC contractor’s
capability to control costs and

estimate the investment
required for prefabricated

projects

1.000 - - - 0.901 Significant

H: cost of
prefabricated

buildings
→ H2: cost control effectiveness

for construction 0.927 0.051 18.158 0 0.854 Significant

H: cost of
prefabricated

buildings
→ H3: cost-driven stakeholder

collaboration mechanism 0.908 0.028 32.068 0 0.812 Significant

Note: → indicates regression or measurement relationships.

Arrows represent regression or measurement relationships. From the output analysis,
all path relationships were found to have significant standardized coefficients, indicating
that the path relationships in the theoretical model were validated.

A summary of the estimation and significance testing results for the model’s path
coefficients is presented in Figure 10.
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To test the validity of the proposed relationships among the six variables in this
study, a path analysis was conducted using the elements of the five hypotheses. The
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hypotheses were evaluated based on the path coefficients, with all corresponding p-values
being less than 0.05. This indicates that none of the hypotheses were rejected, confirming
that the proposed model fitted the sample data. As shown in Table 4 and Figure 10, all five
hypotheses were supported by the standardized path coefficients and significance results.
The details are as follows:

Hypothesis 6. BIM information technology (path coefficient β = 0.767, p < 0.001) positively
impacts the design cost of assembled buildings.

Hypothesis 7. BIM information technology (path coefficient β = 0.823, p < 0.001) has a positive
effect on the component production cost of assembled buildings.

Hypothesis 8. BIM information technology (path coefficient β = 0.854, p < 0.001) positively
influences the installation and construction cost of assembled buildings.

Hypothesis 9. BIM information technology (path coefficient β = 0.785, p < 0.001) positively
affects the operation and maintenance cost of assembled buildings.

Hypothesis 10. Given that BIM information technology has a significant positive effect on all
four stages of the assembled building lifecycle, it positively influences the total lifecycle cost of
these buildings.

To evaluate the degree of impact of BIM technology on the design, PC component
production, installation and construction, and operation and maintenance stages, the
latent variable G was categorised into three levels based on path coefficients: Level 1
(0.85–1.0, significant impact), level 2 (0.8–0.85, moderate impact), and level 3 (0.75–0.8,
minor impact) [67]. As shown in Table 4, the latent variable BIM technology had a significant
positive effect on the design, PC component production, installation and construction, and
operation and maintenance stages, with standardised path coefficients of 0.767, 0.823,
0.854, and 0.785, respectively. This indicates that the implementation of BIM information
technology can reduce the construction costs of prefabricated buildings. Among the four
main stages of the lifecycle of prefabricated buildings, the installation and construction and
the operation and maintenance stages had the most significant impact on costs, followed
by the design and the PC component production stages. The impact of BIM technology
was greatest in the construction and installation stages, followed by the PC component
production, operation and maintenance, and design stages, respectively.

3.4. Strategies and Recommendations for Reducing the Whole Lifecycle Costs of Prefabricated
Buildings Using BIM Technology

In the design stage, integrating BIM with cloud computing technology and construct-
ing a BIM entire lifecycle cost control information platform would allow designers from
various disciplines to implement their design concepts. Through collision simulations,
this integration could reduce design errors in prefabricated buildings and minimise cost
increases caused by design changes [68].

In the production and transportation stage, traditional technologies need more stan-
dardisation in the production process of prefabricated buildings. This can lead to compo-
nent damage and rework during transportation, resulting in increased costs. The perfect
integration of BIM and RFID technology would help achieve the ideal goals of zero inven-
tory and zero defects during the construction process. Based on the actual rate of progress,
information should be continuously fed back to the production management subsystem
to adjust the component production and transportation plans timely. This would help
reduce waiting times, material shortages, and rework, thereby lowering the production
and transportation costs of prefabricated buildings [69].

In the construction and installation stage, BIM’s automatic quantity calculation func-
tion can be used to estimate the current quantity of work for each procedure. This allows
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for the rational allocation of personnel, machinery, and materials on the project. When
changes occur in the project, the Revit(BIM)2021 can adjust the division of tasks and the
schedule, optimising processes to avoid idleness and rush work. Using BIM for technical
handovers allows (i) information to be conveyed more intuitively and comprehensively to
the on-site workers, preventing losses caused by improper operations, (ii) simulation analy-
sis of construction to be performed, and (iii) supply materials to be provided as needed to
reduce inventory and lower the costs. Integrating BIM with cost software would enable the
monitoring of project costs in real time and would prevent cost overruns. By using BIM
technology, personal subjective judgments during construction can be minimized. By using
BIM data to guide the construction process, financial resources can be efficiently utilized,
thereby reducing waste throughout the project [70].

In the operation and maintenance stage, the civil engineering industry has transi-
tioned from a construction-focused phase to a new one that emphasizes construction and
health management, including maintenance, inspection, care, and repair. The field of
civil engineering should also transition from traditional construction methods to digital
and intelligent construction approaches [71]. BIM technology has significant advantages
over traditional methods used in the operation and maintenance phase of prefabricated
buildings’ lifecycle. These advantages are primarily reflected in data completeness, infor-
mation visualization, decision support, and collaborative management. With BIM models,
issues can be quickly pinpointed, such as the location of damage to a prefabricated compo-
nent or equipment failure. This method saves time significantly compared to traditional
manual inspection, reduces misjudgments, and allows for efficient problem identification.
Additionally, using the comprehensive data from BIM, building operators can perform
preventive maintenance based on historical data and equipment operational status, reduc-
ing the occurrence of unexpected failures and emergency repair costs [72]. By integrating
BIM with artificial intelligence [73], intelligent monitoring, data analysis, and predictive
maintenance of prefabricated buildings can be enhanced. This combination optimizes
resource allocation, extends building service life, reduces maintenance costs, and improves
management efficiency.

Additionally, the integration of BIM with artificial intelligence can significantly drive
the development of prefabricated buildings toward automation and intelligence. Artificial
intelligence [74,75] uses deep learning algorithms to predict the lifecycle cost of buildings.
First, by collecting a large amount of cost data from existing building projects, it will
categorize such data into input features such as building area, floor height, structural type,
enclosure type, building age, and construction year. Clearly it also needs to define the
targets to be predicted, including initial costs, operation and maintenance costs, environ-
mental impact costs, and end-of-life costs. The time dimension (year or month) should
be incorporated to create time series data, which would then be preprocessed. Next, the
preprocessed data should be input into prediction models, commonly including models
based on LSTM (long short-term memory) [76] and transformer [77]. Through the back-
propagation algorithm, the model continuously adjusts its parameters during training to
reduce the error between the predicted values and the actual values. Additionally, to avoid
model overfitting, validation set data should be used to monitor training in real-time and
adjust hyperparameters based on performance. Finally, the deployed model, with strong
generalization capabilities, can be applied to lifecycle cost prediction for building projects.

3.5. Case Study on BIM for Lifecycle Cost Control in Prefabricated Buildings

A demonstration project of prefabricated affordable housing in the Sichuan Province
was used as a case study. The building in question had 32 floors, a floor height of 2.9 m,
and a total building area of 14,793 square meters. The prefabrication rate was 24.32%,
while the assembly rate reached 57.45%. BIM technology was employed throughout the
construction process, with Figure 11 showcasing the BIM model used to control the entire
building process.
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This project integrated BIM technology with prefabricated construction and had the
following technical features. (1) BIM technology, enabling decision-makers to plan effec-
tively and stakeholders such as contractors, supervisors, and owners to clearly understand
the project’s status. The building’s data were also stored long-term, facilitating the man-
agement of the construction at a later stage. Utilizing BIM technology from a holistic
lifecycle perspective enables more forward-thinking design considerations. (2) BIM was
used to design standardized component modules, which were then manufactured in facto-
ries, enabling standardized modules with diverse combinations. BIM technology offers a
clearer representation of component dimensions and weights, enabling the development
of more rational transportation plans tailored to these specifications. (3) Pre-construction
simulations, helping avoid errors during construction, thereby reducing rework needs and
lowering installation costs. (4) The powerful information capabilities of BIM, enabling the
presentation of detailed information for each component, including the manufacturer and
identification number, facilitating more convenient operational maintenance in the future.

Designers can easily achieve integrated architectural, structural, and mechanical
designs using BIM technology, from solution development to construction drawings, factory
production, transportation, and on-site assembly, while considering future deconstruction,
thus achieving integrated designs and control across the building’s entire lifecycle.

By linking the cost data from each stage of the prefabricated building’s lifecycle, a
comparison between the lifecycle costs of prefabricated and cast-in-place buildings can be
made. According to the project data, using BIM for lifecycle management can save 45% of
materials, 36% of water, and 30% of energy, while reducing the construction period duration
by 31%. Compared to traditional cast-in-place buildings, the use of BIM technology for
management and execution in the context of prefabricated buildings can result in a cost
saving of 79,200 yuan per standard floor structure, demonstrating significant cost efficiency.

4. Discussion and Conclusions

This study provides a reference for the cost control of prefabricated buildings through-
out their entire lifecycle under the general contracting management model using BIM
technology. The research focuses on the key factors influencing the cost control of prefabri-
cated buildings and the impact of BIM technology on cost control. The main conclusions
are as follows:
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(1) Latent variable BIM technology has a significant positive effect on the design,
PC component production, installation and construction, and operation and maintenance
phases, with the greatest impact observed during the construction and installation phase.
Secondly, in the production and transportation phases, the impact is relatively minor in the
design phase.

(2) In the design phase, BIM technology enables a lifecycle perspective, facilitat-
ing more forward-looking design considerations. In the production and transportation
phases, it allows for standardized modules, diverse combinations, and optimized transport
plans. During the construction and installation phase, BIM enables the performance of
pre-construction simulations to prevent errors and minimize rework needs. In the op-
erational and maintenance phase, it provides detailed information on each component,
streamlining post-construction management. Overall, BIM technology effectively reduces
the total lifecycle cost of prefabricated buildings.

(3) BIM technology influences each stage of the lifecycle of prefabricated constructions,
providing significant potential for cost control. In the future, prefabricated buildings can
utilize BIM and artificial intelligence to lower costs, facilitating a broader adoption and
supporting sustainable development in construction.
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