Research on the Classification of Concrete Sulfate Erosion Types in Tumushuke Area, Xinjiang
Abstract
:1. Introduction
2. Test Method
2.1. Design of Test Scheme
2.2. Test Raw Materials
3. Analysis and Discussion of Results
3.1. Concrete Strength
3.1.1. Full Immersion Test of Concrete
3.1.2. Concrete Sulfate Freeze–Thaw Coupling Tests
3.2. Analysis of X-ray Diffraction Results
3.2.1. Full Immersion Test of Concrete
3.2.2. Concrete Sulfate Freeze–Thaw Coupling Tests
3.3. Infrared Spectral Analysis
3.3.1. Full Immersion Test of Concrete
3.3.2. Concrete Sulfate Freeze–Thaw Coupling Tests
3.4. SEM & EDS Analysis
3.4.1. Full Immersion Test of Concrete
3.4.2. Concrete Sulfate Freeze–Thaw Coupling Tests
3.5. Classification of Concrete Sulfate Erosion Damage Types in Tumushuke Area
4. Conclusions and Perspectives
- (1)
- Concrete displays three different types of erosion: ettringite-type erosion occurs when the sulfate concentration is less than 15,000 mg/kg, ettringite–gypsum erosion occurs between 15,000 and 20,000 mg/kg, and gypsum erosion predominates when the concentration exceeds 20,000 mg/kg. Carbon–sulfur silica-calcite erosion will also occur in concrete under sulfate freeze–thaw coupling.
- (2)
- The Tumushuke area’s southern and northeastern regions have low sulfate concentrations and primarily exhibit ettringite–gypsum-type erosion damage. In contrast, the center north has high sulfate concentrations and primarily exhibits gypsum-type and ettringite–gypsum-type erosion damage.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, D.; Yan, C.; Zhang, J.; Liu, S.; Li, J. Chloride threshold value and initial corrosion time of steel bars in concrete exposed to saline soil environments. Constr. Build. Mater. 2021, 267, 120979. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Shi, M.; Cui, J.; Xie, F. Degradation of cast-in-situ concrete subjected to sulphate-chloride combined attack. Constr. Build. Mater. 2020, 241, 117995. [Google Scholar] [CrossRef]
- Liao, K.-X.; Zhang, Y.-P.; Zhang, W.-P.; Wang, Y.; Zhang, R.L. Modeling constitutive relationship of sulfate-attacked concrete. Constr. Build. Mater. 2020, 260, 119902. [Google Scholar] [CrossRef]
- Yu, D.; Feng, C.; Fu, T.; Shen, A. Effect of Sulfate Concentration on Chloride Diffusion of Concrete under Cyclic Load. Materials 2022, 15, 2036. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Guo, J.J.; Yang, L.; Zhang, P.; Xu, H.Y. Multiphysical damage characteristics of concrete exposed to external sulfate attack: Elucidating effect of drying-wetting cycles. Constr. Build. Mater. 2022, 329, 127143. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, Y.; Li, G.; Huang, W.; Zhao, H.; Cao, G.; Wang, A. Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang. Sustainability 2022, 14, 16486. [Google Scholar] [CrossRef]
- Klein, N.; Gómez, E.D.; Duffó, G.S.; Farina, S.B. Effect of sulphate on the corrosion of reinforcing steel in concrete. Constr. Build. Mater. 2022, 354, 129214. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Deng, D.; Xie, Y.; Long, G.; Tang, X. Physical sulfate attack on concrete lining–A field case analysis. Case Stud. Constr. Mater. 2017, 6, 206–212. [Google Scholar] [CrossRef]
- Wu, J.; Wei, J.; Huang, H.; Hu, J.; Yu, Q. Effect of multiple ions on the degradation in concrete subjected to sulfate attack. Constr. Build. Mater. 2020, 259, 119846. [Google Scholar] [CrossRef]
- Idiart, A.E.; López, C.M.; Carol, I. Chemo-mechanical analysis of concrete cracking and degradation due to external sulfate attack: A meso-scale model. Cem. Concr. Compos. 2011, 33, 411–423. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, T.; Zou, D.; Zhou, A. Compressive strength assessment of sulfate-attacked concrete by using sulfate ions distributions. Constr. Build. Mater. 2021, 293, 123550. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.-M.; Roussel, N.; Divet, L.; d’Espinose de Lacaillerie, J.-B. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- Shen, X.M.; Yang, H.Q.; Li, X.; Li, M.X. Progress and Review of Research on Durability of Hydraulic Concrete under Alternate Freeze-Thaw and Carbonation Effected by Wet-Dry Cycles. Appl. Mech. Mater. 2013, 405–408, 2734–2738. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, S.; Wang, C.; Quan, X.; Yan, Q.; Li, B. Study on the durability of engineered cementitious composites (ECCs) containing high-volume fly ash and bentonite against the combined attack of sulfate and freezing-thawing (F-T). Constr. Build. Mater. 2020, 233, 123550. [Google Scholar] [CrossRef]
- Sotiriadis, K.; Mácová, P.; Mazur, A.S.; Viani, A.; Tolstoy, P.M.; Tsivilis, S. Long-term thaumasite sulfate attack on Portland-limestone cement concrete: A multi-technique analytical approach for assessing phase assemblage. Cem. Concr. Res. 2020, 130, 105995. [Google Scholar] [CrossRef]
- Zhao, G.; Li, J.; Shi, M.; Fan, H.; Cui, J.; Xie, F. Degradation mechanisms of cast-in-situ concrete subjected to internal-external combined sulfate attack. Constr. Build. Mater. 2020, 248, 118683. [Google Scholar] [CrossRef]
- He, W.; Li, B.; Meng, X.; Shen, Q. Compound Effects of Sodium Chloride and Gypsum on the Compressive Strength and Sulfate Resistance of Slag-Based Geopolymer Concrete. Buildings 2023, 13, 675. [Google Scholar] [CrossRef]
- GB/T 50082-2009; Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete. Standards Press of China: Beijing, China, 2009.
- GB/T 50081-2019; Standard for Test Method of Mechanical and Physical Performance on Concrete. Standards Press of China: Beijing, China, 2019.
- Liu, J.; Zang, S.; Yang, F.; Zhang, M.; Li, A. Fracture Mechanical Properties of Steel Fiber Reinforced Self-Compacting Concrete under Dry–Wet Cycle Sulfate Attack. Buildings 2022, 12, 1623. [Google Scholar] [CrossRef]
- Zhou, S.; Ju, J.W. A chemo-micromechanical damage model of concrete under sulfate attack. Int. J. Damage Mech. 2021, 30, 1213–1237. [Google Scholar] [CrossRef]
- Müllauer, W.; Beddoe, R.E.; Heinz, D. Sulfate attack expansion mechanisms. Cem. Concr. Res. 2013, 52, 208–215. [Google Scholar] [CrossRef]
- Shen, X.Y.; Feng, P.; Zhang, Q.; Lu, J.Y.; Liu, X.; Ma, Y.F.; Jin, P.; Wang, W.; Ran, Q.P.; Hong, J.X. Toward the formation mechanism of synthetic calcium silicate hydrate (C-S-H)-pH and kinetic considerations. Cem. Concr. Res. 2023, 172, 107248. [Google Scholar] [CrossRef]
- Liu, X.; Feng, P.; Li, W.; Geng, G.Q.; Huang, J.L.; Gao, Y.; Mu, S.; Hong, J.X. Effects of pH on the nano/micro structure of calcium silicate hydrate (C-S-H) under sulfate attack. Cem. Concr. Res. 2021, 140, 106306. [Google Scholar] [CrossRef]
- Tao, Y.; Gao, Y.N.; Sun, Y.J.; Pellenq, R.J.M.; Poon, C.S. C-S-H decalcification in seawater: The view from the nanoscale. Cem. Concr. Res. 2024, 175, 107385. [Google Scholar] [CrossRef]
- Chen, J.J.; Thomas, J.J.; Taylor, H.F.W.; Jennings, H.M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef]
- Ma, X.; Çopuroglu, O.; Schlangen, E.; Han, N.X.; Xing, F. Expansion and degradation of cement paste in sodium sulfate solutions. Constr. Build. Mater. 2018, 158, 410–422. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, T.H.; Luo, T.; Zhou, M.Z.; Zhang, K.K.; Ma, W.W. Study on the Deterioration of Concrete under Dry-Wet Cycle and Sulfate Attack. Materials 2020, 13, 4095. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, X.; Deng, D.; De Schutter, G.; Hou, L. The role of Ca(OH)2 in sulfate salt weathering of ordinary concrete. Constr. Build. Mater. 2016, 123, 127–134. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, J.; Long, C.; Zhang, Q.; Shi, J.; Zhang, Z. Influences of the joint action of sulfate erosion and cementitious capillary crystalline waterproofing materials on the hydration products and properties of cement-based materials: A review. J. Build. Eng. 2023, 68, 106061. [Google Scholar] [CrossRef]
- Yuan, X.; Dai, M.; Li, M.; Liu, F. Study of the Freeze–Thaw Resistance for Composite Fiber Recycled Concrete with Sulphate Attack Exposure. Buildings 2023, 13, 1037. [Google Scholar] [CrossRef]
- Cefis, N.; Tedeschi, C.; Comi, C. External sulfate attack in structural concrete made with Portland-limestone cement: An experimental study. Can. J. Civ. Eng. 2021, 48, 731–739. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, B.; Huang, J.; Li, X.; Tan, H.; Lv, Z. Influence of Ca/Si ratio of concrete pore solution on thaumasite formation. Constr. Build. Mater. 2017, 153, 261–267. [Google Scholar] [CrossRef]
- Abubaker, F.; Lynsdale, C.; Cripps, J. Investigation of concrete-clay interaction with regards to the thaumasite form of sulfate attack. Constr. Build. Mater. 2014, 67, 88–94. [Google Scholar] [CrossRef]
- Barnett, S.J.; Macphee, D.E.; Lachowski, E.E.; Crammond, N.J. XRD, EDX and IR analysis of solid solutions between thaumasite and ettringite. Cem. Concr. Res. 2002, 32, 719–730. [Google Scholar] [CrossRef]
- Ghorab, H.Y.; Mabrouk, M.R.; Herfort, D.; Osman, Y.A. Infrared investigation on systems related to the thaumasite formation at room temperature and 7 °C. Cem. Wapno Beton 2014, 19, 252. [Google Scholar]
- Scholtzová, E.; Kucková, L.; Kozísek, J.; Pálková, H.; Tunega, D. Experimental and computational study of thaumasite structure. Cem. Concr. Res. 2014, 59, 66–72. [Google Scholar] [CrossRef]
- Carmona-Quiroga, P.M.; Blanco-Varela, M.T. Use of barium carbonate to inhibit sulfate attack in cements. Cem. Concr. Res. 2015, 69, 96–104. [Google Scholar] [CrossRef]
- Myneni SC, B.; Traina, S.J.; Waychunas, G.A.; Logan, T.J. Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Et Cosmochim. Acta 1998, 62, 3499–3514. [Google Scholar] [CrossRef]
- Mittermayr, F.; Baldermann, A.; Kurta, C.; Rinder, T.; Klammer, D.; Leis, A.; Tritthart, J.; Dietzel, M. Evaporation—A key mechanism for the thaumasite form of sulfate attack. Cem. Concr. Res. 2013, 49, 55–64. [Google Scholar] [CrossRef]
- He, R.; Zheng, S.N.; Gan, V.J.L.; Wang, Z.D.; Fang, J.H.; Shao, Y. Damage mechanism and interfacial transition zone characteristics of concrete under sulfate erosion and Dry-Wet cycles. Constr. Build. Mater. 2020, 255, 119340. [Google Scholar] [CrossRef]
- Luan, H.; Wu, J.; Pan, J. Freeze-thaw Durability of Recycled Aggregate Concrete: An Overview. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2021, 36, 58–69. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Cao, D. Pore characteristics of recycled aggregate concrete and its relationship with durability under complex environmental factors. Constr. Build. Mater. 2021, 272, 121642. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, H.; Zhou, S.; Wu, Y.; Zheng, X.; Yan, Q. Study on the Frost Resistance of Composite Limestone Powder Concrete against Coupling Effects of Sulfate Freeze–Thaw. Buildings 2023, 13, 2776. [Google Scholar] [CrossRef]
- Schovanz, D.; Tiecher, F.; Hasparyk, N.P.; Kuperman, S.; Lermen, R.T. Evaluation of Delayed Ettringite Formation through Physical, Mechanical, and Microstructural Assays. ACI Mater. J. 2021, 118, 101–109. [Google Scholar]
Item | Standard Consistence/% | Initial Setting Time/min | Final Setting Time/min | Compressive Strength/MPa | Break off Strength /MPa | ||
---|---|---|---|---|---|---|---|
3 d | 28 d | 3 d | 28 d | ||||
Technology Index | 27.4 | ≥45 | ≤600 | ≥17.0 | ≥42.5 | ≥3.5 | ≥6.5 |
P·O42.5 | 27.4 | 181 | 227 | 29.4 | 46.5 | 6.0 | 8.9 |
Item | Soil Content/% | Mud Content /% | Crush Value /% | Apparent Density /(kg/m3) |
---|---|---|---|---|
Quality Index | ≤1.0 | ≤0.5 | ≤12 | ≥2600 |
5–20 mm Gravel | 0.6 | 0.3 | 9.5 | 2720 |
20–40 mm Gravel | 0.6 | 0.4 | — | 2740 |
Nominal Particle Size/mm | 80.0 | 63.0 | 50.0 | 40.0 | 31.5 | 25.0 | 20.0 | 16.0 | 10.0 | 5.00 | 2.50 |
---|---|---|---|---|---|---|---|---|---|---|---|
Standard Particle Grading Range Cumulative Sieve Residue/% | / | / | / | 0~10 | / | / | 80~100 | / | 95~100 | / | / |
Actual Cumulative Sieve Residue/% | / | / | / | 2 | 39 | 64 | 83 | 91 | 98 | 100 | 100 |
Item | Soil Content | Mud Content /% | Apparent Density/(kg/m3) | Volume Density/(kg/m3) |
---|---|---|---|---|
Technology Index | ≤3.0 | ≤1.0 | ≥2500 | ≥1400 |
Fine Aggregate | 2.9 | 0.7 | 2720 | 1690 |
Nominal Particle Size | 10.0 mm | 5.0 mm | 2.50 mm | 1.25 mm | 630 μm | 315 μm | 160 μm | |
---|---|---|---|---|---|---|---|---|
The Standard Requires Cumulative Sieve Residue/% | I | 0 | 10~0 | 35~5 | 65~35 | 85~71 | 95~80 | 100~90 |
II | 0 | 10~0 | 25~0 | 50~10 | 70~41 | 92~70 | 100~90 | |
III | 0 | 10~0 | 15~0 | 25~0 | 40~16 | 85~55 | 100~90 | |
Actual Cumulative Sieve Residue/% | 0 | 5 | 31 | 51 | 72 | 87 | 100 |
Supplies | Crushed Coarse Aggregate /(kg/m3) | Fine Aggregate /(kg/m3) | Cement /(kg/m3) | Water /(kg/m3) | Admixture /(kg/m3) |
---|---|---|---|---|---|
Dosage | 1000 | 840 | 425 | 180 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Jiang, X.; Li, J.; Li, G.; Huang, W.; Chang, W.; Cao, G.; Yu, Z. Research on the Classification of Concrete Sulfate Erosion Types in Tumushuke Area, Xinjiang. Buildings 2024, 14, 729. https://doi.org/10.3390/buildings14030729
Ma Y, Jiang X, Li J, Li G, Huang W, Chang W, Cao G, Yu Z. Research on the Classification of Concrete Sulfate Erosion Types in Tumushuke Area, Xinjiang. Buildings. 2024; 14(3):729. https://doi.org/10.3390/buildings14030729
Chicago/Turabian StyleMa, Yuwei, Xuemei Jiang, Junfeng Li, Gang Li, Wei Huang, Weidong Chang, Guangming Cao, and Ziwei Yu. 2024. "Research on the Classification of Concrete Sulfate Erosion Types in Tumushuke Area, Xinjiang" Buildings 14, no. 3: 729. https://doi.org/10.3390/buildings14030729
APA StyleMa, Y., Jiang, X., Li, J., Li, G., Huang, W., Chang, W., Cao, G., & Yu, Z. (2024). Research on the Classification of Concrete Sulfate Erosion Types in Tumushuke Area, Xinjiang. Buildings, 14(3), 729. https://doi.org/10.3390/buildings14030729