Research and Development of Steel Fiber Reinforced Concrete Filling Material and Its Application in Gob-Side Entry Retaining Technology in Deep Mines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Test Contents
2.2.1. Determination of Slump
2.2.2. Determination of Mechanical Properties Parameters
3. Results and Analysis
3.1. Analysis of Slump Results
3.2. Characteristics of Stress–Strain Curve in Cube Compression Test
3.3. Development Law of Strength of SFRC
3.3.1. Development Law of Cube Compressive Strength
3.3.2. Development Law of Splitting Tensile Strength
3.4. Specimen Damage Pattern
3.4.1. Damage Morphology of Cube Compression Test
3.4.2. Damage Morphology Analysis of Splitting Tensile Test
3.5. The Toughening Effect of Steel Fibers
4. Industrial Testing
4.1. Experimental Site and Backfill Body Design
4.2. Construction Equipment and Technology
4.2.1. Construction Equipment
4.2.2. Construction Technology
4.3. Implementation Effect Monitoring
4.3.1. Monitoring Content
4.3.2. Monitoring Results
5. Discussion
6. Conclusions
- The slump of concrete decreases with the increase of steel fibers. Considering factors such as pumping distance, it is determined that the amount of steel fiber added on site should be between 0.5% and 1.5%.
- The inclusion of steel fiber shifts the three stages of pore compaction, linear elasticity, and instability damage in the stress–strain curve forward. It also causes the residual stage curve of the post-peak stage to step down, resulting in a stronger post-peak bearing capacity.
- The compressive and tensile strengths of concrete showed an increasing and then decreasing trend with the increase of steel fibers, reaching the peak at 1.5%, and the steel fibers were more obvious for tensile strength enhancement. Steel fibers enhance the strength of compressive strength of concrete at an early age, weaker at a late age, and tensile strength inversely.
- The incorporation of steel fibers reduces the degree of damage to the concrete matrix and changes the concrete matrix from tensile to shear damage. Relevant calculations show that the toughness index of steel fiber concrete exhibits a ‘first increase and then decrease’ trend, with the maximum toughness index achieved at a mixing amount of 1.5%.
- The industrial test results demonstrate that using SFRC as the filling material for roadside structures can effectively reduce peripheral rock surface displacement and bolt (cable) force. This proves the feasibility of using SFRC as roadside filling material.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, X. Surrounding Rock Control Mechanism and Application of “Support-Unloading” Combined Technology for Gob-SideEntry Retaining in Shallow Coal Seam. Ph.D. Thesis, China Coal Research Institute, Xi’an, China, 2022. [Google Scholar] [CrossRef]
- Kang, H.; Zhang, X.; Wang, D.; Tian, J.; Yi, Z.; Jiang, W. Strata control technology and applications of non-pillar coal mining. J. China Coal Soc. 2022, 47, 16–44. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Zhang, B. Research on the coal industry development and transition in China under the background ofcarbon neutrality. China Min. Mag. 2021, 30, 1–6. [Google Scholar] [CrossRef]
- Zhang, S. Coordinate and push industry energy-saving and carbon reduction, actively deal with carbon peak, and carbon neutrality challenge. Coal Process. Compr. Util. 2021, 5, 1–6. [Google Scholar] [CrossRef]
- Wang, Q.; He, M.; Yang, J.; Gao, H.; Jiang, B.; Yu, H. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines. Int. J. Rock. Mech. Min. Sci. 2018, 110, 1–8. [Google Scholar] [CrossRef]
- Luan, H.; Jiang, Y.; Zhou, L.; Lin, H. Stability Control and Quick Retaining Technology of Gob-Side Entry: A Case Study. Adv. Civ. Eng. 2018, 2018, 7357320. [Google Scholar] [CrossRef]
- Hou, C. Key technologies for surrounding rock control in deep roadway. J. China Univ. Min. Technol. 2017, 46, 970–978. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, J.; Chen, Y.; Yan, S. An innovative approach for gob-side entry retaining in highly gassy fully-mechanized longwall top-coal caving. Int. J. Rock. Mech. Min. Sci. 2015, 80, 1–11. [Google Scholar] [CrossRef]
- Li, Q.; Xu, S. Performance and application of ultra high toughness cementitious composite:aeview. Eng. Mech. 2009, 26, 23–67. [Google Scholar]
- Xu, S.; Zhang, Z.; Xin, J.; Bai, J.; Ma, X.; Zhai, R.; Wu, W. Stability mechanism and countermeasure of the solid coal rib in deep gob-side entry retaining: Insights from theoretical analysis numerical simulation. Heliyon 2024, 10, e24174. [Google Scholar] [CrossRef]
- Hua, X.; Li, C.; Liu, X.; Guo, Y.; Qi, Y.; Chen, D. Current situation of gob-side entry retaining and suggestions for its improvement in China. Coal Sci. Technol. 2023, 51, 128–145. [Google Scholar] [CrossRef]
- Xie, S.-R.; Pan, H.; Chen, D.-D.; Zeng, J.-C.; Song, H.-Z.; Cheng, Q.; Xiao, H.-B.; Yan, Z.-Q.; Li, Y.-H. Stability analysis of integral load-bearing structure of surrounding rock of gob-side entry retention with flexible concrete formwork. Tunn. Undergr. Space Technol. 2020, 103, 103492. [Google Scholar] [CrossRef]
- Li, V.C.; Wu, H.C.; Maalej, M.; Mishra, D.K.; Hashida, T. Tensile Behavior of Cement-Based Composites with Random Discontinuous Steel Fibers. J. Am. Ceram. Soc. 2005, 79, 74–78. [Google Scholar] [CrossRef]
- Li, V.C.; Obla, K.H. Effect of fiber length variation on tensile properties of carbon-fiber cement composites. Compos. Eng. 1994, 4, 947–964. [Google Scholar] [CrossRef]
- Wansom, S.; Janjaturaphan, S. Evaluation of fiber orientation in plant fiber-cement composites using AC-impedance spectroscopy. Cem. Concr. Res. 2013, 45, 37–44. [Google Scholar] [CrossRef]
- Khan, S.; Ashraf, S.; Ali, S.; Khan, K. Experimental investigations on the mechanical properties and damage detection of carbon nanotubes modified crumb rubber concrete. J. Build. Eng. 2023, 75, 106937. [Google Scholar] [CrossRef]
- Al-Akhras, N.M.; Smadi, M.M. Properties of tire rubber ash mortar. Cem. Concr. Compos. 2004, 26, 821–826. [Google Scholar] [CrossRef]
- Khaloo, A.R.; Dehestani, M.; Rahmatabadi, P. Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Manag. 2008, 28, 2472–2482. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Shi, X.; Gao, Y.; Ning, J.; Chen, W.; Wei, X.; Wang, J.; Yang, S. Reinforcing effects of carbon nanotubes on cement-based grouting materials under dynamic impact loading. Constr. Build. Mater. 2023, 382, 131083. [Google Scholar] [CrossRef]
- Li, G.; Shi, X.; Ning, J.; Chen, W.; Zhang, Z.; Wang, J.; Yang, S.; Gao, Y. Particle size distribution of aggregate effects on the dynamic compressive behavior of cement waste rock backfill. Eng. Fract. Mech. 2023, 292, 109596. [Google Scholar] [CrossRef]
- Eftekhari, M.; Mohammadi, S. Multiscale dynamic fracture behavior of the carbon nanotube reinforced concrete under impact loading. Int. J. Impact Eng. 2016, 87, 55–64. [Google Scholar] [CrossRef]
- Ashwini, B. Comparison of mechanical properties of concrete incorporated with Multiwalled Carbon nanotube and partial replacement of cement with flyash. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Zeng, J.; Hu, W.; Cheng, Y. Axial compressive behavior of recycled ceramic coarse aggregate concrete-filled steel tubular columns. J. Constr. Steel Res. 2023, 210, 108040. [Google Scholar] [CrossRef]
- López, V.; Llamas, B.; Juan, A.; Morán, J.M.; Guerra, I. Eco-efficient Concretes: Impact of the Use of White Ceramic Powder on the Mechanical Properties of Concrete. Biosyst. Eng. 2007, 96, 559–564. [Google Scholar] [CrossRef]
- Binici, H. Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Constr. Build. Mater. 2007, 21, 1191–1197. [Google Scholar] [CrossRef]
- Roumaldi, J.P.; Batson, G.B. Mechanics of Crack Arrest in Concrete. Proc. ASCE 1963, 89, 147–168. [Google Scholar] [CrossRef]
- Romualdi, J.P.; Mandel, J.A. Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Lengths of Wire Reinforcement. J. Proc. 1964, 61, 27–37. [Google Scholar]
- Lankard, D.R.; Newell, J.K. Preparation of Highly Reinforced Steel Fiber Reinforced Concrete Composites. Spec. Publ. 1984, 81, 287–306. [Google Scholar]
- Naaman, A.E.; Homrich, J.R. Tensile stress-strain Properties of SIFCON. ACI Mater. J. 1989, 86, 244–251. [Google Scholar]
- Li, V.C.; Leung, C. Steady-State and Multiple Cracking of Short Random Fiber Composites. ASCE 1992, 118, 2246–2264. [Google Scholar] [CrossRef]
- Khaloo, A.; Kim, N. Mechanical properties of normal to high-strength steel fiber-reinforced concrete. Cem. Concr. Aggreg. 1996, 18, 92–97. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, X.; Chang, Y.; Wang, Y.; Wu, L.; Fan, H. The Effects of Steel Fiber Types and Volume Fraction on the Physical and Mechanical Properties of Concrete. Coatings 2023, 13, 978. [Google Scholar] [CrossRef]
- Meng, S.; Jiao, C.; Ouyang, X.; Niu, Y.; Fu, J. Effect of steel fiber-volume fraction and distribution on flexural behavior of Ultra-high performance fiber reinforced concrete by digital image correlation technique. Constr. Build. Mater. 2022, 320, 126281. [Google Scholar] [CrossRef]
- Luo, Z.; Li, X.; Ling, T. Study on the Reinforcement Mechanism and Fracture Mechanics Model of Steel Fiber Reinforced Concrete. Min. Res. Dev. 2003, 23, 18–22. [Google Scholar] [CrossRef]
- Sun, W.; Gao, J.; Qin, H. Studies on bond strength of inter face between fiber and matrix steel fiber reinforced concrete. J. Chin. Ceram. Soc. 1985, 13, 292–300. [Google Scholar]
- Rashidi, M.; Kargar, S.; Roshani, S. Experimental and numerical investigation of steel fiber concrete fracture energy. In Structures; Elsevier: Amsterdam, The Netherlands, 2024; Volume 59, p. 105792. [Google Scholar] [CrossRef]
- Nguyen, K.T.Q.; Navaratnam, S.; Mendis, P.; Zhang, K.; Barnett, J.; Wang, H. Fire safety of composites in prefabricated buildings: From fibre reinforced polymer to textile reinforced concrete. Compos. Part. B Eng. 2020, 187, 107815. [Google Scholar] [CrossRef]
- Lárusson, L.H.; Fischer, G.; Jönsson, J. Prefabricated floor panels composed of fiber reinforced concrete and a steel substructure. Eng. Struct. 2013, 46, 104–115. [Google Scholar] [CrossRef]
- Teng, J.G.; Yu, T.; Fernando, D. Strengthening of steel structures with fiber-reinforced polymer composites. J. Constr. Steel Res. 2012, 78, 131–143. [Google Scholar] [CrossRef]
- DG/TJ08-59-2019; Technical Specification for Application of Mill-Cut Steel Fiber Reinforced Concrete. Tongji University Press: Shanghai, China, 2019.
- JGJ 55-2011; Specification for Mix Proportion Design of Ordinary Concrete. China Architecture & Building Press: Beijing, China, 2011.
- JG/T472-2015; Steel Fiber Reinforced Concrete. Ministry of Housing and Urban Rural Development of the People’s Republic of China: Beijing, China, 2015.
- Ashkezari, G.D.; Fotouhi, F.; Razmara, M. Experimental relationships between steel fiber volume fraction and mechanical properties of ultra-high performance fiber-reinforced concrete. J. Build. Eng. 2020, 32, 101613. [Google Scholar] [CrossRef]
- Soufeiani, L.; Raman, S.N.; Jumaat, M.Z.B.; Alengaram, U.J.; Ghadyani, G.; Mendis, P. Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading—A review. Eng. Struct. 2016, 124, 405–417. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Zhang, H.; Zhang, H.; Xiao, R. Experimental study on seismic performance of steel fiber reinforced high strength concrete composite shear walls with different steel fiber volume fractions. Eng. Struct. 2018, 171, 247–259. [Google Scholar] [CrossRef]
- GB/T 50080-2016; Standard for Test Method of Performanceon Ordinary Fresh Concrete. China Architecture & Building Press: Beijing, China, 2016.
- ASTM-C143; Standard Test Method for Slump of Hydraulic-Cement Concrete. American Society of Testing Materials: Philadelphia, PA, USA, 2020.
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture & Building Press: Beijing, China, 2019.
- ASTM-C39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society of Testing Materials: Philadelphia, PA, USA, 2018.
- ASTM-C496; Splitting Tensile Strength of Cylindrical Concrete Specimens. American Society of Testing Material: Philadelphia, PA, USA, 2017.
- Boulekbache, B.; Hamrat, M.; Chemrouk, M.; Amziane, S. Flowability of fiber-reinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater. 2010, 24, 1664–1671. [Google Scholar] [CrossRef]
- Yu, J.; Zhai, T.; Liang, X.; Sun, X. Fluidity and Mechanical Properties of Steel-PVA Fiber Reinforced Concrete. J. Build. Mater. 2018, 21, 402–407. [Google Scholar]
- JGJ/T 10-2011; Technical Specification for Construction of Concrete Pumping. China Architecture & Building Press: Beijing, China, 2011.
- Zhang, Z.; Zhang, D.; Zhang, X. Experimental study on “soft-carrying” of mine concrete support material. Concrete 2022, 10, 179–183. [Google Scholar]
- Bai, M.; Niu, H.; Jiang, L.; Miao, Y. Research on Improving the Mechanical Properties andMicrostructure of Concrete with Steel Fiber. Bull. Chin. Ceram. Soc. 2013, 32, 2084–2089. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete. Cem. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Yang, X.X.; Sun, D.K.; Jing, H.W. Morphological features of shear-formed fractures developed in a rock bridge. Eng. Geol. 2020, 278, 105833. [Google Scholar] [CrossRef]
- Xie, H.; Peng, R.; Ju, Y.; Zhou, H. On energy analysis of rock failure. Chin. J. Rock. Mech. Eng. 2005, 24, 2603–2608. [Google Scholar]
- Fu, Q.; Zhao, X.; He, J.; Zhang, Z.; Zeng, X.; Niu, L.; Wang, Y. Constitutive Response of Hybrid Basalt-polypropylene Fiber-reinforced Concrete Based on Energy Conversion Principle. J. Chin. Ceram. Soc. 2021, 49, 1670–1682. [Google Scholar] [CrossRef]
- Zhao, C.; Zhu, Z.; Guo, Q.; Zhan, Y.; Zhao, R. Research on fiber reinforced concrete and its performance prediction method and mix design method. Constr. Build. Mater. 2023, 365, 130033. [Google Scholar] [CrossRef]
- Wang, X. Study on the Bond Mechanism of Deformed Steel Fiber and Concrete and Toughening Effect. Master’s Thesis, Hebei University of Technology, Tianjin, China, 2003. [Google Scholar]
- Huo, L. The Constitutive Model and Numerical Analysis of the Steel Fiber Reinforcement Concrete Based on the Smear Crack Model. Ph.D. Thesis, Tianjin University, Tianjin, China, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individualauthor(s) and contributor(s) and not of MDPI and/or the editor(s),. MDPI and/or the editor(s) disclaim responsibility for any injury topeople or property resulting from any ideas, methods, instructions or products referred to in the content. |
Parameter | MgO | SiO2 | Al2O3 | CaO | Fe2O3 | Na2O | K2O | Others | Loss |
---|---|---|---|---|---|---|---|---|---|
Index | 3.1 | 24 | 8.5 | 43.4 | 2.6 | 0.29 | 0.7 | 0.8 | 16.61 |
Parameter | MgO | SiO2 | Al2O3 | CaO | Fe2O3 | SO3 | FeO | Loss |
---|---|---|---|---|---|---|---|---|
Index | 7.1 | 54.3 | 16.2 | 10.4 | 6.5 | 0 | 5.5 | 0 |
Parameter | SiO2 | Fe2O3 | Other | Moisture Content |
---|---|---|---|---|
Index | 98.5 | 0.02 | 1.48 | 1.5 |
Parameter | Tensile Strength | Length | Width | Thickness | Density |
---|---|---|---|---|---|
Index | 680 Mpa | 38 mm | 2 mm | 0.5 mm | 7.8 kg/m3 |
Parameter | Water Reduction | Gas Holdup | Bleeding Rate | Water Content | PH Value |
---|---|---|---|---|---|
Index | ≥25% | ≤6.0% | ≤60% | ≤3% | 7.0 ± 1.0 |
Experiment Number | Cement (kg/m3). | Coarse Aggregate (kg/m3). | Fine Aggregate (kg/m3). | Steel Fiber (kg/m3). | Water (kg/m3). | Water Reducer (kg/m3). |
---|---|---|---|---|---|---|
C | 382.6 | 920 | 830 | 0 | 176 | 1.14 |
SFRC-5 | 382.6 | 910 | 840 | 39.25 | 176 | 1.14 |
SFRC-10 | 382.6 | 875 | 875 | 78.5 | 176 | 1.14 |
SFRC-15 | 382.6 | 840 | 910 | 117.5 | 176 | 1.14 |
SFRC-20 | 382.6 | 805 | 945 | 157 | 176 | 1.14 |
Experiment Number | C | SFRC-5 | SFRC-10 | SFRC-15 | SFRC-20 | ||
---|---|---|---|---|---|---|---|
conservation age | 3 days | Specimen 1 | 20.1 | 21.9 | 25.3 | 27.6 | 19.6 |
Specimen 2 | 18.9 | 22.4 | 23.0 | 24.7 | 20.9 | ||
Specimen 3 | 18.6 | 22.9 | 23.4 | 23.9 | 22.8 | ||
average | 19.2 | 22.4 | 23.9 | 25.3 | 21.1 | ||
7 days | Specimen 1 | 34.9 | 36.8 | 40.0 | 40.8 | 42.1 | |
Specimen 2 | 32.8 | 38.4 | 38.7 | 41.2 | 37.8 | ||
Specimen 3 | 34.6 | 38.2 | 38.6 | 41.3 | 41.0 | ||
average | 34.1 | 37.8 | 39.1 | 41.1 | 40.3 | ||
28 days | Specimen 1 | 44.7 | 42.6 | 48.6 | 45.8 | 45.4 | |
Specimen 2 | 43.0 | 44.5 | 47.2 | 48.3 | 47.0 | ||
Specimen 3 | 40.4 | 45.2 | 42.8 | 47.8 | 44.4 | ||
average | 42.7 | 44.1 | 46.2 | 47.3 | 45.6 |
Experiment Number | C | SFRC-5 | SFRC-10 | SFRC-15 | SFRC-20 | ||
---|---|---|---|---|---|---|---|
conservation age | 3 days | Specimen 1 | 2.4 | 3.5 | 4.0 | 4.7 | 3.9 |
Specimen 2 | 2.1 | 2.9 | 3.7 | 4.8 | 2.3 | ||
Specimen 3 | 3.0 | 2.9 | 3.1 | 4.9 | 4.0 | ||
average | 2.5 | 3.1 | 3.6 | 4.8 | 3.4 | ||
7 days | Specimen 1 | 3.9 | 4.1 | 5.1 | 5.0 | 4.7 | |
Specimen 2 | 3.7 | 4.3 | 4.8 | 6.1 | 4.2 | ||
Specimen 3 | 2.6 | 4.2 | 4.2 | 4.9 | 5.5 | ||
average | 3.4 | 4.2 | 4.7 | 5.5 | 4.8 | ||
28 days | Specimen 1 | 4.3 | 6.7 | 7.8 | 8.4 | 6.4 | |
Specimen 2 | 5.2 | 7.0 | 8.1 | 8.8 | 7.1 | ||
Specimen 3 | 4.0 | 6.1 | 7.5 | 8.6 | 6.0 | ||
average | 4.5 | 6.6 | 7.8 | 8.6 | 6.5 |
Number | C | SFRC-5 | SFRC-10 | SFRC-15 | SFRC-20 |
---|---|---|---|---|---|
Real shot image | |||||
Sketch Map |
Number | C | SFRC-5 | SFRC-10 | SFRC-15 | SFRC-20 |
---|---|---|---|---|---|
Real shot image | |||||
Sketch Map |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Shi, X.; Li, X.; Ning, J.; Liu, Y.; Yang, S. Research and Development of Steel Fiber Reinforced Concrete Filling Material and Its Application in Gob-Side Entry Retaining Technology in Deep Mines. Buildings 2024, 14, 722. https://doi.org/10.3390/buildings14030722
Zhang X, Shi X, Li X, Ning J, Liu Y, Yang S. Research and Development of Steel Fiber Reinforced Concrete Filling Material and Its Application in Gob-Side Entry Retaining Technology in Deep Mines. Buildings. 2024; 14(3):722. https://doi.org/10.3390/buildings14030722
Chicago/Turabian StyleZhang, Xiulong, Xinshuai Shi, Xuehui Li, Jianguo Ning, Yuchi Liu, and Shang Yang. 2024. "Research and Development of Steel Fiber Reinforced Concrete Filling Material and Its Application in Gob-Side Entry Retaining Technology in Deep Mines" Buildings 14, no. 3: 722. https://doi.org/10.3390/buildings14030722
APA StyleZhang, X., Shi, X., Li, X., Ning, J., Liu, Y., & Yang, S. (2024). Research and Development of Steel Fiber Reinforced Concrete Filling Material and Its Application in Gob-Side Entry Retaining Technology in Deep Mines. Buildings, 14(3), 722. https://doi.org/10.3390/buildings14030722