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Abstract: In today’s society, where people spend over 90% of their time indoors, indoor air quality
(IAQ) is crucial for sustaining human life. However, as various indoor activities such as cooking
generate diverse types of pollutants in indoor spaces, IAQ has emerged as a serious issue. Previous
studies have employed methods such as CO2 sensors, smart floor systems, and video-based pattern
recognition to distinguish occupants’ activities; however, each method has its limitations. This study
delves into the classification of occupants’ cooking activities using sound recognition technology.
Four deep learning-based sound recognition models capable of recognizing and classifying sounds
generated during cooking were presented and analyzed. Experiments were carried out using sound
data collected from real kitchen environments and online data-sharing websites. Additionally,
changes in performance according to the amount of collected data were observed. Among the
developed models, the most efficient is found to be the convolutional neural network, which is
relatively unaffected by fluctuations in the amount of sound data and consistently delivers excellent
performance. In contrast, other models exhibited a tendency for reduced performance as the amount
of sound data decreased. Consequently, the results of this study offer insights into the classification
of cooking activities based on sound data and underscore the research potential for sound-based
occupant behavior recognition classification models.

Keywords: occupant behaviors; indoor air quality; deep learning; sound recognition; cooking activities

1. Introduction

The building sector has implemented both passive and active technologies, including
high-quality insulation, high-efficiency equipment, and renewable energy facilities to con-
serve energy. Enhancing the insulation of building facades is crucial for minimizing energy
losses attributed to external heat transfer. However, the resulting increase in airtightness
can have intricate implications for indoor air quality (IAQ). While improved insulation
aids in preventing the infiltration of outdoor pollutants, including traffic emissions, it
also has the potential to restrict natural indoor air circulation, thereby impacting IAQ.
IAQ is influenced by various factors, encompassing a building’s airtightness, ventilation
quality, the utilization of household appliances, and occupant activities, each of which
independently contributes to the overall IAQ. This, in turn, can result in health issues,
including sick building syndrome (SBS) [1–3], a concern which has been widely researched
in numerous studies, highlighting SBS-related risk factors [4–7]. Given that indoor air is
an essential factor for sustaining human life, several studies have focused on IAQ [8,9].
In contemporary society, where people spend more than 90% of their time indoors [10],
the relationship between residential spaces and IAQ has garnered significant attention.
Pollution originating from substances emitted directly from indoor spaces is considered
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a more significant problem than outdoor air pollution because it can pose a direct and
significant threat to individuals. The primary contributors to elevated indoor particulate
matter (PM) levels are cooking, combustion, and cleaning activities [11]. Previous studies
have indicated that cooking activities have a considerable impact on IAQ [12–19]. Common
indoor activities, such as cooking, release PM (e.g., PM2.5 and PM10) [20,21], along with
various types of indoor air pollutants, including volatile organic compounds (VOCs) and
semi-VOCs. The increase in indoor air pollutants can have adverse effects on occupants’ car-
diorespiratory systems [22,23], lung function [24–27], cardiovascular health [28,29], human
brain activity [30], and cognitive performance [31].

Therefore, in this study, our primary objective is to facilitate the enhancement of IAQ
by precisely identifying occupants’ actions through the creation of an automated model. To
achieve this, our focus is on developing a cooking activity classification model. The concept
is that devices capable of autonomously monitoring and improving IAQ can potentially
reduce exposure to health-hazardous indoor environments without occupants having to
actively intervene. The introduction of these systems can have positive impacts on health
and convenience aspects, making it an important consideration in modern architectural
environments.

Various studies have been conducted to detect occupants’ behavior inside buildings.
Although several methods such as CO2 sensors [32,33], smart floor systems [34,35], and
video-based pattern recognition [36–39] have been applied, each method still has certain
limitations. For instance, the CO2 sensor method involves the slow diffusion of CO2 within
an indoor space where air is introduced, which can lead to ambiguous interpretations due to
ventilation and the consequent alteration of CO2 concentrations inside the building [40,41].
Smart flooring systems require highly instrumented floors, demanding thousands of sen-
sors, which is a notable disadvantage [34,35]. Moreover, the use of video recording devices
may be challenging in real environments, as it raises privacy concerns. Therefore, this study
aims to overcome these limitations and accurately recognize occupants’ behavior by utiliz-
ing sound recognition technology, which has a relatively low risk of privacy infringement
and can distinguish cooking activities.

The concept of artificial intelligence (AI) was introduced to automate the classifi-
cation of cooking activities. AI, which emerged in the 1950s in the field of computer
science, is dedicated to developing machines capable of mimicking human thinking and
processing data and systematizing them. This technology proves especially valuable when
handling large datasets [42]. AI-based machines have extensive applications across various
industries and have significantly contributed to diverse research fields, including image
processing [43,44], natural language processing [45,46], disease diagnosis, medicine, and
engineering sectors [47].

In conclusion, the remarkable progress in machine learning (ML) has enabled comput-
ers to excel in discerning intricate patterns, making precise predictions, and anticipating
new data attributes through the analysis of training data [48]. Going further into this do-
main, deep learning (DL), a specific subset of ML, mimics natural human learning, enabling
computers to autonomously learn from examples and directly extract valuable functions
from data [44]. The diminished reliance on manually crafted functions and the decrease in
human intervention stand out as distinctive features that differentiate DL from traditional
ML methods.

The recent surge of interest in this domain [49] has prompted exploration into various
neural network architectures, such as deep feed-forward, Siamese neural, and graph neural
networks [50]. As AI, ML, and DL rapidly evolve, they are poised to play an increasingly
pivotal role in shaping the future [51]. Recognizing the potential of these technologies, this
study employs a DL methodology to investigate the applicability and performance of recog-
nizing occupants’ cooking activities based on sound data. Furthermore, the insights derived
from this research not only enrich the existing body of knowledge but also provide valuable
considerations for advancing smart environments and human–machine interactions.
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2. Methods

This study collects and preprocesses sound data generated during cooking activities
and then classifies and evaluates the performance of each model. Additionally, the dataset
is divided into subsets of 883, 400, 200, 100, and 50 samples; finally, changes in model
efficiency are determined based on the quantity of data. Through this, we aim to propose
the most efficient model for automatically classifying cooking activities that significantly
impact IAQ. Figure 1 illustrates the flowchart of the research process.
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Figure 1. Research process flow chart.

2.1. Sound Data Collection

To classify cooking activities, the collected sound datasets were primarily categorized
as “steaming” or “boiling” and “frying or grilling”. Classifying cooking activities based
on sound data is inherently challenging due to their limited availability. Therefore, this
study strategically prioritized the use of voice data recorded in real kitchens. In cases with
insufficient data, an additional layer of diversity was introduced by incorporating data
downloaded from online media. The measurements were conducted in a single-person
living space with an area of 19.7 m2 and a height of 2.4 m, as shown in Figure 2. This
space is fully equipped for cooking tasks and was considered to enhance the real-world
performance of the model by mimicking a real residential environment. This approach
allowed the model to learn and generalize kitchen sounds occurring in specific residential
spaces. Each data measurement was conducted for less than 1 min, and the measurements
were taken during lunch and dinner over a period of 3 months. The room had minimal other
sound sources, and background sounds were not removed. Table 1 provides an overview
of the sound dataset composition. In total, 883 sound data samples were collected, of which
460 were for “boiling (steaming)” and 423 were for “frying (grilling)”.
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Table 1. Organization of the collected sound datasets.

Category Boiling (Steaming) Frying (Grilling)

Number of data (N) 460 423

Range

File size (MB) 0.01–361.39 [Avg. 3.10] 0.10–39.57 [Avg. 3.39]
File length (s) 2.71–221.73 [Avg. 35.89] 1.25–377.88 [Avg. 27.98]
Sample rate (Hz) 44,100–96,000 [Avg. 48152] 44,100–96,000 [Avg. 48089]
Amplitude (-) 0.000–0.267 [Avg. 0.018] 0.001–0.173 [Avg. 0.032]

2.2. Preprocessing and Acoustic Feature Extraction

Preprocessing sound data refers to the process of converting sound data into a format
suitable for use as input in a model. This step is crucial for effectively managing sound
data, which are large, complex, and high-dimensional, making them unsuitable for direct
input into a model.

Initially, the sound data were loaded using the Librosa library, and the sampling rate,
representing the number of data points sampled per second, was set to 16,000 Hz. This
value was selected to manage the computational load while adequately capturing the
high-frequency components of the sound signal. The loaded sound data were initially
transformed into a Mel-Spectrogram using the Librosa library, maintaining the 16,000 Hz
sampling rate. The window size for fast Fourier transform (FFT), referred to as “n_fft”,
was set to 2048, and the “hop_length”, representing the degree of window overlap, was
adjusted to 512. Furthermore, “n_mels”, indicating the number of Mel-Filters, was set to 64.
These settings collectively converted the sound data into a format suitable for classification
models. Additionally, when the spectrogram’s length exceeded the “max_length”, certain
data were trimmed, while padding was added when the length was insufficient to maintain
a consistent data length. Through this process, the sound data were converted into a
format suitable for use as input to the model, as shown in Figure 3, making acoustic feature
extraction straightforward.
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3. Classification Model Structure and Training

To identify occupant behavior, this study established four DL-based sound recognition
models: convolutional neural network (CNN), long short-term memory (LSTM), bidirec-
tional long short-term memory (Bi-LSTM), and gated recurrent unit (GRU). Each model was
employed to learn and classify sound data, which were visualized as a Mel-Spectrogram.

3.1. Convolutional Neural Network (CNN)

The model comprises a total of three convolutional layers, each utilizing a 3 × 3 filter
for extracting data features. The first convolutional layer incorporates 64 filters with the
rectified linear unit (ReLU) activation function, enhancing the model’s capacity to learn
complex data relationships and features while introducing non-linearities.

Next, the MaxPooling layer downsamples data through a 2 × 2 pooling window. In
this process, input images or data are subdivided into small grid-patterned areas, with the
largest value within each area selected as a representative value. This procedure reduces
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the size of images or data, improves computational efficiency, preserves crucial information,
and enhances data abstraction.

The second convolutional layer utilizes 128 filters with a 3 × 3 dimension, taking the
output from the first layer as input. Once again, the ReLU activation function is applied
to introduce non-linearities and extract data features. The subsequent MaxPooling layer
further reduces data dimensions using a 2 × 2 pooling window, effectively minimizing
data size, retaining essential information, and simplifying the model.

The third convolutional layer employs 256 filters with a 3 × 3 dimension to process
input data. The ReLU activation function is then applied to further abstract data features.
The third MaxPooling layer again reduces data size through a 2 × 2 pooling window.

Following this, the data are flattened into a one-dimensional form via the flatten layer,
preparing them for transmission to the fully connected layer. The first fully connected layer
comprises 512 neurons, introducing non-linearity through the ReLU activation function.
The second fully connected layer encompasses 256 neurons and also utilizes the ReLU
activation function.

In the middle layer, 128 filters are applied using the same kernel size and activation
function. The final convolution layer employs 256 filters with a 4 × 3 kernel size. Following
the convolution layer, the flatten layer converts the data from the convolution to the fully
connected layer, which includes 512 and 256 neurons. The ReLU activation function and
dropout regularization are applied to prevent overfitting.

Finally, the output layer utilizes the SoftMax activation function to classify data into the
“boiling” or “frying” categories. The SoftMax function transforms the model’s output into a
probability distribution for each class, effectively conducting predictions and classification
tasks by converting input values into probability values between 0 and 1.

3.2. Long Short-Term Memory (LSTM)

LSTM is a technology engineered to address the limitations of the existing recurrent
neural network (RNN), which involves a directed cycle in which past data can influence
future results. RNN uses gradient descent to adjust parameters for minimizing the cost
function, but it encounters the challenge of vanishing gradients when processing long
sequences, making it difficult to capture long-term dependencies in the data [52]. LSTM
overcomes these drawbacks of RNN and provides a structure that adeptly learns long-term
dependencies from sequential data [53]. The fundamental structure of LSTM is depicted in
Figure 4.
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LSTM has proven to be highly effective in handling diverse, sequence data types,
including time series, text, and sound data. Its significance becomes apparent in the context
of the sound-based, cooking activities classification model examined in this study.

The initial LSTM layer comprises 128 neurons, actively learning diverse features from
the input sequence data and extracting patterns within the sequence. Notably, as this
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layer is configured with “return_sequence=True”, it plays a crucial role in transmitting
information up to the current point to the subsequent layer.

3.3. Bidirectional Long Short-Term Memory (Bi-LSTM)

Bi-LSTM, an extended iteration of LSTM, proficiently manages sequence data bidirec-
tionally. This capability empowers the model to leverage both past and future information
when making decisions in the present [55]. In contrast to LSTM, Bi-LSTM incorporates both
forward and backward directions, enabling it to discern meaningful patterns by simultane-
ously integrating information from the past and the future into the present. The structure
of Bi-LSTM is delineated in Figure 5.
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This model processes an input sequence bidirectionally for several reasons. First, it
enables the model to extract meaningful patterns bidirectionally by incorporating informa-
tion from the future into the present, while also facilitating the transfer of information from
the past to the present. Second, it allows for a more effective consideration of the long-term
dependency of data through two-way processing.

Concerning the hierarchical structure of Bi-LSTM, as detailed in Section 3.2, the first
LSTM layer comprises 128 neurons. By setting “return_sequence=True”, the information up
to the current point can be transmitted to the next layer. The second LSTM layer takes the
output of the first layer as input and features 64 neurons. Through this two-way hierarchical
structure, meaningful sequences can be learned by considering the future information of
the data.

3.4. Gated Recurrent Unit (GRU)

GRU represents a type of RNN with a structure simpler than that of LSTM. Prior
studies have demonstrated that, despite requiring fewer learning parameters, GRU per-
forms similarly to LSTM [56]. Similar to LSTM, GRU is effective in learning long-term
dependencies. Figure 6 illustrates the structure of GRU.

The initial layer of the GRU comprises 256 neurons, with “return_sequence=True”
facilitating the transfer of information to the subsequent layer. The second layer features
128 neurons, and, similarly, “return_sequence=True” is set to retain sequence information.
The third layer encompasses 64 neurons, and these layers are designed to process sequence
data. Introducing batch normalization or dropout layers in-between can enhance the
model’s stability.
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4. Experimental Results and Performance Comparison

This section offers an in-depth discussion of the experimental results and performance
comparisons among various models. This study meticulously examined the learning and
performance evaluation of each model, and the detailed results are presented below.

4.1. Performance Derivation Method for Each Model

To assess the performance of each model based on experimental results, we scrutinized
their performance using four evaluation indicators: accuracy, precision, recall, and F1 score.
Figure 7 illustrates the performance evaluation indicators employed in the model evaluation
stage. Calculating these four performance evaluation indicators necessitated the use of
a confusion matrix. This matrix represented the distribution of observations based on
the actual value of the dependent variable and the value predicted by the model for the
dependent variable. In this study, a model was constructed to classify the occupants’
cooking behavior using sound data. Therefore, we examined the use of classification
methods for performance evaluation.
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Figure 7. Performance evaluation metrics for deep learning classification models.

The confusion matrix is represented as a 2 × 2 matrix in the context of classification,
as depicted in Figure 8. In this scenario, the potential values for y are 0 and 1, reflecting the
binary nature of the classification problem. The main components of the confusion matrix
are as follows: TP represents instances when the model correctly predicts the positive class,
with both the actual and predicted values being positive. TN indicates instances when the
model correctly predicts the negative class, with both the actual and predicted values being
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negative. FP denotes instances when the model incorrectly predicts the positive class when
the actual value is negative, but the model predicts it to be positive. FN signifies instances
when the model incorrectly predicts the negative class when the actual value is positive,
but the model predicts it to be negative.
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Accuracy serves as the evaluation index that most intuitively indicates model per-
formance. It is calculated by dividing the number of correctly predicted data by the total
number of data, as shown in Equation (1).

Accuracy =
TP + TN

TP + FN + FP + TN
(1)

Precision is the proportion of items that the model classifies as true that are actually
true. It can be expressed as follows:

Precision =
TP

TP + FP
(2)

Recall is an indicator that represents the proportion of actual positive observations
among those predicted by the model.

Recall =
TP

TP + FN
(3)

The F1 score serves as an indicator representing the harmonic mean of precision and
recall. Among various metrics, the harmonic mean is generally preferred as the most
balanced way to calculate the mean while considering both precision and recall. The F1
score can be assessed on a scale from 0 to 1. A low F1 Score implies that both precision and
recall are low, indicating a scenario in which both metrics have decreased. A low precision
score suggests that the machine learning model is making numerous incorrect predictions,
while a low recall indicates that the model is failing to capture some events which should
have been detected.

F1 score = 2 × Precision + Recall
Precision + Recall

(4)

4.2. Model Performance Comparison Based on the Number of Sound Data Samples

The volume of sound data significantly influences model performance. In this study,
a total of 20 models were created using 883, 400, 200, 100, and 50 sound data samples,
as outlined in Table 2. Each model received input from 20 data samples to evaluate the
results. The changes in model performance based on the number of sound data samples
in Table 2 and Figure 9 are summarized as follows. The results indicated that CNN
outperforms the other models in classifying cooking activities based on 883 sound data
samples. Additionally, LSTM showed the second-highest performance, followed by Bi-
LSTM and GRU.
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Table 2. Comparison of model performance based on the number of collected data samples.

Number of Data Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

883

CNN 90 90 90 90
LSTM 80 86 80 79

Bi-LSTM 70 70 70 70
GRU 55 76 55 44

400

CNN 80 86 80 80
LSTM 75 77 75 74

Bi-LSTM 50 50 50 45
GRU 55 76 55 44

200

CNN 80 81 80 80
LSTM 70 70 70 70

Bi-LSTM 60 78 60 52
GRU 50 25 50 33

100

CNN 80 86 80 79
LSTM 65 66 65 64

Bi-LSTM 50 25 50 33
GRU 50 25 50 33

50

CNN 75 83 75 73
LSTM 60 78 60 52

Bi-LSTM 55 76 55 44
GRU 55 76 55 44
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With a reduced number (400) of sound data samples, the CNN model maintained
a high performance, with over 90% accuracy, precision, recall, and F1 scores. Thus, the
CNN model demonstrated stable performance without being significantly impacted by
the amount of sound data. The performance of the LSTM model slightly decreased with
fewer data samples but was still high. In contrast, the Bi-LSTM and GRU models showed
relatively lower performances.

When the number of sound data samples was 200, the CNN model maintained
an excellent performance. The LSTM and Bi-LSTM models demonstrated a moderate
performance, while the GRU model still exhibited a relatively low performance. Even when
the number of sound data samples was as low as 100 or 50, the CNN model sustained
an excellent performance. However, the performance of the other models decreased
significantly. Thus, models other than CNN exhibited lower performances with fewer
sound data samples.
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4.3. Strategies for Improving IAQ and Research Limitations

This study commenced with the development of a model that leverages sound data
from residential spaces to automatically identify cooking activities. Our objective was to
utilize sound recognition technology for developing a deep learning model capable of
distinguishing a broad range of sounds, arising not only from cooking activities but also
from the occupants’ daily routines. Future research aims to employ this model to devise
strategies for the automatic management of IAQ and expand the model for accurately
identifying a variety of resident activities. This model is meant to be integrated with
measurements of specific, particle-sized concentrations of indoor particulate matter; this
will enable the improvement of IAQ—by following action guidelines provided by an
automated system—with no direct awareness of the residents. However, the cooking
behavior classification model is limited by the lack of a direct correlation with IAQ; it
might inadvertently recognize sounds from peripheral devices, such as televisions, while
classifying activities based on voice data.

5. Conclusions

This study aims to classify cooking behaviors, which are a main source of indoor
particle generation, as a method for improving IAQ based on sound recognition technology.
This technology not only presents a low risk to privacy but also effectively distinguishes
different cooking activities. Therefore, we compared and evaluated the performances of
CNN, LSTM, Bi-LSTM, and GRU, which were the DL models used for classifying cooking
activities based on sound data.

The CNN model, based on sound data, exhibited excellent performance. With 883
sound data samples, the model achieved a high performance, exceeding 90% on all the
evaluation indicators. The LSTM model demonstrated the second-best performance, while
the Bi-LSTM and GRU models showed relatively lower performances.

Even with a reduced number of sound data samples, the CNN model maintained
a stable performance. With as few as 400 sound data samples, it sustained performance
levels exceeding 80% across all the evaluation criteria and demonstrated a relatively high
performance even when the number of sound data samples was further decreased. In
contrast, the performances of the other models exhibited a tendency to decline as the
number of sound data samples decreased.

As a result, this study confirms that the CNN model consistently demonstrates ex-
ceptional performance and is relatively resilient to variations in the size of sound data.
This discovery implies that the CNN model should be the preferred choice in developing a
sound-based cooking activity classification model. Thoughtful consideration is imperative
when fine-tuning the number of sound data samples and selecting a model.

To conclude, this study verifies the potential for further exploration in classifying
cooking activities based on sound data. Future research will aim to improve accuracy
by focusing on the development of automated models not only for cooking activities but
also by collecting sound data from a wide range of activities occurring in the occupants’
daily lives.
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Abbreviations

AI Artificial intelligence
Bi-LSTM Bidirectional long short-term memory
CNN Convolutional neural network
DL Deep learning
FFT Fast Fourier transform
FLAC Free lossless audio codec
FN False negative
FP False positive
GRU Gated recurrent unit
IAQ Indoor air quality
LSTM Long short-term memory
ML Machine learning
PM Particulate matter
ReLU Rectified linear unit
RNN Recurrent neural network
SBS Sick building syndrome
TN True negative
TP True positive
VOC Volatile organic compound
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