Skin Heat Transfer and Thermal Sensation Coupling Model under Steady Stimulation
Abstract
:1. Introduction
2. Methods
2.1. Construction of Skin Heat Transfer Model
2.2. Construction of Thermoreceptor Impulse Model
2.3. Dataset for the Model Construction
2.4. Data Processing
3. Results
3.1. Skin Temperature Distribution after Stimulation
3.2. Thermoreceptor Temperature Change with Time
3.3. Fitting of the Model
3.4. Validation of the Model
4. Discussion
4.1. Potential Application
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fanger, P.O. Thermal Comfort, Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970. [Google Scholar]
- Stolwijk, J.A.J.; Hardy, J.D. Temperature regulation in man—A theoretical study. Pflüger’s Arch. Gesamte Physiol. Menschen Tiere 1966, 291, 129–162. [Google Scholar] [CrossRef]
- Fiala, D. Dynamic Simulation of Human Heat Transfer and Thermal Comfort; De Montfort University: Leicester, UK, 1998. [Google Scholar]
- Tanabe, S.-i.; Kobayashi, K.; Nakano, J.; Ozeki, Y.; Konishi, M. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build. 2002, 34, 637–646. [Google Scholar] [CrossRef]
- Huizenga, C.; Hui, Z.; Arens, E. A model of human physiology and comfort for assessing complex thermal environments. Build. Environ. 2001, 36, 691–699. [Google Scholar] [CrossRef]
- Du, H.; Lian, Z.; Lai, D.; Duanmu, L.; Zhai, Y.; Cao, B.; Zhang, Y.; Zhou, X.; Wang, Z.; Zhang, X.; et al. Evaluation of the accuracy of PMV and its several revised models using the Chinese thermal comfort Database. Energy Build. 2022, 271, 112334. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, T.; Li, J.; Liu, J.; Niu, J.; Mak, C.M.; Lin, Z. Evaluation of a multi-nodal thermal regulation model for assessment of outdoor thermal comfort: Sensitivity to wind speed and solar radiation. Build. Environ. 2018, 132, 45–56. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, S.; Liu, X.; Lin, X.; Qing, K.; Zhang, W.; Li, J.; Dong, J.; Lai, D.; Chen, Q. Evaluation of Four Models for Predicting Thermal Sensation in Chinese Residential Kitchen. In E3S Web Conference; EDP Sciences: Les Ulis, France, 2019; Volume 111. [Google Scholar]
- Luo, M.; Arens, E.; Zhang, H.; Ghahramani, A.; Wang, Z. Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices. Build Environ. 2018, 143, 206–216. [Google Scholar] [CrossRef]
- Wang, Z.; Warren, K.; Luo, M.; He, X.; Zhang, H.; Arens, E.; Chen, W.; He, Y.; Hu, Y.; Jin, L.; et al. Evaluating the comfort of thermally dynamic wearable devices. Build Environ. 2020, 167, 106443. [Google Scholar] [CrossRef]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [Google Scholar] [CrossRef]
- Pennes, H.H. Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm. J. Appl. Physiol. 1948, 1, 93–122. [Google Scholar] [CrossRef] [PubMed]
- Vafai, K. Porous Media: Applications in Biological Systems and Biotechnology; Taylor & Francis Group: Milton, UK, 2010. [Google Scholar]
- Khaled, A.R.A.; Vafai, K. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 2003, 46, 4989–5003. [Google Scholar] [CrossRef]
- Xuan, Y.; Roetzel, W. Bioheat equation of the human thermal system. Chem. Eng. Technol. 1997, 20, 268–276. [Google Scholar] [CrossRef]
- Mahjoob, S.; Vafai, K. Analytical characterization of heat transport through biological media incorporating hyperthermia treatment. Int. J. Heat Mass Transf. 2009, 52, 1608–1618. [Google Scholar] [CrossRef]
- Mahjoob, S.; Vafai, K. Analysis of Bioheat Transport Through a Dual Layer Biological Media. J. Heat Transf. 2009, 132, 031101. [Google Scholar] [CrossRef]
- Becker, S.M. One-Dimensional Transient Heat Conduction in Composite Living Perfuse Tissue. J. Heat Transf. 2013, 135, 071002. [Google Scholar] [CrossRef]
- Sarkar, D.; Haji-Sheikh, A.; Jain, A. Temperature distribution in multi-layer skin tissue in presence of a tumor. Int. J. Heat Mass Transf. 2015, 91, 602–610. [Google Scholar] [CrossRef]
- Ma, J.; Yang, X.; Sun, Y.; Yang, J. Thermal damage in three-dimensional vivo bio-tissues induced by moving heat sources in laser therapy. Sci. Rep. 2019, 9, 10987. [Google Scholar] [CrossRef]
- Hensel, H. Thermoreception and temperature regulation. Monogr. Physiol. Soc. 1981, 38, 1–321. [Google Scholar]
- Ring, J.W.; de Dear, R. Temperature Transients: A Model for Heat Diffusion through the Skin, Thermoreceptor Response and Thermal Sensation. Indoor Air 1991, 1, 448–456. [Google Scholar] [CrossRef]
- Ring, J.W.; de Dear, R.; Melikov, A. Human thermal sensation: Frequency response to sinusoidal stimuli at the surface of the skin. Energy Build. 1993, 20, 159–165. [Google Scholar] [CrossRef]
- Parkinson, T.; Zhang, H.; Arens, E.; He, Y.; de Dear, R.; Elson, J.; Parkinson, A.; Maranville, C.; Wang, A. Predicting thermal pleasure experienced in dynamic environments from simulated cutaneous thermoreceptor activity. Indoor Air 2021, 31, 2266–2280. [Google Scholar] [CrossRef]
- McIntyre, D.A. Indoor Climate; Applied Science Publishers Ltd.: London, UK, 1980; Volume 443. [Google Scholar]
- Donaldson, H.H. On the temperature-sense. Mind 1885, 10, 398–416. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Zhang, H.; Arens, E.; Filingeri, D.; Jin, L.; Ghahramani, A.; Chen, W.; He, Y.; Si, B. High-density thermal sensitivity maps of the human body. Build Environ. 2020, 167, 106435. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, H.; Xu, S.; Luo, M.; Zhou, X. High-density thermal sensitivity of the hand under different thermal states and stimulus intensities. Indoor Air 2022, 32, e13089. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, M.; Yu, H.; Zhou, X. Evaluating the dynamic thermal sensitivities of human body with high-dense contacting thermal stimuli. Indoor Built Environ. 2023, 1420326X231201847. [Google Scholar] [CrossRef]
- Dufour, A.; Després, O.; Pebayle, T.; Lithfous, S. Thermal sensitivity in humans at the depth of thermal receptor endings beneath the skin: Validation of a heat transfer model of the skin using high-temporal resolution stimuli. Eur. J. Appl. Physiol. 2020, 120, 1509–1518. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yu, R.-X.; Fan, W.; Li, C.-X.; Fei, W.-M.; Li, S.; Zhou, J.; Hu, R.; Liu, M.; Xu, F.; et al. Detection of skin thickness and density in healthy Chinese people by using high-frequency ultrasound. Ski. Res. Technol. 2023, 29, e13219. [Google Scholar] [CrossRef] [PubMed]
- Gowrishankar, T.R.; Stewart, D.A.; Martin, G.T.; Weaver, J.C. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion. BioMedical Eng. OnLine 2004, 3, 42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Pang, D.; Wang, B.; Wang, J. Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting. Energy 2023, 262, 125621. [Google Scholar] [CrossRef]
- Takahashi, Y.; Nomoto, A.; Yoda, S.; Hisayama, R.; Ogata, M.; Ozeki, Y.; Tanabe, S.-i. Thermoregulation model JOS-3 with new open source code. Energy Build. 2021, 231, 110575. [Google Scholar] [CrossRef]
- de Dear, R.J.; Ring, J.W.; Fanger, P.O. Thermal Sensations Resulting From Sudden Ambient Temperature Changes. Indoor Air 1993, 3, 181–192. [Google Scholar] [CrossRef]
- Molinari, H.H.; Greenspan, J.D.; Krenshalo, D.R. The effects of rate of temperature change and adapting temperature on thermal sensitivity. Sens. Process. 1977, 1, 354–362. [Google Scholar]
- ASHRAE 55:2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating Refrigerating and Air-Conditioning Engineers (ASHRAE): Atlanta, GA, USA, 2020.
- Reon Pocket. Available online: https://popbee.com/tag/reon-pocket/ (accessed on 10 January 2024).
- Embr Wave. Available online: https://embrlabs.com/embr-wave/ (accessed on 10 January 2024).
Skin Layer | Thickness (mm) | Heat Capacity (J/kg/K) | Thermal Conductivity (W/m/K) | Density (g/cm3) |
---|---|---|---|---|
Epidermis | 0.15 | 3590 | 0.24 | 1.2 |
Dermis | 1.5 | 3300 | 0.45 | 1.2 |
Hypodermis | 3.75 | 2675 | 0.19 | 1 |
Material | Thermal Conductivity (W/m/K) | Surface Roughness (μm) | Surface Asperity Slope (rad) | Contact Pressure (kPa) | Microhardness (Mpa) |
---|---|---|---|---|---|
Skin surface | 0.24 | 21.69 | 0.3 | 0.8 | 0.1225 |
Stimulation probe (stainless steel 304) | 14.986 | 0.008 | 0.009 | -- | -- |
Body Part | Core Temperature (°C) |
---|---|
Hand | 35.05 |
Arm | 35.87 |
Face | 37.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yu, H.; Luo, M.; Zhou, X. Skin Heat Transfer and Thermal Sensation Coupling Model under Steady Stimulation. Buildings 2024, 14, 547. https://doi.org/10.3390/buildings14020547
Zhou Y, Yu H, Luo M, Zhou X. Skin Heat Transfer and Thermal Sensation Coupling Model under Steady Stimulation. Buildings. 2024; 14(2):547. https://doi.org/10.3390/buildings14020547
Chicago/Turabian StyleZhou, Yijia, Hang Yu, Maohui Luo, and Xiang Zhou. 2024. "Skin Heat Transfer and Thermal Sensation Coupling Model under Steady Stimulation" Buildings 14, no. 2: 547. https://doi.org/10.3390/buildings14020547
APA StyleZhou, Y., Yu, H., Luo, M., & Zhou, X. (2024). Skin Heat Transfer and Thermal Sensation Coupling Model under Steady Stimulation. Buildings, 14(2), 547. https://doi.org/10.3390/buildings14020547