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Abstract: Previous research has confirmed that the newly proposed pentagonal three–four strut
hybrid cable dome exhibits superior static performance compared to traditional cable domes, though
its dynamic characteristics still require further study. Cable domes are wind-sensitive structures, and
the results of a wind-induced vibration analysis are beneficial for the selection and construction of
cable domes. In this study, a finite element model of a new open-type cable dome with a span of 120 m
is established. The MATLAB 2017a programming language is employed to simulate pulsating winds,
followed by a nonlinear dynamic analysis to analyze the wind-induced vibrations of the structure.
The reliability of the pulsating wind model is confirmed by comparing the simulated spectrum with
the target spectrum. Moreover, a wind-induced vibration time history analysis is performed to obtain
the node displacement and internal force of components wind vibration coefficients, aiding in the
approximation of pulsating winds with average winds in a wind-resistant design. Furthermore, a
parametric analysis is carried out, ranking nodes and components based on sensitivity. The result
shows that the structure exhibits the strongest wind resistance when the rise–span ratio is f/l = 0.07
and the thickness–span ratio is h/l = 0.08. Notably, the outer upper chord node, 2a, and the inner
lower chord hoop cable, H1, are identified as the most sensitive node and component within the
structure, respectively. Overall, the structure demonstrates excellent wind resistance performance,
and the maximum wind vibration coefficient value remains below 3.

Keywords: pentagonal three–four strut hybrid open-type cable dome; wind-induced vibration;
parametric analysis; wind vibration coefficients

1. Introduction

The cable dome structure originated from R. B. Fuller’s concept of “tensegrity” [1].
Building upon this idea, the renowned American architect Geiger introduced the Geiger-
type cable dome, which marked the first practical application of this structure in engineering
practice. Subsequently, Levy further contributed to the field by proposing the Levy-type
cable dome [2].

Architects favor the cable dome design for its lightweight nature, aesthetic appeal,
and other advantages. However, the Geiger-type cable dome suffers from insufficient out-
of-plane stiffness, which leads to structural instability. Additionally, the dense grid division
of the Levy-type cable dome poses challenges for membrane installation. To address these
issues, scholars have extensively researched the topological innovation and structural
performance optimization of cable dome structures. They have proposed multi-strut cable
domes [3,4] and hybrid cable domes [5,6]. The newly proposed cable dome designs not
only have a significantly improved mechanical performance, but also offer a more rational
grid division, which provides the feasibility of rigid roof laying [7,8].
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Large-span roofs, being lightweight structures, are highly susceptible to wind damage.
Even a slight change in wind conditions can cause devastating damage to these roof
structures. A notable example occurred in 2005 when the New Orleans Superdome was
severely damaged during a hurricane. Moreover, in 2008, strong winds led to the collapse of
the Reno/Virginia Peak dome [9]. Therefore, studying the dynamic response of structures
to wind is of significant importance.

The dynamic response and structural damage mechanisms of large-span roofs under
wind loads have been the highlights of research conducted both domestically and inter-
nationally. Several scholars focused on investigating structural dynamic characteristics.
Wei et al. [10,11] conducted a wind-induced vibration analysis using the frequency domain
and time history methods. Their results showed that the energy dissipation of the mem-
brane during vibration is significant. Further, they successfully identified the sensitive
components and weak parts of the structure that are susceptible to vibration. Li et al. [12]
investigated the dynamic response of large-span domes under various levels of tornadoes.
Wang and Chang [13] examined the impact of structural parameters on wind-induced
vibration in beam string structures while considering the fluid–structure interaction. Sun
et al. [14] indicated that the wind pressure characteristics of cable domes are influenced
by the locations and number of openings. Zhang and Shan [15] employed the ARMA
model to simulate pulsating wind and carried out a wind-induced vibration analysis while
considering the fluid–structure effects. Wood et al. [16] measured membrane vibrations
in a wind tunnel experiment, taking into account the fluid–structure effect to study the
flexible membrane structure characteristics under changing fluid conditions. Park et al. [17]
characterized the wind pressure distribution in open domes. Lai et al. [18] emphasized the
importance of considering friction coefficients in a form-finding analysis of air-supported
membrane structures.

Some scholars have employed various analysis methods to study structural wind
vibration issues. Li et al. [19] conducted a wind-induced vibration parametric analysis
of a single-layer reticulated shell in a wind tunnel. Their research findings indicate that
wind vibration coefficients are influenced by wind angles. Zhou et al. [20] performed a
time history analysis of a single-layer reticulated shell, focusing on the effects of geometric
parameters, structural stiffness, and geometric parameters on wind vibration coefficients.
Feng et al. [21] proposed wind vibration coefficients that consider the peak factor of the
Weibull distribution. Shen et al. [22] introduced two methods to conduct a wind-induced
vibration analysis, taking into account the fluid–structure effects. They also provided a
simplified numerical simulation method. Wang et al. [23] verified the suitability of the
FPM (Fourier Pseudo-excitation method) for conducting a wind-induced vibration analysis
of large-span roofs. Jing et al. [24] calculated the structural wind vibration coefficients
using the BP (backpropagation) neural network algorithm. Their research examined the
effects of average wind speed and membrane tension on the wind vibration coefficients.
Qiu [25] used the NSGAII (non-dominated sorting genetic algorithm II) to optimize the
structure’s wind resistance performance. Kim et al. [26] divided the dome into two zones.
They proposed positive and negative peak pressure coefficients based on the experimental
results. Kiani and Efazati [27,28] utilized Eringen’s non-local elasticity theory to investigate
the non-local vibrations and stability issues of nanocables, offering a fresh perspective for
structural vibration analysis.

The pentagonal three–four strut open-type cable dome structure abandons the tradi-
tional cable dome concept of “strut islands in a sea of cables”, instead adopting a mixed
strut philosophy for innovative structural topology. This structure offers superior me-
chanical performance and a more flexible grid division, facilitating the laying of rigid
roofs. As the structure is sensitive to wind, conducting a wind vibration analysis on it is
extremely necessary. This paper conducts a wind-induced vibration time history analysis to
study the characteristics of wind-induced vibration and calculate the corresponding wind
vibration coefficients for a dome structure. In addition, parametric analyses are carried out
to investigate the effects of the rise–span ratio, thickness–span ratio, and damping factor on
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the wind-induced vibration coefficients. Furthermore, the sensitivity of different nodes and
components is ranked. Overall, this research provides an essential reference for the design
of wind-resistant structures and for the practical application of the pentagonal three–four
strut open-type cable dome structure.

2. Structural Model and Analysis Method
2.1. Structural Model

A finite element model of the cable dome structure with a span of 120 m and an inner
opening of 40 m was constructed. The rise–span ratio and thickness–span ratio of the
structure are both 0.07. The schematic diagram of the model is shown in Figure 1. The cable
dome consists of ten types of cables and four types of struts.
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Figure 1. Schematic diagram of the pentagonal three–four strut hybrid open-type cable dome.
(a) Three-dimensional representation. (b) Cross-sectional view of the structural model.

In the finite element model, the compression struts are simulated using the Link
180 element, while the tension cables are simulated using the Link 10 element. The struts
and cables are made of seamless steel tubes and steel strands, respectively. The material
properties for these components are shown in Table 1. The initial pre-stress for each
component is determined by satisfying the node equilibrium equations. The cross-sections
for the components are selected based on the initial pre-stress levels, ensuring that the
initial pre-stress levels of the cables do not exceed 40% of their breaking force. Additionally,
the selection of the struts’ cross-sections follows the principle of the slenderness ratio. The
cross-sections and initial pre-stress levels of the components are shown in Table 2. It is
assumed that the outer hoop nodes are hinged to the support hoop beam.

Table 1. Material properties.

Property Cable Strut

Steel grade 1860-grade steel Q345B steel
Tensile strength (MPa) 1860 345

Poisson’s ratio 0.3 0.3
Modulus of elasticity (MPa) 1.95 × 105 2.06 × 105

Coefficient of linear expansion 1.36 × 10−5 1.2 × 10−5

Density (kg/mm3) 7.85 × 10−6 7.85 × 10−6
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Table 2. Sectional size and initial pre-stress levels of the components.

Component Pre-Stress (kN) Cross-Section (mm)

N1 3711 Φ155
N1a 4206 Φ155
T1a 1196 Φ131
T1b 1722 Φ131
T2a 4108 Φ155
T2b 3733 Φ155
V1a −156 Φ114 × 7.5
V1b −113 Φ114 × 7.5
V2a −1263 Φ630 × 11
V2b −449 Φ630 × 11
B1 1086 Φ131
B2 2823 Φ155
H1 2085 Φ131
H2 10000 Φ190

2.2. Analysis Method
2.2.1. Fundamental Theory of Wind Load Simulation

1. Basic Assumption

Before conducting a dynamic analysis, the following basic assumptions are clarified:

(1) The average wind profile follows the exponential law model.
(2) Under the quasi-steady-state assumption, the wind speed at each node is considered

constant within each time step.
(3) The wind direction remains constant in the wind field where the structure is located.

2. Power Spectral Density of Pulsating Wind

Power spectra play crucial roles in the structural wind-induced vibration analysis.
These spectra can be categorized into two types: those with spectral densities that remain
constant across the height, exemplified by the Davenport and Harris spectra, and those
with spectral densities that decrease with the height, such as the Kaimal and Simiu spectra.
Among the various options, due to the ease of computing, the Davenport spectrum has
been widely adopted in many national standards. This paper also adopts the Davenport
spectrum for the wind speed time history simulation.

The Davenport spectrum, proposed by the renowned wind engineering expert George
V. Davenport in the 1950s, has been widely applied in wind-induced vibration and struc-
tural dynamic response analyses. The empirical formula for the Davenport spectrum is
as follows:

Sv(n) = 4kv̄2
10

x2

n(1+ x2)4/3 (1)

x = 1200n/v̄2
10 (2)

Sv(n) represents the power spectral density, and n represents the frequency of the
pulsating wind. v̄10 stands for the average wind speed at a height of 10 m. The coefficient k
is terrain-dependent.

3. Transformation of Wind Velocity to Wind Pressure

The wind load comprises both the pulsating wind load and the average wind load
components. The wind load can be calculated using the following formula:

p(t) =
1
2

CpρAV
(

t)2 (3)

In Equation (3), Cp represents the wind pressure distribution coefficient; ρ denotes
the air density, which is assumed to be 1.2 kg/m3 for this analysis; A stands for the wind
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pressure acting area; and V(t) represents the sum of the mean wind velocity v̄ and pulsating
wind velocity

.
u(t). Considering the effect of the fluid–structure interaction, V(t) can be

expressed using the following equation:

V(t) = v̄ + v
(
t) − .

u(t) (4)

By simultaneously solving Equations (3) and (4), while neglecting higher-order minor
terms, the total wind load can be represented as follows:

p(t) = Cp A
[

1
2

v2 + v̄v
(
t) − v

.
u(t)] (5)

In this study, the wind speed time history is simulated using the harmonic superposi-
tion method. Specifically, the node wind speed time history is simulated by superposing
multiple harmonic components with different frequencies. Subsequently, the simulated
wind speed time history is transformed using the Bernoulli transformation to obtain the
load time history. Finally, a wind-induced vibration analysis is performed based on the
obtained load time history.

2.2.2. Dynamic Analysis Method

1. Dynamic Equation

The wind-induced vibration analysis follows the principles of structural dynamics,
and the governing structural dynamic equation is as follows:

[M]
..
u(t)+[C + FC]

.
u(t) + [K]u(t) = [Q]p(t) + [R]u(t) (6)

In dynamic Equation (6), [M] denotes the mass matrix, [C] represents the damping
matrix, [FC] stands for the aerodynamic damping matrix, and [K] is the structural stiffness
matrix. [Q] is the load indicator vector, which distributes the pulsating wind load p(t)
across the nodes. u(t),

.
u(t), and

..
u(t) denote the displacement, velocity, and acceleration

vectors, respectively. [R] represents the nonlinear terms that account for the geometric
nonlinearity and large deformation characteristics of the structure. It is worth noting that
aerodynamic damping is correlated with the motion state of the structure, and material
damping can be employed to simulate aerodynamic damping for a transient analysis.
Furthermore, geometric nonlinearity is primarily manifested during the phase when the
structure experiences cable slack. When cable slack has not occurred, the structure can be
treated with linear elasticity [29].

2. Solving the Dynamic Equation

This paper employs the Newmark-β method, a direct integration method, to solve
the dynamic equations. It establishes a recursive formula for the structural state vector.
Equations (7) and (8) express the displacement–time relationship for a given time interval:

{ut+∆t} = {ut}+ {ut}∆t+[(
1
2
− η){ ..

ut}+ η{ ..
ut+∆t}]∆t2 (7)

{ .
ut+∆t

}
=

{ .
ut}+ [(1 − γ){ ..

ut}+γ
{ ..

ut+∆t}]∆t (8)

The parameters η and γ can be adjusted to meet the stability requirements and in-
tegration accuracy. ut and ut+∆t represent displacement vectors at times t and t + ∆t,
respectively. By substituting Equations (7) and (8) into Equation (6), dynamic equilibrium
Equation (9) at any given time is expressed as follows:

[M]
..
u(t+∆t) + [C+Fc

] .
u(t+∆t) + [K]u(t+∆t) = [Q]p(t+∆t) + [R]u(t+∆t) (9)

3. Damping Matrix
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In a wind-induced vibration time history analysis, an approximate Rayleigh damping
model is employed. In this paper, the damping ratios ξi and ξj are set to 0.03. Parameters α
and β can be obtained using Equation (11). The Rayleigh damping equation is expressed
as follows:

[C] = α[M] + β[K] (10)
α =

2ωiωj(ζiωj−ζ jωi)
ω2

j −ω2
i

β =
2(ζ jωj−ζiωi)

ω2
j −ω2

i

(11)

3. Simulating Wind Fields and Modal Analysis
3.1. Simulating Wind Fields

This paper simulates wind fields using the Matlab programming language. The
standard wind pressure of the wind field ω0 is equal to 0.45 kN/m2. The terrain category
is classified as Class A, and the ground roughness coefficient k is 0.00129. The simulated
horizontal power spectral density function at a height of 30 m is shown in Figure 2. The
statistical characteristics of the simulation results closely resemble the Davenport spectrum.
This indicates the reliability of the stochastic process simulation theory employed in this
paper. Furthermore, the time history of the horizontal pulsating wind speed at a height of
30 m is shown in Figure 3.
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3.2. Modal Analysis

A modal analysis serves as the foundation for studying the dynamic characteristics of
various structures. The vibration modes, characteristic frequencies, and damping coeffi-
cients of the structure can be obtained through a modal analysis. Additionally, vibration
modes provide insights into the dynamic properties of the structure.

The first 50 modal frequencies of the structure are shown in Figure 4. Notably, the first
18 orders of natural vibration frequencies are densely distributed, with closely spaced adja-
cent modal frequencies. However, beyond the 18th modal, a sudden increase in frequencies
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is observed. Moreover, due to the symmetry of the structure, identical frequency groups
emerge. Figure 5a–f display the first six modals of natural vibration of the cable dome.
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(e) 5th modal; and (f) 6th modal.

4. Wind-Induced Vibration Analysis
4.1. Displacement Time History Analysis

Table 3 displays the maximum node displacements in the X-, Y-, and Z-directions
obtained from the wind-induced vibration analysis. The results show that pulsating wind
has a minor effect on the structural displacements in the X- and Y-directions. However, the
primary displacements are predominantly observed in the Z-direction, with a maximum
displacement of 12 mm. Figure 6a identifies the nodes A, B, C, and D as the locations
with the maximum displacements in each direction. By plotting the displacement time
history curves for each node and comparing them with the results under a average wind
loading, the impact of pulsating wind can be observed. Figure 7a–d demonstrate that
the displacements induced by pulsating wind oscillate both above and below the results
obtained under an average wind loading. The analysis results further confirm the accuracy
of the time history analysis.
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Table 3. Node displacement extreme.

Direction Displacement (mm) Node Number

UX− −2.21 A
UX+ 1.55 B
UY− −1.89 C
UY+ 1.84 C
UZ− −7.30 A
UZ+ 12.00 D
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Figure 7. Time history curves of node displacements under wind-induced vibration. (a) Node A—X-
direction displacement; (b) node B—X-direction displacement; (c) node C—Y-direction displacement;
(d) node D—Z-direction displacement.
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4.2. Internal Force Time History Analysis

The extreme internal force components are shown in Figure 6b. Similarly, the extreme
internal forces of the members are extracted during the time history analysis, and the
corresponding internal force time history curves are plotted. Figure 8a–c show the time
history curves of the cable axial forces and support reaction forces under wind-induced
vibrations. The internal force time history curves demonstrate a regular pattern, further
validating the accuracy of the model.

Buildings 2024, 14, x FOR PEER REVIEW 10 of 19 
 

  
(a) (b) 

 
(c) 

Figure 8. Time history curves of internal forces in the component (support). (a) Time history curve 
of the axial force of cable F. (b) Time history curve of the axial force of strut G. (c) Time-history curve 
of the support reaction force (X-, Y-, and Z-directions) of support H. 

4.3. Structural Wind Vibration Coefficient 
The wind vibration coefficient provides a statistical measure of a structure’s sensitiv-

ity to wind-induced vibrations. In a structural wind-resistant design, these coefficients are 
employed to magnify the average wind load to consider the impact of pulsating wind 
loads on the structure. 

  

0 20 40 60 80 100

10,400

10,450

10,500

10,550

10,600

A
xi

al
 F

or
ce

 (k
N

)

Time (s)

 History
 Average

0 20 40 60 80 100

−1,260

−1,255

−1,250

−1,245

−1,240

−1,235

A
xi

al
 F

or
ce

 (k
N

)

Time (s)

 History
 Average

0 20 40 60 80 100

4,820

4,830

4,840

4,850

4,860

0 20 40 60 80 100

−2,880

−2,860

−2,840

−2,820

−2,800

0 20 40 60 80 100

100

110

120

130

140

X
-F

or
ce

 (k
N

)

Time (s)

 History    Average

Y
-F

or
ce

 (k
N

)

Time (s)

 History    Average

Z-
Fo

rc
e 

(k
N

)

Time (s)

 History    Average

Figure 8. Time history curves of internal forces in the component (support). (a) Time history curve of
the axial force of cable F. (b) Time history curve of the axial force of strut G. (c) Time-history curve of
the support reaction force (X-, Y-, and Z-directions) of support H.
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Among the ten types of cables, it is observed that the outer hoop cable, H2, experiences
the largest fluctuations in internal forces. Similarly, among the four types of struts, the
inner hoop strut, V1a, exhibits the greatest variations in internal forces. Table 4 presents the
extreme values of the wind-induced vibration response.

Table 4. Extreme internal forces of elements.

Component Force Element Number

Cable 10,621 kN F
Strut 1265 kN G

Constraint RFx = 4855 kN H

4.3. Structural Wind Vibration Coefficient

The wind vibration coefficient provides a statistical measure of a structure’s sensitivity
to wind-induced vibrations. In a structural wind-resistant design, these coefficients are
employed to magnify the average wind load to consider the impact of pulsating wind loads
on the structure.

4.3.1. Structural Wind Vibration Coefficient Calculation

In wind engineering research for tall or towering structures, wind vibration coefficients
are typically obtained by back-calculating from the structural responses to loads. However,
the cable dome, being a doubly nonlinear structure, poses challenges in deriving wind
vibration coefficients directly from structural responses. Hence, displacement and internal
force wind vibration coefficients are typically derived from the structural responses using
the following equations: 

βui = 1 + µσui
Ū

σ2
i =

n
∑
1
(Ui−Ūi)

n

(12)


βsi = 1 + µσsi

S̄

σ2
i =

n
∑
1
(Si−S̄i)

n

(13)

Ūi (S̄i) represents the average wind node displacement (or element force) response,
Ui (Si) represents the pulsating wind node displacement (or element force) response,
σui (σsi) represents the root mean square (RMS) of the node displacement (or force) re-
sponse, µ represents the peak factor (assumed to be 3.5 in this paper), and n represents the
number of subdivisions for the pulsating wind time history.

4.3.2. Displacement Wind Vibration Coefficient

The structure comprises seven types of nodes (upper chord nodes 1a, 1b, 2a, 2b, and
3a; lower chord nodes 1′ and 2′). Node 3a is a support node whose displacement wind
vibration coefficient is not computed. Each category of nodes is uniformly distributed in a
concentric circle. The naming convention is based on the angle between the corresponding
concentric circle and the line connecting the node to the center of the circle with respect to
the wind direction, as shown in Figure 9a. For instance, point A in the figure is represented
as (C7, 97.5).
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Figure 9. Node displacement wind vibration coefficients. (a) Node (component) distribution diagram.
(b) Wind vibration coefficients for nodes 1a and 1b. (c) Wind vibration coefficients for nodes 1′ and 2′.
(d) Wind vibration coefficients for nodes 2a and 2b.

The displacement wind vibration coefficients for each node are depicted in Figure 9b–d.
Among the upper chord nodes, the wind vibration coefficients are observed to be lower in
the outer hoop nodes compared to the inner hoop nodes. Additionally, the windward nodes’
wind vibration coefficients are lower than those of the leeward nodes within the same node
category. For example, the windward node (C4, 0) exhibits slightly lower displacement wind
vibration coefficients compared to the corresponding leeward node (C4, 180).

4.3.3. Force Wind Vibration Coefficients

The force wind vibration coefficients statistically illustrate the sensitivity of each
structural component to pulsating wind loads. There are 14 types of components in the
structure. This paper numbers each type of component in a clockwise sequence. Taking
cable B2 as an example, the numbering sequence is illustrated in Figure 9a.

Figure 10 represents the force wind vibration coefficients of various components in
the structure. Since the force wind vibration coefficients of struts are significantly larger
compared to those of cables, and the force response of struts is minimal under average and
pulsating wind loads, these special components are ignored.
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Figure 10. Internal force wind vibration coefficients of components. (a) Internal force wind vibration
coefficients of cables N1a and N1. (b) Internal force wind vibration coefficients of cables H1 and H2.
(c) Internal force wind vibration coefficients of cables T1a and T1b. (d) Internal force wind vibration
coefficients of cables T2a and T2b.

The differences in the internal force wind vibration coefficients among various types of
components are relatively small. The internal force wind vibration coefficients of the inner
hoop components are generally smaller than those of the outer hoop components. However,
when considering the force wind vibration coefficients of hoop cables, it is observed that
the values are higher for the inner hoop cables compared to the outer hoop cables. Notably,
hoop cable H1 exhibits the largest overall internal force wind vibration coefficient.

5. Parametric and Sensitivity Analyses
5.1. Parametric Analysis

Damage resulting from wind in large-span spatial structures has been a persistent issue.
The vibration response caused by wind loads has become a significant consideration in
structural design. However, research on the relationship between wind-induced responses
and parameters, such as the rise–span ratio, thickness–span ratio, and damping factor,
remains limited. This paper conducts a parametric analysis on the pentagonal three–four
strut hybrid open-type cable dome with the aim of investigating the impacts of these
parameters on wind vibration coefficients.
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To maintain consistent pre-stress levels in the outer hoop cables, separate finite element
models are established for modal and wind-induced vibration analyses. The parameters
of the model are shown in Table 5. The results of the modal analysis indicate that the rise–
span and thickness–span ratios have minimal impacts on the low-order natural vibration
frequencies of the structure. Notably, the first three natural vibration frequencies are very
close to each other.

Table 5. Parameters of the models.

Model Freq/Hz

Rise–Span
Ratio

Thickness–Span
Ratio

Damping
Factor 1st 2nd 3rd

0.06
0.07 0.03

2.4427 2.4427 2.5628
0.07 2.2383 2.2383 2.4532
0.08 1.9885 1.9885 2.7543

0.07
0.06

0.03
1.8336 1.8336 2.4358

0.07 2.2222 2.2222 2.6392
0.08 2.5822 2.5822 2.8657

0.07 0.07
0.01

2.2383 2.2383 2.45320.02
0.03

This paper specifically focuses on studying the influence of parameters on the struc-
tural wind vibration coefficient on node 1a and hoop cable H1.

Figure 11a,b display the analysis results that investigate the impact of the rise–span
ratio on the structural wind vibration coefficients. The conclusions are as follows:
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Figure 11. Wind vibration coefficients for various rise–span ratios. (a) Displacement vibration
coefficients of node 1a. (b) Internal force vibration coefficients of component H1.

At f/l = 0.07, both the displacement and internal force wind vibration coefficients of
the structure are smaller compared to those of the other two cases. This implies that when
f/l = 0.07, the wind-induced responses of node 1a and hoop cable H1 are minimal.

Additionally, the displacement wind vibration coefficient distribution of node 1a is
the most scattered at f/l = 0.06, as shown in Figure 11a.

The results of the analysis illustrating the influence of the thickness–span ratio on the
structural wind vibration coefficients are shown in Figure 12a,b.
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Figure 12. Wind vibration coefficients for various thickness–span ratios. (a) Displacement vibration
coefficients of node 1a. (b) Internal force vibration coefficients of component H1.

In Figure 12, it is observed that, while keeping the other parameters constant, there is
a decrease in the displacement wind vibration coefficient of node 1a and the wind internal
force coefficient of cable H1 with an increase in the thickness–span ratio. This decrease
indicates that the structure has a reduced sensitivity to wind.

When h/l = 0.08, the wind vibration coefficients for node displacements and compo-
nent internal forces reach their minimum values. Additionally, the distribution of wind
coefficients is more concentrated at this value.

The damping ratio is a crucial input parameter in wind vibration analysis. Its magni-
tude directly affects the wind resistance safety of the structure. However, field measure-
ments of the damping ratio in cable dome structures are rare. Investigating the mechanism
by which the damping ratio affects the wind vibration coefficient is important for establish-
ing the most unfavorable conditions for cable dome structures [30,31]. The results of the
analysis illustrating the influence of the damping factor on the structural wind vibration
coefficients are shown in Figure 13a,b.
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Figure 13. Wind vibration coefficients for various damping factors. (a) Displacement vibration
coefficients of node 1a. (b) Internal force vibration coefficients of component H1.
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When the other parameters remain constant, larger damping coefficients lead to a
reduction in both the displacement and internal force wind vibration coefficients.

Notably, when the damping factor is 0.01, the distribution of structural wind vibration
coefficients exhibits the most scattered pattern.

5.2. Wind-Induced Vibration Sensitivity Analysis

The wind vibration coefficients statistically represent the sensitivity characteristics of
components’ internal forces and node displacements. Thus, the sensitivity ranking of nodes
and components can be determined based on the results of the wind vibration coefficient
analysis. In this study, the maximum values of the internal force and displacement wind
vibration coefficients are selected as the primary focus to guarantee structural safety.

The results of the impact analysis of parameters on the internal force wind vibration
coefficients of the components are presented in Table 6. The parameters have the most
significant impact on the internal force wind coefficients of diagonal cables B1 and B2, outer
hoop ridge cables T2a and T2b, and hoop cables H1 and H2. The sensitivity of the components
can be represented as H1 > B1 > T2b > B2 ≥ H2 > T2a > T1b> T1a > N1a = N1.

Table 6. Maximum values of internal force wind vibration coefficients.

Component

Parameter Rise–Span Ratio
(f/l = 0.07; damp = 0.03)

Thickness–Span Ratio
(h/l = 0.07; damp = 0.03)

Damping Factor
(f/l = 0.07; f/l = 0.07)

0.06 0.07 0.08 0.06 0.07 0.08 0.01 0.02 0.03

N1 1.51 1.30 1.30 1.30 1.30 1.30 1.47 1.35 1.30
N1a 1.51 1.30 1.30 1.30 1.30 1.30 1.47 1.35 1.30
T1a 1.56 1.33 1.33 1.33 1.33 1.32 1.50 1.38 1.33
T1b 1.59 1.35 1.35 1.34 1.35 1.34 1.50 1.39 1.35
T2a 1.63 1.41 1.38 1.40 1.41 1.40 1.60 1.47 1.41
T2b 2.44 1.73 1.84 1.79 1.73 1.65 1.91 1.79 1.73
B1 2.58 1.75 1.99 2.01 1.75 1.69 2.00 1.79 1.75
B2 2.09 1.59 1.82 1.76 1.59 1.52 1.88 1.65 1.59
H1 2.68 2.04 2.20 2.39 2.04 1.85 2.16 2.07 2.04
H2 2.08 1.58 1.81 1.74 1.58 1.51 1.86 1.65 1.58

The impact analysis of the parameters on the node displacement wind vibration
coefficients is presented in Table 7. The largest displacement wind vibration coefficient is
observed at node 2a, while the smallest coefficient is found at node 2′. The sensitivity of
the nodes can be represented as 2a > 1′> 1a > 2b > 2′> 1b.

Table 7. Maximum values of node displacement wind vibration coefficients.

Node

Parameter Rise–Span Ratio
(f/l = 0.07; damp = 0.03)

Thickness–Span Ratio
(h/l = 0.07; damp = 0.03)

Damping Factor
(f/l = 0.07; f/l = 0.07)

0.06 0.07 0.08 0.06 0.07 0.08 0.01 0.02 0.03

1a 2.01 1.57 1.76 1.69 1.57 1.49 1.81 1.63 1.57
1b 1.91 1.51 1.68 1.61 1.51 1.45 1.75 1.58 1.51
2a 2.17 1.64 1.93 1.81 1.64 1.56 1.95 1.72 1.64
2b 1.93 1.54 1.71 1.65 1.54 1.48 1.80 1.62 1.54
1′ 2.07 1.58 1.80 1.70 1.58 1.51 1.86 1.65 1.58
2′ 1.92 1.53 1.68 1.63 1.53 1.45 1.77 1.59 1.53

The dispersion of structural internal forces and node wind vibration coefficients in
this work is characterized using the root mean square (RMS). The parametric analysis
results of the internal force and node displacement wind vibration coefficients are shown in
Tables 8 and 9, respectively.
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Table 8. Results of internal force wind vibration coefficients.

Structural Parameter Maximum Mean Minimum RMS

Rise–span ratio
(f/l = 0.07; damping = 0.03)

0.06 2.68 1.79 1.45 0.350
0.07 2.04 1.47 1.28 0.177
0.08 2.20 1.54 1.29 0.254

Thickness–span ratio
(h/l = 0.07; damping = 0.03)

0.06 2.39 1.53 1.29 0.255
0.07 2.04 1.47 1.28 0.177
0.08 1.79 1.44 1.29 0.149

Damping factor
(f/l = 0.07; f/l = 0.07)

0.01 2.15 1.68 1.46 0.198
0.02 2.07 1.53 1.34 0.181
0.03 2.04 1.47 1.28 0.177

Table 9. Results of displacement wind vibration coefficients.

Structural Parameter Maximum Mean Minimum RMS

Rise–span ratio
(f/l = 0.07; damping = 0.03)

0.06 2.17 1.79 1.46 0.137
0.07 1.64 1.53 1.45 0.044
0.08 1.93 1.68 1.57 0.073

Thickness–span ratio
(h/l = 0.07; damping = 0.03)

0.06 1.81 1.63 1.52 0.061
0.07 1.64 1.53 1.45 0.044
0.08 1.56 1.45 1.36 0.034

Damping factor
(f/l = 0.07; f/l = 0.07)

0.01 1.95 1.76 1.66 0.067
0.02 1.72 1.60 1.52 0.049
0.03 1.64 1.53 1.45 0.044

The mean and RMS of the displacement and internal force wind vibration coefficients
are the lowest when f/l = 0.07 and h/l= 0.08. This implies that the structural sensitivity to
wind vibration is optimal at these specific values of f/l and h/l.

6. Conclusions

This paper presents a comprehensive wind-induced vibration analysis of the newly
proposed pentagonal three–four strut hybrid open-type cable dome. Utilizing numerical
simulation, this study investigates the structural dynamic response of the structure and
explores the impacts of various parameters on the wind vibration coefficients. Furthermore,
it conducts a sensitivity analysis to rank the sensitivity of both nodes and components
in terms of their structural behaviors. The main conclusions drawn from this study are
outlined below:

1. The Davenport power spectrum simulation was performed using the Matlab program-
ming language. The resulting simulated spectrum aligns statistically with the target
spectrum, satisfying the prerequisites for the calculation of wind vibration coefficients.

2. During the wind-induced vibration analysis, the predominant displacement in the
structure was observed along the Z-axis, with the maximum value being recorded
at node (C4, 0), measuring 12 mm. The pulsating wind load induces structural
deformation, but the structure is capable of self-equilibrating in its new position with
a minimal internal force response.

3. When creating a wind-resistant design, it is crucial to prioritize the selection of ap-
propriate rise–span and thickness–span ratios. Additionally, increasing structural
damping can help alleviate the adverse effects of pulsating wind on the structure.

4. This paper recommends using a rise–span ratio of f/l = 0.07 and a thickness–span
ratio of h/l = 0.08 for this structure. The root mean square (RMS) values of the
displacement and force wind vibration coefficients in the structure are minimized.
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5. The RSM values for the displacement and force wind vibration coefficients are minimal.
In a wind-resistant design, the average wind vibration coefficient can be employed to
approximate the pulsating wind load with the average wind load.

6. The most wind-sensitive component is hoop cable H1. The cross-sectional area of H1
can be increased to prevent it from breaking under pulsating wind loads.
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