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Abstract: Steel beam–column connections with dog-bone beam sections have gained significant
attention and have been extensively applied. This is attributed to their ability to effectively centralize
and integrate plastic hinges, thereby diverting potential damage away from the beam ends during
earthquake events. In order to achieve the enhancement of the ductility and energy dissipation of
connections by inhibiting local buckling during an earthquake event, a novel steel moment connection
with buckling-restrained dog-bone beam sections was proposed in this paper. There were three
types of proposed connections according to the different arrangements of restrained steel plates,
including arranging the restrained plates only on the flanges, only on the web, and on both the flanges
and webs of the dog-bone beam sections. In this study, three specimens with buckling-restrained
dog-bone beam sections and one control specimen with a dog-bone beam section were tested under
cyclic loading. The failure modes, hysteretic curves, skeleton curves, stiffness degradation ductilities,
displacement ductility ratios, and energy dissipation capacities of the specimens were analyzed based
on the experimental results to evaluate the seismic behavior of the proposed connections. The results
indicated that the local buckling of the proposed connections was significantly reduced compared
with the traditional connection with a dog-bone beam section under the condition of keeping the
plastic hinges away from the beam–column connection core. The arrangement of the restrained
plates in the dog-bone beam section had little effect on the bearing capacity and the initial stiffness,
with errors all being within 6%. It is worth mentioning that the connection with restrained plates
only on the flanges in the dog-bone beam sections showed a more obvious improvement in the
deformation capacity and energy dissipation capacity of the connection, which increased by 21% and
16%, respectively. Additionally, high-quality welding between the beam and column, smooth cutting
shapes on the weakened flanges, and the high-quality drilling of long slots at the fixed point in the
restrained plates and the dog-bone beam sections should be guaranteed to improve the hysteretic
stabilities of the proposed connections.

Keywords: steel moment connection; dog-bone beam section; buckling-restrained plate; pseudo-static
test; seismic behavior

1. Introduction

Steel frame structures, as one of the most important modern building structures, are
widely used worldwide due to the advantages of having light self-weight, excellent seismic
performance, quick fast construction, flexible plane layout, and so on. However, it is
noteworthy that numerous brittle fractures were observed to have occurred in or proximal
to the welded joints connecting the beam bottom flange to the supporting column flange
in steel moment-resisting frame systems during the 1994 Northridge earthquake in the
United States and the 1995 Hyogoken-Nanbu earthquake in Japan [1–3]. A large number of
buildings were demolished and rebuilt following the earthquake due to the aforementioned
serious damage. The failure mode can be explained by Figure 1 [4] and the high-stress
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concentration observed at the beam-to-column connection may interfere with the spread
of the plastic area from the moment diagram along the beam of a steel moment-resisting
frame when subjected to lateral seismic forces.
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To avoid the aforementioned brittle fractures occurring in or near the beam-to-column
welded connection, numerous novel connections have been proposed to improve the
seismic performance of steel moment-resisting frames in highly seismic regions. One of the
proposed connections was a steel moment connection with a reduced beam section, which
consisted of cuts made in the beam flanges or openings created in the beam webs near
the core area of the beam-to-column connections [5–9]. It was conducive to the transfer
of the larger resistant moment section from the beam-to-column connection to the beam
span, so that the ductility failure mode of the proposed connection mode could be achieved.
Among them, the transfer effect of weakening the flanges was better because the flexural
strength primarily came from the flange plates. Therefore, steel moment connections with a
dog-bone beam section have been extensively studied and applied in steel moment frames.

Plumier [5] first proposed the “dog-bone” idea, which meant the weakening of specific
sections of structures for the deliberate establishment of reliable energy-dissipative zones
during an earthquake event. This idea was tested and recognized for its contribution to
ductility. A series of experimental studies about novel connections with a dog-bone beam
section were conducted by Chen et al. [10–12]. The results indicated that the connection
provided an enlarged plastic zone and alleviated strain levels in or near the weld between
the beam end and column flange face compared to the traditional plastic hinge of a limited
yielding area. As illustrated in Figure 2, they also presented the most intuitive explanation
about the bending mechanism and comparison of plastic hinge positions between tradi-
tional beams and dog-bone beams. According to the geometric features of the weakened
flanges, the cutting shapes can be divided into straight, variable, and radius. Moreover,
different weakening parameters have a great influence on the seismic performance of the
connections subjected to the same cutting shape [13–15]. Previous work has been conducted
on different cut dog-bone shapes by Engelhardt et al. [16,17]. The results proved that the
seismic performance of the dog-bone connection using the radius cut shape was superior
to that of the dog-bone connection using the straight cut shape because stress concentration
at the straight cut shape flanges led to early fracture. Based on an experimental study of
eight dog-bone connections, Lee et al. [18] examined the impact of web connection types
and panel zone strength on the cyclic behavior of the proposed connections. Their test
results indicated that allowing the panel zone to deform inelastically at 0.01 rad reduced
the magnitude of beam distortion by about half. Morshedi et al. [19] proposed a new type
of connection with a double dog-bone beam section; the additional reduced section led
to a wider plastic hinge. Moreover, this connection was optimized for the best seismic
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performance by Gharebaghi et al. [20], and the optimum connection shapes revealed up to
39% better energy dissipation compared with the conventional dog-bone connection. Push-
over tests, nonlinear static analyses, and time history analyses of steel moment-resisting
frames with dog-bone beam sections were conducted by Huang et al. [21,22]. The plastic
hinges on the beam first appeared at the dog-bone sections in the frames, and the perfor-
mance advantage of the frames was verified. Some design suggestions and quantitative
indices were proposed. Furthermore, based on previous research, the detailed design of a
connection with a dog-bone beam section has been elaborated upon by different national
standards [23–25].
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Although the connection with the dog-bone beam section had good seismic perfor-
mance, especially avoiding brittle fracture due to the transfer of plastic hinges, numerous
pseudo-static tests revealed that the prevalent failure modes of the connections were local
buckling of the web, local buckling of the flange, and lateral–torsional buckling of the
beam [19,26,27]. These failure modes can seriously affect the performance of the connection.
Therefore, the seismic performance of the connections will be further improved if some
reasonable measures are applied to avoid these failure modes. Li et al. [28] proposed a con-
struction measure for delayed local buckling by arranging stiffeners in the dog-bone beam
section. Firstly, numerical experiments using a general finite-element method were con-
ducted. Then, the seismic performance of the connection using the improvement measure
was investigated by pseudo-static tests [29]. The research results indicated that strategically
arranging stiffeners within the dog-bone beam section can effectively delay the onset of
local buckling. Additionally, this arrangement contributed to increases in both the carrying
capacity and plastic deformation capacity of the connections.

However, the dog-bone beam sections were very sensitive after arranging stiffeners,
and the section with stiffeners could undergo brittle fracture in the welded parts under
cyclic loading. In addition, a new dog-bone connection with double nut bolts and double
shear tabs was proposed by Abar et al. [30]. The seismic performance of this connection
was investigated analytically based on numerical analysis. The results showed that the
proposed connection can efficiently delay the initiation of beam hinging, and the strength
of the dog-bone section and energy dissipation were increased compared with the conven-
tional dog-bone connection. Nevertheless, the seismic performance of this new connection
has not yet been proven by experimental studies. In addition, Liu et al. [31,32] proposed a
new buckling-restrained dog-bone connection composed of a buckling-restrained device
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assembled outside the dog-bone beam section of the connections. An experimental study
on a proposed connection and a common dog-bone connection was conducted to compare
their hysteretic performance. The test results indicated that the hysteretic curve of the con-
nection with the buckling-restrained device was more stable compared with the reference
connection. Unfortunately, severe buckling at the beam flange end still occurred due to
the binding between the buckling-restrained device and the dog-bone beam section being
too tight.

Based on the aforementioned review, as shown in Figure 3, combined with the
buckling-restrained mechanism [33,34], this paper presented a new steel moment con-
nection with a buckling-restrained dog-bone beam section to address some of the above-
mentioned shortcomings of typical dog-bone connections. It is worth noting that the
low-elastic modulus material was sandwiched between the restrained plates and the dog-
bone beam section. There are three types of proposed connections according to the different
arrangements of restrained steel plates, including arranging the restrained plates only on
the flanges, only on the web, and both on the flanges and webs of the dog-bone beam
section. The major advantages of the proposed connections can be summarized as follows:
(1) the obvious local buckling could be effectively reduced; (2) the dog-bone beam section
could be more stabilized, in particular significantly weakening the global torsional insta-
bility; (3) under the premise of maintaining the bearing capacity and initial stiffness, its
deformation capacity and energy dissipation could be significantly improved. The main
reason is that the local buckling changes from a big single-wave buckling event to several
small multi-wave buckling events under the constraint effect, which makes the plastic
deformation of the dog-bone beam section more complete. The schematic diagram of the
application scenario for the novel steel moment connection is shown in Figure 4. In order to
facilitate structural construction, steel–concrete composite slabs could be employed as the
floor slabs, which were composed of profiled steel sheets, studs, steel bars, and cast-in-place
concrete. Among them, the studs were connected to the composite slabs and steel beam
using fusion welding as shear connectors.
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To explore the seismic behavior of the proposed connections, three connections with
a buckling-restrained dog-bone beam section and one traditional connection with a dog-
bone beam section were designed, fabricated, and tested under cyclic loading, with the
main test parameter being the different restrained regions of the dog-bone beam section.
Furthermore, the failure modes, hysteretic curves, skeleton curves, stiffness degradation,
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displacement ductility ratios, and energy dissipation were thoroughly analyzed to verify
the constraint of local buckling and the improvement in the seismic performance.
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2. Experimental Program
2.1. Specimen Design

Four specimens were designed in this experiment, including one control specimen
(dog-bone beam section connection specimen) and three buckling-restrained dog-bone
beam section specimens, as shown in Table 1. The last three specimens were wrapped
with restrained steel plates in different parts of dog-bone beams, including the web, flange,
and overall site of the web and flange. The steel beams in all the specimens were cut
according to the standards [23,24], and the specific weakening details are shown in Table 1
and Figure 5.

Table 1. Parameter design of specimens.

ID
Sizes of Beam

(mm)

Weakening Parameters
Restrained Region Restrained Steel Plates

a (mm) b (mm) c (mm)

DC
HN350 × 175 ×

7 × 11 120 260 40

- -
DC-f Flange 2~410 × 175 × 12, 4~410 × 71 × 12

DC-w Web 2~410 × 294 × 12
DC-fw Web and flange 2~410 × 175 × 12, 4~L152 × 81 × 12

Note: a, b, and c are fabrication detail parameters of the dog-bone beam section, as shown in Figure 5, and bf
and hb are the beam flange width and depth, respectively; m, x, y, and z in ‘m~x × y × z’ are the quantity, length,
width, and thickness of the restrained steel plates, respectively.

The specimens’ geometries are illustrated in Figure 5. H-shaped steel was welded
vertically to the 40 mm thick end plate surface to form the steel beam, and the type of
H-shaped steel was HN350 × 175 × 7 × 11, per Chinese standards, with a length of
1380 mm. It should be noted that there were no web access holes. In addition, all restrained
plates were made of 12 mm thick steel plates after cutting and opening long slotted holes,
and it was also necessary to open holes in the corresponding web and flange positions
of the dog-bone beam section. Moreover, two 3 mm thick rubber slices were sandwiched
between the dog-bone beam section and the restrained plates, and the dog-bone beam
section, rubber slices, and the restrained plates were clamped via tightening high-strength
friction bolts. It is worth noting that, in order to ensure that the dog-bone beam section
could be fully deformed in the restrained plates, it was necessary to make the tightening
torque of the two bolts in the same axis along the length of the steel beam different. Among
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them, the bolts near the end plate were tightened with a big torque, and the initial torque
was 250 N·m; and the other bolts were tightened with a small torque, and the initial torque
was 50 N·m. In addition, the steel column was conducted by welding some stiffening ribs
in a 1780 mm long steel shape whose type was H400 × 350 × 30 × 40.
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In general, the specimens were assembled by the aforementioned beam and column
using high-strength bolted end plate connections. The diameter of the high-strength bolts
was 36 mm, while their nominal tensile strength approximated 1000 MPa. In order to ensure
a completely rigid connection, the connection was strengthened by welding between the
end plate and the column face.

As shown in Figure 6, the assembly process of the proposed buckling-restrained
dog-bone beam section can be divided into four major steps, taking specimen DC-f as an
example for illustration: (1) drilling the long slots in the flange and web of the steel beam
near the dog-bone beam section; (2) arranging the rubber slices on both sides of the plates
of the dog-bone beam section to be restrained; (3) arranging the restrained plates on both
sides of the rubber slices; (4) inserting the high-strength friction bolts into the holes, and
tightening the bolts to connect the dog-bone beam section and restrained plates using a
torque wrench.
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2.2. Material Properties

The mechanical properties of the steel beam’s web and flange, as well as the steel
plate, are presented in Table 2. The pertinent tests were performed in accordance with the
Chinese standard (GB/T 228.1-2010) [35].

Table 2. Mechanical properties of steel plates.

Sampling Locations Steel Grade Thickness
T (mm)

Yield Strength
Fy (MPa)

Tensile Strength
Fu (MPa)

Young’s Modulus
E (MPa)

Web Q235 7.0 334.8 457.3 2.05 × 105

Flange Q235 11.0 271.7 434.7 2.05 × 105

Restrained steel plate Q235 12.0 293.2 440.5 2.05 × 105

2.3. Test Setup and Cyclic Loading Protocol

The experimental procedure was carried out in the Key Lab of Structural Engineering
and Earthquake Resistance at Xi’an University of Architecture and Technology. An overall
view of the test set-up is shown in Figure 7. The test specimen was rotated 90 degrees
for easy installation in the loading device. Reaction devices were arranged at both ends
of the specimen column to restrain the slippage and rotation of the specimens during the
testing process. Meanwhile, in order to avoid lateral–torsional buckling, the two lateral
support arrangement was adopted to provide lateral restraints in the loading position.
Polytetrafluoroethylene (PTFE) sheets were sandwiched between the lateral support and
the loading device to reduce friction. An electrohydraulic servo actuator, with a maximum
capacity of 1000 kN, was employed to apply lateral hysteretic load at the steel beam end.
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Figure 7. An overall view of the test set-up.

The test specimens were instrumented with a combination of linear variable differential
transformers (LVDTs) and strain gauges to measure global and local responses (Figure 8).
As shown in Figure 8, LVDT1 and LVDT2 were horizontally installed to measure the
horizontal displacements of the beam end and the overall slip, respectively, during the
testing process. LVDT3 and LVDT4 were also installed horizontally on the two side surfaces
of the steel beam to measure the horizontal displacements of the dog-bone beam section.
Moreover, the strains of the local webs and flanges in the applied steel beam were measured
using strain foils. All the test data were recorded with a TDS602 data logger.

All the specimens were tested under reversed cyclic loading. The cyclic load was
applied according to the displacement-control protocol, adhering to some suggestions from
the Chinese code (JGJ/T 101-2015) [36]. The detailed loading procedure of the cyclic load
is illustrated in Figure 9, where h represents the distance from the column center to the
loading point of the beam end. Hence, the story drift ratio θ can be defined as the ratio
of the loading displacement ∆ to the distance h. Initially, five single cycles were applied
with drift ratios of 0.10%, 0.15%, 0.45%, 0.65%, and 0.85%. Subsequently, cycles with drift
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ratios of 1.00%, 1.35%, 1.70%, 2.05%, 2.40%, 2.75%, and 3.10% were applied, with each cycle
being repeated three times. However, the actual loading protocol for specimen DC was
incomplete, missing drift ratios of 0.65%, 2.05%, and 2.75%, owing to a negligent oversight
by the experimental operators. The missing load values and energy dissipation values
at these lacking load displacement levels for specimen DC could be estimated from the
skeleton curve and energy dissipation curve, respectively. Furthermore, it is noteworthy
that the experiments were terminated when the ultimate strength decreased by more
than 15%.
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3. Test Results and Discussions
3.1. Test Observations

The testing phenomena of all the specimens are shown in Figure 10. As observed from
Figure 10a, there were two different stages of deformation for specimen DC during the
testing process. In the first stage, the specimen showed no obvious deformation when the
drift ratio was smaller than 0.85%, indicating that the specimen remained in an elastic state
at the beginning of the test. In the second stage, the dog-bone beam section of specimen DC
experienced yielding and local buckling of the web and flange. Specimen DC failed due to
obvious local buckling in the flange and web of the dog-bone beam section when the drift
ratio reached 3.10%. Among them, the maximum out-of-plane deformations of the web and
flange were 35 mm and 40 mm, respectively. However, the second-stage deformations of
specimens DC-f, DC-w, and DC-fw were different from that of specimen DC. The restrained
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specimens experienced yielding, local buckling, and fracture. For all but specimen DC-w,
the target total story drift of 3.10% was reached.
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As observed from Figure 10, specimen DC-f failed due to obvious local buckling only in
the web of the dog-bone beam section and successive local fracture in the minimum flange
section and the flange section with long slots. The maximum out-of-plane deformation
of the web of the dog-bone beam section was approximately 25 mm. Unfortunately, for
specimen DC-w, the flange of the dog-bone beam section was buckling and the bottom
flange unexpectedly fractured at the weld when the drift ratio reached 2.40%; then, the test
stopped. In addition, specimen DC-fw failed due to the local fracture of the flange section
with long slots near the end plate when the drift ratio reached 3.10%. The above fracture
of the flange section was caused by the local stress concentration due to uneven cutting.
In general, the damage of all the specimens occurred in the dog-bone beam section. It is
worth mentioning that the obvious buckling of the restrained flange and web did not occur,
and these results indicated that the restrained plates had a significant restraint effect.

The global deformation curves of all the specimens under 1.00%, 2.10%, and 3.10%
drift ratios are illustrated in Figure 11. In Figure 11, H is the distance from the monitoring
points of the beam to the column center. The displacement data at the height of 720 mm are
the averages monitored by the LVDT3 and LVDT4. As shown in Figure 11, the displacement
of specimen DC-f was 27.1% lower than that of specimen DC at the 720 mm height point
when the loading drift ratio was 3.10%. This result indicated that limitations of the lateral
displacement of the dog-bone beam section were most obvious by the arrangement of
restraint plates on the flange of the dog-bone beam section.
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Figure 11. Global deformation curves of all the specimens under 1.00%, 2.10%, and 3.10% drift ratios.

3.2. Hysteretic Loops and Skeleton Curves

The hysteretic curves of all the specimens are depicted in Figure 12. As shown in
Figure 12, the hysteretic curves of individual specimens were straight lines and almost
without residual deformations when the drift ratio was smaller than 0.85%, indicating that
the specimens were in the elastic state. The slope of the hysteretic curves decreased rapidly
when the drift ratio was greater than 0.85%, and the curves of all the specimens tended to
be full due to the residual deformation increasing with an increasing loading drift ratio. In
addition, except for specimen DC-w, which was damaged earlier due to a welding quality
problem, the other specimens exhibited stable hysteretic behaviors.
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The skeleton curves of the specimens are illustrated in Figure 13, and the peak loads
of the specimens are summarized in Table 3. As observed from Figure 13, the skeleton
curves of all the specimens experienced rapid load growths before the specimen yield, load
stabilization, and slow load reduction as the loading displacement increased. In general,
the skeleton curves were reflected in the shape of three fold lines, and there was little
difference in the initial stiffness. In addition, the peak loads of specimens DC, DC-f, DC-w,
and DC-fw were 192.26 kN, 181.23 kN, 192.48 kN, and 197.59 kN, respectively. Among
them, the load-carrying capacities of specimens DC-w and DC-fw were 0.01% and 2.77%
higher than that of specimen DC, and the load-carrying capacity of specimen DC-f was
5.74% lower than that of specimen DC. This result indicated that the restrained steel plates
did not affect the bearing capacity of the specimen, although they limited the buckling of
the dog-bone beam section.
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Table 3. Results of the displacement ductilities and energy dissipations of specimens.

Specimen ID Direction ∆y (mm) Fy (kN) ∆k (mm) Fk (kN) Average
Pk (kN) ∆u (mm) Fu (kN) µ Average µ

DC
Push 12.52 149.49 35.02 192.06

192.26
45.03 167.70 3.60

3.37Pull 13.54 152.54 35.01 192.45 42.41 163.58 3.13

DC-f
Push 11.46 151.27 30.03 187.67

181.23
47.30 156.42 4.13

4.07Pull 12.27 146.94 30.07 178.44 49.25 151.68 4.01

DC-w
Push 13.47 161.83 35.05 197.92

192.48
35.05 197.92 2.60

2.63Pull 12.71 152.82 30.04 187.04 33.71 158.92 2.64

DC-wf
Push 13.21 154.50 45.03 197.98

197.59
45.03 197.98 3.41

3.35Pull 13.71 152.80 40.02 197.21 45.04 185.16 3.29

Note: ∆y, ∆k, ∆u, Fy, Fk, Fu, and µ are the yield displacement, peak displacement, ultimate displacement, yield
load, peak load, ultimate load, and ductility ratio, respectively.

3.3. Stiffness Degradation

The effective stiffness was applied in this study to investigate the stiffness degradation
behavior of the specimens [37], and it can be calculated using the following Equation (1):

Ki+ =
+Pi

+∆i
and Ki− =

−Pi

−∆i
(1)

where Ki+ and Ki− represent the effective stiffness values at the ith load displacement level
during the positive half cycle and negative half cycle, respectively. Similarly, +Pi and −Pi
denote the ultimate loads achieved at the ith load displacement level for the positive half
cycle and negative half cycle, respectively. Lastly, +∆i and −∆i correspond to the respective
load displacements.
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The stiffness degradation curves of the test specimens are depicted in Figure 14.
The lateral stiffnesses of all the specimens exhibited characteristic two-stage degradations,
which included a rapid degradation of stiffness before reaching the 1.0% drift ratio, followed
by a mild degradation after reaching the 1.0% drift ratio. The average initial stiffnesses of
specimens DC, DC-f, DC-w, and DC-fw were 21.13 kN/mm, 20.66 kN/mm, 21.19 kN/mm,
and 20.78 kN/mm, respectively. This result indicated that the initial stiffnesses of the
restrained specimens had no obvious changes compared with that of the unrestrained
specimen DC because of the low elastic modulus of the rubber slices sandwiched between
the dog-bone beam section and the restrained plates. However, the stiffnesses of restrained
specimens were obviously greater than that of specimen DC under the same loading
displacement after reaching the drift ratio of 1.70%. This demonstrated that the buckling-
restrained steel plate arrangements at the dog-bone beam section could reduce the stiffness
degradation, so that the restrained specimens could maintain stable bearing capacities
under large lateral deformation.
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3.4. Displacement Ductility

The displacement ductility ratio µ can be determined as the ultimate displacement ∆u
divided by the yield displacement ∆y. Figure 15 reveals the defining method of the yield
displacement on the skeleton curve. As shown in Figure 15, ∆u is the ultimate displacement
at the ultimate point when the test load reached 85% of the peak load Fk, or the test was
terminated, and the yielding displacement, ∆y, is determined from the skeleton curve
using the graphing method [37]. In Figure 15, the extension of the tangent to the ascending
branch at the initial point of the skeleton curve is intersected by a horizontal line that
passes through the peak load point at point A. Point B, located on the skeleton curve, is the
projection of point A. Subsequently, the OB line is extended to intersect the horizontal line
through the peak load point at point C. Finally, the projection of point C onto the skeleton
curve can be regarded as the yield point.

According to the above method, the test results of the yield displacement, ultimate
displacement, peak displacement, yield load, peak load, ultimate load, and the calculated
displacement ductility ratios are listed in Table 3. As indicated in Table 3, the average
displacement ductility ratios of specimens DC, DC-f, DC-w, and DC-fw were 3.37, 4.07,
2.63, and 3.35, respectively. This meant all the specimens exhibited acceptable levels of
ductility except specimen DC-w. The ductility ratio of specimen DC-f improved by 20.77%
compared with that of specimen DC, and this result indicated that the restrained steel
plate arrangements at the flanges of the dog-bone beam section could effectively improve
the deformation capacity and delay the rapid decline in the bearing capacity due to local
buckling. In addition, the ductility ratios of specimens DC-w and DC-fw were 21.96% and
0.06% lower than that of specimen DC, respectively. This result indicated that the weld
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quality problem could cause the hidden risk to the ductility of the beam–column joints. It
is worth mentioning that there was no obvious effect on ductility by arranging restrained
plates at both the web and flange of the dog-bone beam section. The main reason for this
was that too many or too big holes in the section near the dog-bone beam section could
significantly reduce the bearing capacity of the beam. Additionally, the perforation and
cutting of the dog-bone beam area should have ensured that the cutting surface was as
smooth as possible to avoid stress concentration under load.
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3.5. Energy Dissipation Capacity

The cumulative energy dissipation was applied here to quantitatively analyze the
energy dissipation capacity of each specimen. The energy dissipated during each loading
cycle was represented by the area of the cyclic loops, and the cumulative energy dissipation
could be acquired by the accumulation of the first circle area under each level of the loading
displacement before the current circle. The cumulative energy dissipation curves of all the
specimens are depicted in Figure 16, which show that the cumulative energy dissipation
experienced slow load reduction before the specimen yield and rapid load growth as the
loading displacement increased. As shown in Figure 16, the results of specimens DC, DC-f,
DC-w, and DC-fw were 84.36 kN·m, 98.23 kN·m, 48.69 kN·m, and 87.70 kN·m, respectively.
The cumulative energy dissipations of specimens DC-f and DC-fw were 16.44% and 3.96%
greater than that of specimen DC. This result indicated that the energy dissipation capacities
of the specimens were improved by the arrangement of the restrained steel plates at the
dog-bone beam section, and the improvement in the specimen with only restrained flanges
was the most obvious. In addition, the cumulative energy dissipation of specimen DC-f was
42.28% lower than that of specimen DC, and this was mainly caused by the weld fracture
between the specimen beam and the end plate, leading to premature specimen failure.
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4. Conclusions

This paper proposed an innovative steel moment connection with a buckling-restrained
dog-bone beam section, and the four specimens subjected to cyclic loading were examined
to explore the hysteretic performance of the proposed connection. Based on the observa-
tions and discussion of the experimental results, a series of conclusions from this study can
be summarized as follows:

• The initial yield area of all the specimens occurred in the dog-bone beam section during
the testing process, indicating that the arrangement of the buckling-restrained steel
plates did not affect the outward movement of the plastic hinge from the beam–column
joint core area. According to the failure modes of the specimens, the arrangement of
restrained steel plates could effectively restrain the local buckling of the dog-bone
beam section and was conducive to the out-of-plane stability of the steel beam.

• The additional restrained steel plates in the dog-bone beam section had little influence
on the bearing capacity and initial stiffness of the specimens, which were less than
6.00% and 3.00%, respectively. However, compared with the control specimen, the
stiffness degradations of the restrained specimens were significantly reduced after
the drift ratio of 1.70% was reached. Moreover, compared with the arrangement of
restrained steel plates only on the web or both on the flange and web of the dog-bone
beam section, the arrangement of restrained steel plates only on the flange caused
a more obvious improvement in the deformation capacity and energy dissipation
capacity of the connection, which were improved by 21% and 16%, respectively. This
proved the validity of the proposed improvement method of the traditional steel
moment connection with a dog-bone beam section in this paper.

• In order to give full play to the plastic deformation capacity of the dog-bone beam
section, it was necessary to pay close attention to the construction quality of the
proposed innovative steel moment connection. On the one hand, the welding quality
of the steel beam and the end plate should be improved to prevent weld fractures [38].
On the other hand, the radius cutting and the long slot opening of the dog-bone
beam section should be smooth to prevent stress concentration under loading [17].
In addition, the influence of the fixed point position and slot size on the hysteretic
performance of the proposed connection should be further studied.

• The subsequent steps of the ongoing research encompass the following: (1) improving
the connections in terms of the seismic performance and investigating the impact of
different parameters on its seismic behavior, such as the weakening parameters of the
dog-bone steel beam section, the thickness of the restrained plates, the size of the holes
at the bolted connections in the restrained region, the tightening torque of the bolts, the
restraint provided by the floor slab, the influence of vertical load, etc.; (2) establishing
a theoretical model for the moment–rotation analysis of the proposed connections
and proposing a seismic design method for the connections considering vertical loads
based on the design abacus of Montuori [39]; (3) developing the numerical model
of the connections; and (4) investigating moment-resisting frames and steel-braced
frames using the connections on the seismic performance, with various parameters
including the weakening parameters of the dog-bone beam section, the restraint effect
of the restrained plates, the arrangement of braces, etc.
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