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Abstract: To enhance the effect of seismic mitigation in medium-sized buildings, this study intro-
duced a novel friction damper within a braced frame, forming a friction energy-dissipating braced
frame (FDBF). The seismic reduction mechanism of the FDBF was examined, and its performance was
evaluated through shaking-table tests and finite element simulations. The hysteresis performance of
the novel damper was assessed through low-cycle repeated loading tests, which yielded predomi-
nantly rectangular and full hysteresis curves, exemplifying robust energy dissipation capacity. The
shaking-table tests of the FDBF indicated significant modifications in the dynamic characteristics of
the original frame structure, which notably reduced the natural vibration period and enhanced the
damping. Additionally, the FDBF remarkably reduced both acceleration and displacement responses
during seismic excitation. Optimizing the orientation of the energy dissipation brace significantly
improved seismic reduction efficiency. A dynamic time history analysis, employing finite element
software, was conducted on the FDBF equipped with a friction energy dissipation brace at each level.
Comparative analysis with both the moment-resistant frame and ordinary braced frame revealed
that the FDBF substantially lowered the peak acceleration at the apex of the structure, achieving a
reduction rate of 40–50%. Under both design and rare earthquake conditions, the FDBF demonstrated
superior seismic mitigation capabilities, especially under rare earthquakes. Future studies should
investigate various structural types with energy dissipation braces at different levels to identify
the most efficient layout for the novel friction energy dissipation brace, thereby guiding relevant
engineering practices.

Keywords: novel friction damper; energy-dissipating brace; shaking-table test; finite element simulation

1. Introduction

Frame structures are prevalently applied in medium- and high-rise buildings, as they
provide clear force transmission pathways, flexible design, and cost-effectiveness. However,
their significant limitation lies in lateral stiffness, which impedes effective interval displace-
ment control during seismic events owing to inherent stiffness. Frame structures primarily
address seismic impacts through the plastic deformation of their key structural components,
which may induce permanent damage and reduce the overall seismic resilience [1]. In
addressing this issue, numerous researchers have integrated energy-dissipating elements
to absorb seismic forces, thus protecting the primary structure. The design philosophy of
“moderate lateral stiffness with predominant energy dissipation through non-structural
elements” [2,3] has evolved and become increasingly popular. A prominent example of
this approach is the friction energy dissipation braced-frame structure.

In 1982, Pall and Marsh introduced the Pall-type friction energy-dissipation brace,
featuring a four-link variable mechanism at the center to prevent buckling under horizontal
seismic forces. This design facilitates energy dissipation through friction by incorporating
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a slide groove at the midpoint of the diagonal [3–5]. In 1985, Chen devised a friction
shear hinge energy-dissipation brace, employing friction shear dampers at diagonal brace
intersections [6,7]. Extensive subsequent research by Liu [8,9] and Zhou [10,11] led to the
development of circular (square box) friction energy dissipation braces. These designs
replaced the Pall-type four-link mechanism with a circular ring or square box, placing the
friction damper at the center of the diagonal for energy dissipation [8–12]. Xian et al. [13,14]
proposed a composite friction energy-dissipating brace, combining sliding friction dampers
at the diagonal’s center with rotating friction dampers at the four link corners. In 2003, Ou
and Wu et al. [15–17] introduced a T-shaped core plate friction damper, an advancement of
the Pall-type damper, substituting diagonal cross-shaped bars with T-shaped core plates.

The friction dampers previously mentioned are typically installed in the central section
of diagonal braces and come in various forms. These dampers employ sliding friction for
energy dissipation. However, their complex construction can increase the axial force on
columns due to horizontal seismic forces [16,18,19]. This paper introduces a novel friction
energy-dissipating braced frame (FDBF), as illustrated in Figure 1. The FDBF comprises a
frame structure and an innovative friction-based energy-dissipating brace, featuring a new
type of friction damper and braces.
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Figure 1. Novel friction energy-dissipating braced frame.

When subjected to horizontal seismic forces, the braces experience axial tension and
compression, activating the damper. This leads to friction energy dissipation once the
axial force reaches the slip force threshold of the new friction damper. The dissipation
process involves the relative rotation of the connecting components and the friction pad,
effectively reducing the displacement response of the structure during seismic events.
The slip mechanism of the damper, designed to prevent compression buckling of the
brace, allows the novel friction damper to adjust the absorbed length of the brace by
deforming, keeping the slip force relatively constant despite increasing deformation. This
design minimizes the additional axial force imparted to the column, thereby avoiding a
gradual increase in column axial force. Additionally, this system offers several advantages,
including straightforward construction, ease of installation, and flexibility, highlighting its
practicality for seismic mitigation.

This article introduces and empirically investigates the working mechanism and
hysteretic behavior of a new type of friction damper. Additionally, shaking-table tests and
finite element simulations are conducted on the FDBF. The dynamic characteristics and
seismic mitigation effects of the FDBF are thoroughly analyzed and assessed.
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2. Study on Hysteretic Performance of the Novel Friction Damper
2.1. Theoretical Study

The innovative friction damper consists of six key components: a connecting plate,
friction pad, steel disc, bolt washer, general bolts, and high-strength bolts, as illustrated in
Figure 2. At the energy-dissipation end of the damper, each friction pad is securely attached
using two connectors and fastened with high-tensile bolts under pre-pressure. To enable
rotational movement between connectors at the loading end of the damper in response to
external forces, ordinary discs, fixed with general bolts, are utilized in lieu of friction pads.
Moreover, to modulate the energy-dissipating capacity of the friction pads, the steel disc at
the loading end can be treated with a lubricant coating.
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Figure 2. Novel friction damper construction.

Figure 3a,b illustrate the positive (∆ ≥ 0, ∆ ranging from 0 to the maximum value
and from the maximum value to 0) and negative (∆ < 0, ∆ ranging from 0 to the negative
maximum value and from the negative maximum value to 0) displacements of the damper.
These diagrams show that when a force, F, is applied to the loading end of the damper,
relative rotation occurs between the connecting components and friction pads of the damper,
causing frictional energy dissipation. As depicted in Figure 4, we can obtain: x = L sin φ,
then dx = L cos φdφ. Assuming that the displacement at the B (C) end of the damper is ∆
(dx = ∆) and the rotation angle of the damper is ∆φ (dφ = ∆φ), we can obtain Equation (1)
according to the principle of virtual work [20,21]:

2F∆ = nM · 2∆φ (1)
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Equation (2) can be obtained by substituting ∆ = L cos φ·∆φ into Equation (1):

F =
nM

L cos φ
(2)

where M denotes the friction moment at the energy dissipation end of the damper, and n
denotes the number of friction pads. The working principle of the friction pad is illustrated
in Figure 5. When the rotational angle of the connecting plates is ∆φ, the rotational angle of
the friction pad is ∆φ, and Equation (3) can be derived.

M =
x

µpcr2dφdr =
2
3

µP
R3

2 − R3
1

R2
2 − R2

1
(3)

where P denotes the preload force of high-strength bolts, µ indicates the friction coefficient
of the friction pads, n represents the number of friction pads, and R1 and R2 denote the
inner and outer radii of the friction pads, respectively.
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Substituting Equation (3) into Equation (2), the theoretical formula for F–∆ is obtained
for ∆ ≥ 0 as follows:

F =
2

3L
nµP

R3
2 − R3

1
R2

2 − R2
1

/

√
1 − (

√
2

2
+

∆
L
)

2

(4)

Similarly, Equation (5) can be obtained for ∆ < 0 as follows:

F =
2

3L
nµP

R3
2 − R3

1
R2

2 − R2
1

/

√
1 − (

√
2

2
− ∆

L
)

2

(5)

From Equations (4) and (5), the theoretical F–∆ relationship of the novel friction
damper is obtained, as displayed in Figure 6.
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2.2. Experimental Study
2.2.1. Specimen Design

To more accurately replicate the actual performance of the new friction damper
through a hysteresis curve, a reverse-cycle loading test was conducted at the structural
laboratory of Qingdao University of Technology. Six specimen sets were designed, varying
in preloading forces of high-strength bolts and friction pad materials, as detailed in Table 1.
The specimens utilized grade 8.8 M12 high-strength bolts and Q345 steel for other damper
components. According to the JGJ 82-2011 “Technical Specification for High-Strength
Bolt Connections of Steel Structures” and the predetermined test conditions [22–25], the
preloading force P of the high-strength bolts was set at 38 kN. The specimen identifiers
were structured as follows: RFD-friction pad material-preloading force magnitude, with
“N” representing non-asbestos composite material, “A” asbestos composite material, and
“B” brass.

Table 1. Specimen parameters.

Specimens Friction Pad Type Pre-Tension (kN) Torque (kN·m)

RFD-NA-0.5P Non-asbestos
composite 0.5P 0.78P

RFD-NA-P Non-asbestos compound P 1.56P
RFD-A-0.5P Asbestos compound 0.5P 0.78P

RFD-A-P Asbestos compound P 1.56P
RFD-B-0.5P Brass 0.5P 0.78P

RFD-B-P Brass P 1.56P

As depicted in Figure 7, the geometrical dimensions of all six sets of specimens
were identical.
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2.2.2. Experimental Equipment and Loading Protocol

A 100-kN hydraulic servo loading MTS actuator, specifically engineered for horizontal
linear loading, was employed in the experiment. One extremity of the square rotary friction
damper was connected to the actuator, whereas the opposite end was linked to a limiting
device. The MTS force and displacement sensors were used for real-time data collection.
The loading apparatus is displayed in Figure 8a, and the experimental loading methodology
is illustrated in Figure 8b. The displacement-controlled loading was adopted, and Figure 9
presents the test loading protocol.
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2.2.3. Experimental Results and Analysis

The primary parameters measured in this experiment included the displacement of
the novel friction damper, the differential in displacement between the damper and the
limit fixing device, and the variation in the sliding force of the damper. The displacement
was quantified using displacement sensors, whereas the sliding force of the friction damper
was measured using the force sensor of the actuator. These measurements facilitated the
construction of the hysteresis curve of the friction damper, as depicted in Figure 10. This
curve was predominantly rectangular and full. Even after 25 reciprocating displacement
loading cycles, there was no significant degradation in stiffness, highlighting the robust
energy-dissipation capacity of the damper. Moreover, the hysteresis curve of the damper
was closely aligned with the theoretical analysis presented in Figure 6, affirming the general
accuracy of the theoretical formula.
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The sliding force F of the friction damper increases with a rise in the preloading force
of the bolts, assuming constant friction-pad material. With identical preloading forces,
the sliding force is minimized with non-asbestos composite material friction pads and
maximized with brass. Therefore, the sliding force of the friction damper is influenced by
both the preloading force of the bolts and the friction coefficient of the friction pad. Thus,
different energy-dissipation capacities can be achieved by varying the preloading force of
the bolts or employing different friction-pad materials for friction energy dissipation.

3. Study on Novel Friction Energy-Dissipating Braced Frame
3.1. Theoretical Study

Incorporating the friction damper into braces leads to the creation of a friction-based
energy-dissipation structural system. Under horizontal seismic action, a mechanical analy-
sis of the single-layer seismic damping structure can be performed, as depicted in Figure 1.
This analysis produces a simplified diagram, displayed in Figure 11a, which divides the sys-
tem into a single-layer frame structure and a dampening support section incorporating the
damper. Figure 11b displays the energy-dissipation support, integrating the friction damper
to augment energy dissipation and enhance the seismic performance of the structure.
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When subjected to mild horizontal seismic forces, as indicated in Figure 11a, the AB
rod remains in tension without deformation, whereas the AC rod experiences compression
without collapsing. The energy-dissipation end of the friction damper remains static, and
the energy-dissipation support is in an elastic stage. At this stage, the friction damper
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functions as a rigid body, rendering the energy-dissipation support similar to a conventional
support. According to the principles of structural mechanics, the primary function of the
support is to withstand the horizontal force [26–28].

F1 = F2 (6)

Fh = F1cosα + F2cosα (7)

When Equation (6) is substituted into Equation (7), we obtain F1 = 1
2cosα Fh. Following

the same reasoning, we can obtain F2 = 1
2cosα Fh.

As the horizontal seismic force intensifies to a level where the AC compression support
approaches buckling, the novel friction damper starts to rotate and engage, as illustrated in
Figure 12. At this moment, the sliding force of the damper attains its maximum friction
force. The internal force within the brace, provided by the support, can be computed
as follows:

Fsl =
1

2cosα
Fh (8)

Fsl = φAb fy (9)

where φ denotes the stability coefficient of the compression support, Ab represents the
cross-sectional area of the compression support, and fy indicates the design value of the
compressive strength of the steel material used for the support.
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3.2. Shaking-Table Test

The experimental prototype is based on the initial-stage ATS-controlled benchmark
model, incorporating studies [29–33]. It is a three-story, single-span steel-frame structure.
The scaled-down model employed in this experiment has dimensions of 366 mm by 183 mm
in plan, with a first-story height of 305 mm and subsequent stories each measuring 448
mm. The friction damper energy-dissipation brace was installed on the first story. The
columns comprised 13 circular cylinders, and the base plate was firmly bolted to the
shaking table. To adhere to the similarity criteria of the structural model, the friction
damper was re-engineered, with dimensions presented in Figure 13. The frame model
specimens were constructed according to the dimensions of each component, and the FDBF
model specimens are exhibited in Figure 14.

3.2.1. Test Equipment and Loading Scheme

For the experiment, the Quanser Shake Table III, a bi-axial input vibration table
measuring 71.1 cm × 71.1 cm, was utilized. Capable of handling a 100 kg load, it can
generate a maximum seismic excitation level of 1 g. Both the X and Y directions have
a stroke capability of 10.8 cm. Acceleration data were acquired using four Lord G-Link-
200 sensors placed on the surface of the shaking table and at the center of each floor
slab. Structural displacement signals were measured using Keyence CMOS IL series laser
displacement sensors. The seismic performance was evaluated by comparing the lateral
displacement and acceleration of both the FDBF and moment-resistant frame (MRF). The
design response spectrum was formulated based on seismic intensity, site classification,
and seismic design category, with the seismic intensity set at 8 degrees, site classification at
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Class II, and seismic design category at Group 2. The resulting design response spectrum is
depicted in Figure 15.
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Four seismic waves—the 1940 El Centro wave, 1979 El Centro wave, 1981 Salton Sea
wave, and 1952 Taft wave—were selected for their spectral congruence with the structural
period point. The peak values of these waves were adjusted to 0.2 g. A response spectrum
analysis for each wave was then conducted and compared with the response spectrum
from Code for Seismic Design of Buildings GB50011−2010(2016 Edition), as illustrated in
Figure 16. The response spectra of these waves closely corresponded with the periods of
the structure. The average response values of these waves were used to assess the seismic
performance of the structure [34,35]. Owing to structural asymmetry, earthquake waves
were applied independently in the X and Y directions. The structural model loading device
is depicted in Figure 17.
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3.2.2. Test Results and Analysis

(1) Natural frequency and damping ratio

Exposing both the MRF and FDBF to white noise excitation, ranging from 0 Hz to 8 Hz,
with a 2-mm amplitude and conducting Fourier transformation on the resultant acceleration
data facilitated the determination of the natural frequencies of both structures through
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frequency-response analysis. Subsequently, the damping ratios were determined using the
half-power method based on the frequency-response function, as indicated in Table 2. The
results revealed that the FDBF, equipped with friction energy-dissipating braces, exhibited
higher damping ratios than the MRF, thereby improving its seismic resistance capabilities.

Table 2. Natural frequency and damping ratio.

Structure Model Frame FDBF

Natural frequency 3.1211 Hz 3.681 Hz
damping ratio 4.15% 4.77%

(2) Acceleration and displacement responses

The peak acceleration and displacement values for the top floor of both structures
under seismic wave excitation are listed in Table 3. In the Y-direction, the FDBF exhibited
reductions in peak acceleration values of 44.36%, 40.40%, 50.15%, and 48.75% compared to
the MRF under the seismic waves of 1940 El Centro, 1979 El Centro, 1981 Salton Sea, and
1952 Taft, respectively. In the X-direction, these reductions were 29.3%, 27.5%, 9.09%, and
37.71%, respectively.

Table 3. Maximum top-floor acceleration and displacement.

Working Condition 1940 El Centro 1979 El Centro 1981 Salton Sea 1952 Taft

Frame
X-direction

Acceleration/g 0.215 0.291 0.143 0.236
Displacement/mm 29.32 35.12 26.61 27.11

Y-direction
Acceleration/g 0.390 0.656 0.401 0.359
Displacement/mm 30.86 34.12 27.47 27.12

FDBF
X-direction

Acceleration/g 0.152 0.211 0.130 0.147
Displacement/mm 29.04 34.07 26.01 26.03

Y-direction
Acceleration/g 0.217 0.391 0.168 0.184
Displacement/mm 28.02 31 25.68 25.21

Displacement-
reduction ratio

X-direction / 0.96% 3.08% 2.31% 4.15%
Y-direction / 10.14% 9.14% 6.97% 7.58%

Figures 18 and 19 present the time history responses of the top-floor accelerations in
the Y- and X-directions for both structures influenced by the four seismic waves. The FDBF
displayed a significantly lower acceleration response in the Y-direction compared to the
MRF, whereas its response in the X-direction was modestly reduced. This suggests that
the friction energy-dissipating brace is highly effective in its implemented direction, with a
less pronounced damping effect in the unbraced direction. The displacement-reduction
ratio is defined as the ratio of the maximum top-floor displacement of the FDBF to that
of the MRF. According to Table 3, the displacement-reduction ratios in the Y-direction are
10.14%, 9.14%, 6.97%, and 7.58%, and in the X-direction, they are 0.96%, 3.08%, 2.31%, and
4.15%, respectively. These findings indicate that the novel friction energy-dissipating brace
significantly reduces the displacement response of the MRF, with a maximum reduction
ratio reaching up to 10.14%. Figures 20–22 reveal that the displacements at each level
of the FDBF are consistently lower than those of the MRF, with the ratio of inter-story
displacement at each FDBF level being less than one.
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(3) Acceleration amplification factor β

The acceleration amplification factor denotes the ratio of the maximum acceleration
at the top of the structure to the maximum acceleration on the shaking table, illustrating
the amplification effect of the top-floor acceleration during an earthquake. The data were
collated, and the acceleration amplification factor in the Y-direction was calculated for both
structures under the impact of four seismic waves; these findings are presented in Table 4.
For comparative purposes, the acceleration amplification factor is plotted as a bar graph in
Figure 23.

Table 4. Acceleration amplification factor β.

Earthquake
MRF FDBF

Table
Acceleration/g

Top-Floor
Acceleration/g β

Table
Acceleration/g

Top-Floor
Acceleration/g β

1940 El Centro 0.176 0.390 2.22 0.172 0.217 1.26
1979 El Centro 0.255 0.656 2.57 0.219 0.391 1.78
1981 Salton Sea 0.192 0.401 2.09 0.213 0.398 1.73

1952 Taft 0.183 0.359 1.96 0.182 0.184 1.01
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Centro. (c) 1981 Salton Sea. (d) 1952 Taft. 
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Figure 19. Acceleration–time histories of X-direction seismic wave. (a) 1940 El Centro. (b) 1979 El
Centro. (c) 1981 Salton Sea. (d) 1952 Taft.
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Table 4 and Figure 23 reveal that the acceleration amplification factor of the FDBF
is consistently lower than that of the MRF and remains below two. This observation
highlights the crucial role of the friction energy-dissipating brace in mitigating seismic
effects within the framed structure.

4. Finite Element Simulation

To comprehensively assess the seismic-reduction impact of the FDBF, the shaking-
table test results were compared with finite element simulations conducted on the MRF,
BMRF, and FDBF using ABAQUS 6.14 software. The acceleration–time and displacement–
time responses of these three structures were contrasted under earthquake excitation,
demonstrating the seismic mitigation efficiency of the FDBF.

4.1. Finite Element Model Verification

Finite element models of both the experimental MRF and FDBF were developed
in ABAQUS. A modal analysis was performed to determine the natural frequencies of
the two structures. Table 5 presents a comparison between the simulated outcomes and
experimental data, showing relative closeness with differences ranging from 2% to 5%. This
suggests that the finite element model effectively replicates the experimental specimen.
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Table 5. Comparison of natural frequencies (top three modes)/Hz.

Mode
MRF FDBF

1 2 3 1 2 3

Test 3.121 3.334 5.15 3.681 3.892 6.061
Finite 3.046 3.257 5.061 3.503 3.798 5.996

After the modal analysis, damping parameters were incorporated into the models.
The 1940 El Centro earthquake wave was then applied at the base of the structures, and the
top-floor acceleration response in the Y-direction was compared with experimental results,
as illustrated in Figure 24. The comparative analysis indicated commendable consistency
in acceleration responses between the FDBF and MRF, demonstrating the proficiency of the
finite element model in simulating the experimental model.
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Figure 24. Comparison of acceleration–time histories (a) FDBF. (b) MRF. 
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4.2. Finite Element Model

The three model sets included the MRF, BMRF, and FDBF with energy-dissipating
braces on each floor, as illustrated in Figure 25. The original structure was a five-story,
one-span, center-supported steel-frame structure. The finite element models represented a
scaled-down version of this prototype, focusing on a single five-story span. The column
spacing in the X- and Y-directions was 450 mm and 540 mm, respectively, with a story
height of 225 mm and a floor thickness of 2 mm. Columns and supports were modeled
using beam elements, while floor slabs employed shell elements.

In the numerical model, the damper is using a full scale of the damping mechanism.
The length and width of the damper connecting plates in the numerical model are the
same as those in the experimental model. The thickness of the connecting plates and
friction plates is 2 mm, different from the experimental model. This is due to the fact
that the thickness of the slabs is different in the two models. Considering the connection
installation between the braces and the floor slabs, different thicknesses are used. The
damping devices were modeled with solid elements. The bases of the columns were
fixed, eliminating displacements and rotations. The interaction between the friction pads
and connectors was defined as surface-to-surface contact, employing penalized tangential
contact and rigid normal contact. General contact was applied for interactions between
other components. Except for the friction pads and high-strength bolts, Q345 steel was
used for the model components.
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Figure 25. Different finite element models for various structures. (a) MRF. (b) BMRF. (c) FDBF.

4.3. Modal Analysis

Modal analysis was conducted on three structures: MRF, BMRF (ordinary braced
frames), and FDBF. This analysis aimed to identify the mode shapes and frequencies for the
top three modes. The specific frequencies for each mode are presented in Table 6. An exam-
ination of these results indicates that both the BMRF and FDBF exhibit higher frequencies
compared to the MRF. Notably, the FDBF demonstrates lower frequencies than the BMRF,
suggesting that the integration of the energy-dissipating brace alters the structural stiffness,
which is beneficial for seismic energy dissipation relative to ordinary supports.

Table 6. Natural frequencies of MRF, BMRF, and FDBF (top three modes)/Hz.

Mode 1 2 3

MRF 1.227 1.243 1.706
BMRF 1.487 5.704 13.382
FDBF 1.476 5.611 13.256

4.4. Acceleration Response

Seismic waves, namely, the 1940 El Centro, 1979 El Centro, 1981 Salton Sea, and
1952 Taft earthquakes, were applied to the structural models. The peak accelerations
for these waves were set to 0.21 g, 0.21 g, 0.19 g, and 0.18 g, respectively. The top-level
acceleration–time history curves for these three structures are illustrated in Figure 26. The
BMRF structure exhibited the highest acceleration response, followed by the MRF, whereas
the base-isolated FDBF structure displayed the smallest acceleration response. Therefore,
the novel friction energy-dissipating brace can effectively dissipate seismic energy and
possesses significant damping properties.

To assess the amplification effect of top-level acceleration under identical seismic
waves, the acceleration amplification factors of the models were calculated. The results are
detailed in Table 7. The MRF displayed the highest amplification factor, followed by the
BMRF, both exceeding 2.0, signifying a considerable amplification effect on the top-level
acceleration in these structures. The base-isolated FDBF structure exhibited a maximum
amplification factor of 1.17 and a minimum of 1.05, demonstrating its efficacy in reducing
the top-level acceleration response and underscoring its damping capabilities.
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Figure 26. Comparison of acceleration–time histories of the three structures under seismic 
excitation. (a) 1940 El Centro. (b) 1979 El Centro. (c) 1981 Salton Sea. (d) 1952 Taft. 
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Table 7. Acceleration amplification factor β (acceleration unit (g)).

Earthquake
MRF BMRF FDBF

Ground
Acceleration

Top-Level
Acceleration β

Ground
Acceleration

Top-Level
Acceleration β

Ground
Acceleration

Top-Level
Acceleration β

1940 El Centro 0.181 0.398 2.20 0.173 0.348 2.01 0.149 0.175 1.17
1979 El Centro 0.213 0.467 2.19 0.201 0.423 2.11 0.150 0.157 1.05
1981 Salton Sea 0.194 0.427 2.20 0.192 0.389 2.02 0.164 0.187 1.14

1952 Taft 0.180 0.414 2.30 0.179 0.403 2.25 0.166 0.176 1.06

Comparing the acceleration responses of the three structural models, the amplifica-
tion factors from Table 6 are represented as a bar chart in Figure 27. As observed, the
top-level acceleration-response peak of the FDBF structure, equipped with friction energy-
dissipating braces, decreased by 40–50% compared to the MRF. The BMRF structure, with
regular supports, achieved a decrease of approximately 15–25% compared to the MRF.
Furthermore, the FDBF structure exhibited a reduction of approximately 35–50% com-
pared to the BMRF structure. These findings demonstrate that the FDBF has a substantial
vibration-damping effect.
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4.5. Displacement-Reduction Rate α

The displacement-reduction rate is defined as the ratio between the maximum dis-
placement of a seismically isolated structure and the maximum displacement of the same
structure without isolation, typically a pure frame structure. This rate is crucial in assessing
the seismic performance of the isolated structure, where a higher displacement-reduction
ratio signifies improved damping efficacy and a smaller displacement response. To evaluate
the seismic performance of both the BMRF and FDBF structures under various seismic
excitations, a time history analysis was conducted using seismic waves with peak accelera-
tions adjusted in accordance with the “Code for Seismic Design of Buildings GB50011–2010
(2016 Edition)” [36] for different design ground motion intensities. The peak accelerations
were set to 0.14 g, 0.40 g, and 0.63 g, simulating SLE (Service-Level Earthquake) intensity 9,
OBE (Operating Basis Earthquake) intensity 9, and MCE (Maximum Credible Earthquake)
intensity 9, respectively. The structures were analyzed under these modified seismic waves.

Table 8 outlines the maximum displacement peaks and displacement-reduction ratios
α for the FDBF, BMRF, and MRF under the influence of four different seismic waves with a
peak acceleration of 0.14 g. Under SLE intensity 9, the displacement-reduction ratio of the
FDBF structure is similar to that of the BMRF. This is primarily due to the fact that, during
minor seismic events, the ordinary braces of the BMRF remain in an elastic state, and the
friction dampers in the FDBF are not yet operational, rendering the energy-dissipating
brace equivalent to an ordinary brace.

Table 8. Peak displacement (mm) of MRF, FDBF and BMRF (SLE intensity 9).

Working
Condition 1940 El Centro 1979 El Centro 1981 Salton Sea 1952 Taft

MRF 7.08 10.75 8.06 7.33
FDBF 1.31 1.76 1.73 1.88
α/% 81.5 83.6 78.5 74.3

BMRF 1.23 1.66 1.72 1.99
α/% 82.6 84.6 78.7 72.8

Table 9 outlines the maximum displacement peaks and displacement-reduction ra-
tios α for the FDBF, BMRF, and MRF under the influence of seismic waves with a peak
acceleration of 0.40 g. Here, the displacement-reduction ratios of the BMRF are markedly
lower than those of the FDBF under OBE intensity 9. This is due to the fact that, under OBE
intensity 9, the new type of friction damper becomes active, and the energy-dissipating
braces reduce structural displacement by absorbing seismic energy. Moreover, the ordinary
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brace enters a compression-yielding state, leading to a significant decrease in the lateral
stiffness of the structure and an increase in displacement.

Table 9. Peak displacement (mm) of MRF and FDBF (OBE intensity 9).

Working
Condition 1940 El Centro 1979 El Centro 1981 Salton Sea 1952 Taft

MRF 12.74 19.35 14.51 13.19
FDBF 4.91 8.48 8.02 5.29
α/% 61.4 56.2 44.7 59.9

BMRF 8.37 12.72 12.03 7.94
α/% 34.2 34.3 17.1 39.8

Table 10 outlines the peak displacements and displacement-reduction ratios for the
FDBF, BMRF, and MRF under rare earthquake conditions. The data indicate that the
displacement-reduction ratios for the FDBF structure exceed 60% across various seismic
wave excitations during rare earthquakes. The displacement reduction rate of the BMRF
structure is consistently below 10%, with its maximum displacement essentially mirroring
that of the MRF structure. This reflects the yielding of ordinary braces under MCE intensity
9. Conversely, the FDBF structure demonstrates effective damping effects owing to the
operational friction dampers, exhibiting robust seismic mitigation performance.

Table 10. Peak displacement (mm) of MRF, FDBF and BMRF (MCE intensity 9).

Working
Condition 1940 El Centro 1979 El Centro 1981 Salton Sea 1952 Taft

MRF 21.16 30.1 25.01 25.65
FDBF 7.44 8.99 8.73 8.98
α/% 64.8 69.9 65.1 65.0

BMRF 19.99 27.95 23.02 24.35
α/% 5.53 7.14 8.01 5.07

Figure 28 illustrates the peak displacements of the FDBF and MRF. The peak dis
placements of the FDBF are significantly smaller than that of the MRF under SLE, OBE
and MCE intensity 9, and the reduction is more significant under MCE intensity 9. It
shows that the FDBF shows good damping effect and the damping effect is better under
rare earthquakes.
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To illustrate the damping impact of the FDBF under earthquake conditions more
effectively, the displacement reduction rates α from Tables 8–10 are visualized in Figure 29.
As shown in the figure, at SLE intensity 9, the displacement reduction rates of both the
FDBF and BMRF structures are similar, reflecting comparable seismic mitigation effects.
At OBE intensity 9, the displacement reduction rate of the FDBF structure surpasses that
of the BMRF structure. This difference arises as ordinary braces start to yield, leading to
a decrease in stiffness. Concurrently, the new friction dampers become active, adjusting
the brace length through their deformation to prevent brace compression. During MCE
intensity 9, the BMRF structure loses nearly all of its seismic mitigation effectiveness owing
to brace yielding and damage. In contrast, the displacement reduction rates of the FDBF
structure exceed 60% as the deformations of the dampers in the energy-dissipating braces
become more pronounced under severe seismic actions, effectively dissipating seismic
energy and yielding superior seismic mitigation results.
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5. Conclusions

A novel friction damper was proposed, and its hysteresis performance was examined.
Shaking-table tests and finite element simulation analyses of the friction energy-dissipating
braced frame structure, equipped with the new friction damper, were conducted. These
tests evaluated the acceleration and displacement responses of the FDBF and MRF struc-
tures under seismic wave excitation. Finite element software enabled a comparative
analysis of the seismic performance of the MRF, BMRF, and FDBF structures. The following
conclusions were drawn:

(1) The hysteresis curve of the new friction damper is predominantly rectangular and
complete, showing no significant stiffness degradation after repeated loadings. This
indicates a stable and efficient energy dissipation capacity.

(2) Shaking-table tests revealed that the friction energy dissipation support at the bottom
layer modified the dynamic characteristics of the original structure. Under seismic
wave excitation, the peak acceleration at the top layer of the FDBF was reduced by
40–50% compared to the MRF, demonstrating a substantial seismic damping effect.

(3) With identical seismic wave excitation, the amplification factor of the peak top accel-
eration for both the MRF and BMRF exceeded 2, whereas that for the FDBF ranged
between 1.05 and 1.17. This suggests a more significant seismic damping effect in
the FDBF structure compared to the BMRF structure. During SLE intensity 9 earth-
quakes, the displacement-reduction rate of the FDBF was comparable to that of the
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BMRF. However, under OBE and MCE intensity 9 earthquakes, the energy dissipation
capacity of the BMRF diminished due to brace yielding, whereas the displacement-
reduction rate of the FDBF was between 45 and 61% and between 60 and 70% under
OBE and MCE intensity 9 earthquakes, respectively. This demonstrates the effective-
ness of FDBF in damping both OBE and MCE earthquakes, with superior seismic
mitigation performance during rare earthquakes.

This study did not examine certain factors affecting the seismic performance of fric-
tion dissipative braced frame structures, such as the placement and number of friction
dissipative braces and the threshold slip force of the new friction dampers. Subsequent
research can delve into these aspects in greater depth to provide further insights into the
engineering application of this system.
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