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Abstract: Continuous and autonomous system identification is an alternative to regular inspection
during operations, which is essential for structural integrity management (SIM) as well as structural
health monitoring (SHM). In this regard, online (or real-time) system identification techniques that have
recently received considerable attention can be used to assess the current condition and performance
during operations and, in the meantime, can be utilized to detect any damage or deterioration. For
example, stochastic subspace identification (SSI), based on recursive formulation, has proven its
capability in tracking modal parameters as well as time-variant dynamic behaviors. This study proposes
the implementation of recursive SSI (RSSI) using the matrix inversion lemma to track slow time-
varying parameter changes under ambient excitations. Subsequently, some investigations for practical
implementation are examined and discussed. For verifying the reliability of SHM applications based
on the proposed methods, two datasets measured from different experiments are exploited to identify
the modal parameters reclusively. The results from both numerical simulations and experimental
investigations demonstrated the effectiveness of tracking the modal parameters exhibiting time-varying
dynamic characteristics under white noise excitations (or ambient excitations).

Keywords: stochastic subspace identification; recursive stochastic subspace identification; online
application; damage detection; structural health monitoring

1. Introduction

Regular inspection is essential for structural health monitoring (SHM) and struc-
tural integrity management (SIM). Vibration-based SHM is a method of continuously
and non-destructively assessing the current condition and performance of structures and
infrastructure. It is used to detect any damage or deterioration that may impact their
safety or reliability in the structures’ lifespan. In recent decades, numerous vibration-based
methods have been studied to monitor large-scale structures and infrastructure, including
tall buildings and long-span bridges. Considering that modal parameters, such as modal
frequency, modal damping ratio, and mode shape, are important properties of structures
and infrastructures, common approaches involve performing modal analysis, which applies
system identification techniques to identify structural modes. These approaches can be
categorized by frequency-domain spectrum-driven methods, time-domain data-driven
methods, and time-domain covariance-driven methods [1].

In time-domain methods, techniques based on nonstationary input can extract dy-
namic characteristics under seismic excitations [2,3]. On the contrary, techniques based on
stochastic subspace identification (SSI) are well-known input-free methods used to extract
modal parameters under ambient excitations. In other words, SSI-based identification
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techniques can conduct operational modal analysis (OMA) under the assumption of a sta-
tionary process using output-only measurements and have numerous applications across
the monitoring of bridges, wind turbine towers, and power systems [4–6]. The stability and
robustness of SSI for noise contamination have been proven [7–13]. Furthermore, different
SSI approaches have been developed, such as covariance-driven SSI (SSI-Cov) [14–16] and
data-driven SSI (SSI-Data). Different from SSI-Data, SSI-Cov replaces the projection matrix
by converting raw time-domain data in covariances (known as Toeplitz matrix), although
these techniques have been shown to have a unified framework and can be interpreted by
assigning different weighting matrices before system realization [7].

SSI approaches were developed for linear time-invariant (LTI) processes. However,
the modal parameters of large-scale structures and infrastructure exhibit time-varying
dynamic characteristics because of structural damage, nonlinear behaviors, environmental
effects, and operational conditions [17–21]. To keep tracking the structural state, vibration-
based methods should be continuous and autonomous during operations so that the
SHM system can provide timely information. In this regard, online (or real-time) system
identification techniques, which have recently received considerable attention, can be
exploited. As an advance of offline ones, online system identification techniques have
been developed via promising mathematical tools, especially those derived from the
recursive formulation. For example, some researchers have updated the projection matrix
by means of Givens rotations [22–24], some studies have updated the subspace using
the projection approximation tracking (PAST) algorithm [25], and other researchers have
updated the column space for system realization [20,26–29]. These approaches, no matter
the ones that come from SSI-Data or SSI-Cov, are generally named recursive SSI (RSSI) and
their efficaciousness has been demonstrated through both numerical and experimental
investigation. Nevertheless, these RSSI approaches are mathematically complex and the
implementation of RSSI has been challenging in field applications due to time consumption
for computation.

To fulfill the investigation of time-varying dynamic characteristics under ambient
excitation, SSI is proposed because of its efficiency in this study. Moreover, RSSI imple-
mentation using the matrix inversion lemma is proposed to track the modal parameters
as well as the time-varying dynamic characteristics. Both SSI-Data and SSI-Cov can be
easily derived to form a recursive formulation and extract the most up-to-date modal
parameter by exploiting the forgetting factor. The proposed method is mathematically
simple and shows great potential in field applications compared to other RSSI approaches.
Subsequently, SSI is introduced to perform the modal analysis and extract the modal param-
eters using output-only measurements. Then, both SSI-Data and SSI-Cov are meticulously
derived as a recursive formulation to allow online or real-time applications. Furthermore,
some investigations for practical implementation are examined and talked over through
numerical simulation in Section 3. Full-scale experiments were conducted to further study
the effectiveness of SHM applications based on the proposed methods. Then, the proposed
method was applied to recursively identify the structural modes in Section 4. Finally, a
brief discussion and conclusion are provided, and some potential areas for future research
are outlined.

2. Recursive Formulation

A building structure subjected to ambient excitations can be represented by LTI
systems. The equation of motion of the n degrees of freedom (DOFs) LTI systems can
be written as the discrete-time state-space equations [30]:

xk+1 = Axk + Buk + wk (1)

yk = Cxk + Duk + vk (2)

where xk is state vector with 2n states; yk is measured output vector with m measurement;
uk is input vector with l excitations; wk and vk are the process and measurement noise,
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respectively; the subscript k denotes k-th step which indicates t = k∆t and ∆t is the sampling
interval of measurement; A is linear elastic system matrix; B and D are excitation influence
vector; C is output (or observer) matrix. A special case of Equations (1) and (2) consider
the input as white noise excitations (or ambient excitations), such as ws

k = Buk + wk and
vs

k = Duk + vk, and yield discrete-time stochastic state-space equations, as in [7]:

.
xs

k+1 = Axs
k + ws

k (3)

ys
k = Cxs

k + vs
k (4)

The superscript s denotes stochastic state vector and measured output. Hence, the
linear elastic system matrix, A, and observer (or output), C, are important and must be
continuously assessed via SSI.

2.1. Stochastic Subspace Identification (SSI)

To derive SSI, the above-mentioned equations can be rewritten into “Matrix Input-
Output Equations”, as in [7]:

Yp = ΓiXp + GiWp + Vp (5)

Y f = ΓiX f + GiW f + V f (6)

X f = AiXp (7)

where Yp and Yf are Hankel matrices with i and j samples in rows and columns, respectively.
The subscript p and f mean that the matrix is built from past and future output data.

Yp =
[
ys

1|i ys
2|i+1 · · · ys

j|i+j−1

]
(8)

Y f =
[
ys

i+1|2i ys
i+2|2i+1 · · · ys

i+j|2i+j−1

]
(9)

ys
1|i =

[
ysT

1 ysT
2 · · · ysT

i
]T (10)

Similarly, Up and Uf are Hankel matrices built from past and future input data, respec-
tively. Other matrices, including Wp, Wf, Vp and Vf, are white noise Hankel matrices. Γi is
extended observability matrix and can be represented using the linear elastic system matrix
and output (or observer) matrix. The extended observability matrix is the most important
output of SSI. Details about the matrix input-output equations can be tracked back to the
studies [7,31–33]. Now, the problem can be simplified as an approach to identifying the
extended observability matrix, Γi.

Since the system matrices A and C, are included in the extended observability ma-
trix, projection, a geometric operation in linear algebra is utilized to extract Γi from
Equations (5)–(7). For example, the orthogonal projection multiplies past and future output
data Hankel matrices, as in [7]:

Oorth = Y f /Yp = Y f YT
p (YpYT

p )
†
Yp (11)

where/indicates the operation that projects the row space of first matrix into the row space
of second matrix and the superscript † is Moore-Penrose pseudoinverse. This approach
is known as SSI-Data. The extended observability matrix only lying in the column space
of the projection matrix is the most important observation in the projection shown in
Equation (11). Hence, singular value decomposition (SVD) can be used to decompose the
matrix as:

Oorth = USVT =
[
U1 U2

][S1 0
0 S2

][
VT

1
VT

2

]
≈ U1S1VT

1 (12)



Buildings 2024, 14, 964 4 of 21

where S2 ≈ 0. Γi can be obtained as:

Γi = U1S1/2
1 (13)

Moreover, the linear elastic system matrix, A, can be extracted as:

A = Γi
†Γi (14)

where Γi and Γi denotes Γi without the last and the first m rows, respectively, and m is
number of measurements.

Another approach tries to replace the orthogonal projection with the covariance matrix,
which is known as SSI-Cov. In this approach, Γi in Equations (5)–(7) is derived from the
covariance matrix as [7]:

Ocov = Y f YT
p (15)

Similar to the orthogonal projection, the extended observability matrix lies in the
column space of the covariance matrix. Repeating Equations (12)–(14) and substituting
Oorth for Ccov can extract the linear elastic system matrix, A.

Moreover, the orthogonal projection can be achieved using LQ decomposition as shown:[
Yp
Y f

]
=

[
L11 0
L21 L22

][
QT

11
QT

21

]
⇒ Y f /Yp = L21QT

11 (16)

OMOESP = L21QT
11 = Y f /Yp = Oorth (17)

where Lij is different parts of the lower triangular matrix and Qij is different parts of the
orthogonal matrix from LQ decomposition. This approach is also known as “Multivariable
Output-Error State sPace (MOESP)” and can be considered a time-efficient alternative for
matrix projection [34,35]. Again, Γi can be retrieved by repeating Equations (12)–(14) and
substituting Oorth for OMOESP to identify the linear elastic system matrix, A.

The overall flowchart of different SSI approaches is shown in Figure 1. Basically, it
contains four steps and only the second step is varied across different approaches. Regard-
less of the approaches used, the continuous-time equations can ultimately be computed
from discrete-time ones. Additionally, the modal parameters, including modal frequencies,
damping ratios, and mode shapes, can be subsequently extracted [2,3,35,36]. The output
parameters are essential for monitoring dynamic features in SHM.

Buildings 2024, 14, x FOR PEER REVIEW 5 of 22 
 

 
Figure 1. Comparison between different SSI approaches and the overall flowchart of them. 

2.2. Recursive Stochastic Subspace Identification (RSSI) 
SSI can be recursively implemented through several methods; for example, applying 

SSI via a moving window with a fixed window length and constant weighting is the most 
common way to achieve online SSI. This approach is simple and easy but inefficient for 
field application. In this study, we develop different recursive formulations for SSI-Data, 
SSI-Cov, and SSI-MOESP so that they can track the modal parameters for an online appli-
cation or even a real-time application. 

Again, a subscript k is denoted to indicate the data Hankel matrices in kth time step 

as ,
i j

p k
×∈Y   and ,

i j
f k

×∈Y  . SSI-Data uses Equation (12) to calculate the projection ma-
trix with i column and j row. Hence, the row number increases as time passes, making 
SVD less effective. Considering that only the column space of the projection matrix con-

stitutes with the extended observability matrix, ,
T
f kY  is first multiplied on the right of 

the projection matrix (row space) to have a matrix with i column and i row: 

orth, , , , , ,
T T

k f k p k k p k f k=O Y Y RY Y  (18) 

where 
†

, ,( )Tk p k pk=R Y Y  Then, moving one step forward and applying the matrix inversion 
lemma [36] expend Rk+1 as: 

1
1 , , 2 2| 1 2 2| 1

1
2 2| 1 2 2| 1 2 2| 1 2 2| 1

( )

(1 )

T T
k p k p k k i k i k i k i

T T
k k k i k i k i k i k k i k i k i k i k

−
+ − + − + − + − +

−
− + − + − + − + − + − + − + − +

= +

= − +

R Y Y y y

R R y y R y y R  (19) 

It is noteworthy that the weighting of the new data ( 1k +y ) is actually reduced because 
the past data keeps its information in the recursive formulation. To fade the past data, a 
forgetting factor, λ, is introduced herein. There are advantages and disadvantages to 
adopting a forgetting factor. On one hand, the usage of a forgetting factor is undoubtedly 
easy, simple, and straightforward. On the other hand, this accumulated multiplication in-
troduces an inconstant weighting to the past data and, although it may be neglectable, the 
weighting of the past data is never zero [2,3,36]. As a result, Equation (19) can be again 
derived as: 

1
1 , , 2 2| 1 2 2| 1

1
2 2| 1 2 2| 1 2 2| 1 2 2| 1

( )
1 (1 )

T T
k p k p k k i k i k i k i

T T
k k k i k i k i k i k k i k i k i k i k

λ

λ

−
+ − + − + − + − +

−
− + − + − + − + − + − + − + − +

= +
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Figure 1. Comparison between different SSI approaches and the overall flowchart of them.
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2.2. Recursive Stochastic Subspace Identification (RSSI)

SSI can be recursively implemented through several methods; for example, applying
SSI via a moving window with a fixed window length and constant weighting is the most
common way to achieve online SSI. This approach is simple and easy but inefficient for field
application. In this study, we develop different recursive formulations for SSI-Data, SSI-Cov,
and SSI-MOESP so that they can track the modal parameters for an online application or
even a real-time application.

Again, a subscript k is denoted to indicate the data Hankel matrices in kth time step as
Yp,k ∈ Ri×j and Y f ,k ∈ Ri×j. SSI-Data uses Equation (12) to calculate the projection matrix
with i column and j row. Hence, the row number increases as time passes, making SVD
less effective. Considering that only the column space of the projection matrix constitutes
with the extended observability matrix, YT

f ,k is first multiplied on the right of the projection
matrix (row space) to have a matrix with i column and i row:

Oorth,k = Y f ,kYT
p,kRkYp,k,Y

T
f ,k (18)

where Rk = (Yp,kYT
p,k)

†
Then, moving one step forward and applying the matrix inversion

lemma [36] expend Rk+1 as:

Rk+1 = (Yp,kYT
p,k + yk−2i+2|k−i+1yT

k−2i+2|k−i+1)
−1

= Rk − Rkyk−2i+2|k−i+1(1 + yT
k−2i+2|k−i+1Rkyk−2i+2|k−i+1)

−1yT
k−2i+2|k−i+1Rk

(19)

It is noteworthy that the weighting of the new data (yk+1) is actually reduced because
the past data keeps its information in the recursive formulation. To fade the past data,
a forgetting factor, λ, is introduced herein. There are advantages and disadvantages to
adopting a forgetting factor. On one hand, the usage of a forgetting factor is undoubtedly
easy, simple, and straightforward. On the other hand, this accumulated multiplication
introduces an inconstant weighting to the past data and, although it may be neglectable,
the weighting of the past data is never zero [2,3,36]. As a result, Equation (19) can be again
derived as:

Rk+1 = (λYp,kYT
p,k + yk−2i+2|k−i+1yT

k−2i+2|k−i+1)
−1

= 1
λ

[
Rk − Rkyk−2i+2|k−i+1(1 + yT

k−2i+2|k−i+1Rkyk−2i+2|k−i+1)
−1yT

k−2i+2|k−i+1Rk

] (20)

Similarly, moving one step forward for the projection matrix and substituting Equation
(19) back leads to the recursive form of the projection matrix:

Oorth,k+1 = Oorth,k − γk+1αkRkyp(k+1)y
T
p(k+1)Rkα

T
k +βk+1Rk+1α

T
k +αkRk+1β

T
k+1 +βk+1Rk+1β

T
k+1 (21)

with
Rk+1 =

1
λ
(Rk − γk+1Rkβk+1Rk) (22)

γk+1 = (λ + yT
k−2i+2|k−i+1Rkyk−2i+2|k−i+1)

−1
(23)

βk+1 = yk−i+2|k+1yT
k−2i+2|k−i+1 (24)

αk+1 = λαk +βk+1 (25)

where αk = Y f ,kYT
p,k. Once new data (yk+1) are acquired, yk−i+2|k+1 is first renewed, βk+1,

αk+1, γk+1, and Rk+1 can be sequentially updated, and Oorth,k+1 are finally obtained. After
this, the modal parameters can be extracted at each step for recursive SSI-Data (RSSI-Data).
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Moreover, the update of the covariance matrix is much easier for recursive SSI-Cov
(RSSI-Cov). Equation (15) can be directly expended and re-written as:

Ocov,k+1 =
[√

λ Y f ,k yk−i+2|k+1

][ √
λYT

p,k
yT

k−2i+2|k−i+1

]
= λOcov,k +βk+1

(26)

Once new data (yk+1) are acquired, yk−i+2|k+1 is first renewed, βk+1 can be sequentially
updated, and Ocov,k+1 are finally obtained. Therefore, the extended observability matrix
can be reacquired by repeating Equations (12)–(14) and the modal parameters are again
identified at each step.

Generally, implementing RSSI also contains four steps and only the first two steps are
varied across different approaches. As illustrated in Figure 2, the initial step carries out the
first window by assigning k = 2i + j − 1 and calculates the projection matrix or covariance
for RSSI-Data or RSI-COV, respectively. Moreover, different matrices are prepared according
to the RSSI approaches. For RSSI-Data, the second step constructs α2i+j−1, β2i+j−1, γ2i+j−1,
and R2i+j−1 and afterward, Γi can be obtained using decomposition, like SVD. On the other
hand, for RSSI-Cov, the second step only constructs β2i+j−1 and recieves the extended
observability matrix after SVD. Next, the linear elastic system matrix, the continuous-time
equations, and the modal parameters can be subsequently extracted. In the next time step,
the new measurement is reacquired for the calculation and that information is updated.
Then, going back to the second to fourth steps provides a recursive formulation.
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3. Study of Numerical Simulation

To study the effectiveness of the RSSI method under white noise excitations (or ambient
excitations), a numerical simulation is conducted with 120 s white noise excitation. The
target frame is a 4-story shear-type frame with 10 tons lumped mass at each story, as shown
in Figure 3a. At each story, the stiffness is assumed to be 3270 kN/m. Admittedly, the
4 modal frequencies (from 1.00 Hz to 5.41 Hz) and the 4 assumed damping ratios (from
2.0% to 2.6%) are listed in Table 1. The 4 acceleration responses of the frame are considered
as the measurements and the ground excitation is not included to hold the assumption of
ambient excitations. All the measurements are contaminated by noise with 10.78 signal-
to-ratio (SNR). A 200 Hz sampling rate is selected to conduct all the simulation. Before
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applying the proposed method, the measurement is down-sampled to the target sampling
rate. All the simulation is performed using the software, MATLAB R2022b, issued by
MathWorks (Natick, MA, USA).
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Table 1. Various modal frequencies and damping ratios of numerically simulated structure.

Mode Number 1st 2nd 3rd 4th

Frequency (Hz) 1.00 2.88 4.41 5.41
Damping Ration (%) 2 2.2 2.4 2.6

3.1. Tracking Results for Constant Stiffness

The size of Hankel matrices, Yp and Yf, needs to be assigned before applying SSI and
RSSI. Considering the ease of implementation, those Hankel matrices are assumed to be
square, meaning that the row number, i, is equal to column number, j. Once i is assigned,
j can be decided, and the total data size within the current window, lw, called window
length, is determined as:

lw = (2 + 1)i − 1 = 3i − 1 (27)

As a result, multiplying the sampling interval and the window length results in the
first identification time, which can be observed in the following figures. According to past
studies [35,37,38], i is assigned to cover the fundamental period of the simulated frame; it
is 1 s in this example.
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Due to the noise contamination, the dynamic features extracted using SVD in Equation (12)
are slightly distorted, resulting in spurious modes included in identification results. To effec-
tively separate the physical and spurious modes, the modal assurance criterion (MAC) can
be used to facilitate SSI, similar to those used in subspace identification [39–42]. The MAC is
defined as:

MAC =
aH

k bk√
aH

k ak

√
bH

k bk

(28)

where the superscript denotes a Hermitian transpose. Originally, the mode shapes from
a stabilization diagram with different sizes of Hankel matrices were used to calculate the
criterion. However, the implementation of RSSI has no stabilization diagram, so the column
space of the extended observability matrix can be used to replace the mode shapes [2,3].
Sieving out the spurious modes with a pre-specified threshold, CMAC, can improve the
identification result in the recursive formulation. For example, Figure 3b illustrates the
identified results before and after adopting the criterion using RSSI-Data. Clearly, most
of the spurious modes are removed by applying CMAC as 0.95, although few modes are
affected from 42 to 44 s.

The effectiveness of RSSI is demonstrated in Figure 4 and the roof response of the
simulated frame can be found in Figure 4a. The identified modal parameters by RSSI-Data
and RSSI-Cov under the white noise excitation are shown in Figure 4. Obviously, RSSI
provides a great estimation of the modal parameters, whether RSSI-Data and RSSI-Cov. The
grids in Figure 4b,d are shown following the 4 correct modes and the result indicates that
different modes can be accurately identified. The first identification result is provided at 3 s
and it may be incorrect because of insufficient data, as shown in Figure 4d. However, the
identification result converges to the correct ones soon after the first result. It is noteworthy
that, as shown in Figure 4c,e, the damping ratios extracted from RSSI are not perfect since it
is extremely difficult to identify the damping ratios under ambient excitation. Fortunately,
the identified damping ratios are distributed around 1% to 4% and the result can still
provide a reference for identifying the dynamic behaviors.
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Figure 4. Identified modal parameters under the white noise excitation. (a) structural response.
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frequency from RSSI-Cov. (e) identified damping ratio from RSSI-Cov.

By comparing the results in Figure 4, there are no significant differences shown
between RSSI-Data and RSSI-Cov. The results are quite similar and both implementations
of RSSI-Data and RSSI-Cov provide an accurate estimation. The identified damping ratios
using RSSI-Cov are slightly dispersed compared to the ones using RSSI-Data; however, the
difference is very small. The mode shapes can be correctly identified; however, this is not
shown here due to limited space. To sum up, both RSSI-Data and RSSI-Cov are capable of
identifying the modal parameters.

3.2. Tracking Results for Varied Stiffness

To demonstrate the tracking ability of the proposed method under white noise excita-
tions, the stiffness of the numerical model (4-story shear-type frame) is degraded within
the 120 s white noise excitation. Originally, the stiffness for every story is assigned as 100%;
yet, the stiffness is smoothly decreased by 10% (from 3270 kN/m to 2943 kN/m) before
60 s. Furthermore, the stiffness is held after 60 s to study the forgetting factors, as shown
in Figure 5. The mass and damping coefficient remain the same during the excitation.
Certainly, the 4 modal frequencies from 1.00~5.41 Hz are reduced to 0.95~5.13 Hz. The
4 acceleration responses of the frame are again considered as the measurements and the
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ground excitation is not included. The SNR, the row number, the MAC criterion, and the
forgetting factor are set with the same values.
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The identification results by RSSI-Data and RSSI-Cov under the white noise excitation
are illustrated in Figure 6. The four identified frequencies using RSSI-Data are shown
from Figure 6a–c and the corresponding ones using RSSI-Cov are shown from Figure 6d–f.
It should be noted that the red line in Figure 6 indicates the ground truth of the modal
frequencies. Both RSSI-Data and RSSI-Cov can successfully identify and track the changed
parameters due to varied stiffness, providing reliable estimation at each step. Some modes
are fluctuated or missed at some time instants since the energy of those modes is slightly
affected by the observable noise. Moreover, no significant differences between RSSI-Data
and RSSI-Cov can be noticed after comparing the results in Figure 6. The identified damping
ratios and mode shapes from both approaches are also comparable but not shown here.
Similarly, the results are consistent and both implementations of RSSI-Data and RSSI-Cov
can update modal parameters online (or real-time). Overall, both of them are capable
of tracking the modal parameters and only the result from RSSI-Cov is presented in the
following sections due to limited space.
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Figure 6. Identified frequency under the white noise excitation. (a) identified 3rd and 4th frequency
from RSSI-Data. (b) identified 2nd frequency from RSSI-Data. (c) identified 1st frequency from
RSSI-Data. (d) identified 3rd and 4th frequency from RSSI-Cov. (e) identified 2nd frequency from
RSSI-Cov. (f) identified 1st frequency from RSSI-Cov.

To study the forgetting factor, the weightings of various forgetting factors and the
identified frequencies with those factors are shown in Figure 7 for comparison. Although
only the third mode is exhibited here, all modal frequencies are clearly decreased during
the first part of the measurement and keep constant aftermath, which indicates the changes
of the dynamic behaviors during the white noise excitation. The forgetting factor allows
RSSI approaches to fade the past data, as the weightings shown in Figure 7a, and extract
the updated dynamic characteristics. Significantly, the identified frequencies slightly follow
the ground truth (red line) and different trends can be roughly observed before/after
60 s. Clearly, the proposed method with the largest forgetting factor has a worse tracking
ability owing to the accumulation of past data. On the other hand, a smaller forgetting
factor, approximately 0.998, can immediately detect the change and produce updated
results. However, continuously reducing the forgetting factor may bring dispersed and
unstable estimations as the identified frequencies from 0.992 and 0.98, eventually provide
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an unreliable identification. Admittedly, the selection of the forgetting factors is a trade-off
between timeliness and steadiness and shall be adequately adjusted in the field application.

Buildings 2024, 14, x FOR PEER REVIEW 12 of 22 
 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 6. Identified frequency under the white noise excitation. (a) identified 3rd and 4th frequency 

from RSSI-Data. (b) identified 2nd frequency from RSSI-Data. (c) identified 1st frequency from RSSI-

Data. (d) identified 3rd and 4th frequency from RSSI-Cov. (e) identified 2nd frequency from RSSI-

Cov. (f) identified 1st frequency from RSSI-Cov. 

 

(a) 

Buildings 2024, 14, x FOR PEER REVIEW 13 of 22 
 

 

(b) 

Figure 7. Comparison between different forgetting factors. (a) weightings of various forgetting 

factors. (b) identified frequency with various forgetting factors. 

3.3. Study of Real-Time Implementation 

Another crucial issue in on-site application is time consumption for computation. It 

is an essential requirement if monitoring systems are designed for online or real-time 

processing. In this study, the measurements are successively down-sampled to different 

sampling rates, such as 200, 100, 50, 40, and 20 Hz to discuss the computation time. 

Different RSSI approaches are first studied and they are individually conducted using the 

same measurement, and parameters for comparison. Moreover, all the analysis is 

performed in the same computer environment for comparison, which are: 

• Intel(R) Core(TM) i5-13600KF 

• 64.0 GB RAM 

For the software environment, the OS is 64 bit Windows and the program is MATLAB 

R2022b [43]. The computational results and the detailed parameters are arranged in Tables 

2 and 3. 

The tables show the computation time over various sampling rates. In Table 2, as 

expected, the size of Hankel matrices is related to the averaged computation time for each 

step; a similar trend can be again observed in Table 3. Definitely, the computation time 

should be smaller than the sampling ratio in order to ensure that each sampling interval 

can accommodate the proposed recursive formulation. Doubtless, a high sampling rate 

could bring no benefits to SHM applications for infrastructures. For example, it is 

impossible to implement RSSI with a 200 Hz sampling rate. Additionally, the computation 

time for RSSI-Cov is less than RSSI-Data though there is some computation overhead, 

making the difference insignificant for low sampling rate. An adequate sampling rate for 

both approaches is around 50 Hz since the averaged computation time for each step is 

slightly larger than the sampling interval for RSSI-Data. Fortunately, some literature 

suggested 50 Hz or 60 Hz as sampling rates [44,45,46,47]. Overall, both RSSI-Data and 

RSSI-Cov are capable of an online or real-time application under suitable sampling rates. 

Furthermore, down-sampling processing is generally necessary for an online SHM 

although the computation time varied with different hardware and software 

environments. 

To further compare the efficiency of the proposed method, the common methods to 

achieve online SSI are implemented using similar user-defined parameters. They are 

implemented through a moving window technique with a fixed window length and 

constant weighting. The first one is moving window SSI-Data which successively 

performs SSI-Data in each time window. The second and third ones are moving window 

SSI-Cov and SSI-MOESP, respectively. However, differing from RSSI approaches, moving 

window SSI has no accumulation of past data; it uses only the limited data included in the 

allocated window. If the Hankel matrices are still assumed to be square, the row number, 

Figure 7. Comparison between different forgetting factors. (a) weightings of various forgetting
factors. (b) identified frequency with various forgetting factors.

3.3. Study of Real-Time Implementation

Another crucial issue in on-site application is time consumption for computation.
It is an essential requirement if monitoring systems are designed for online or real-time
processing. In this study, the measurements are successively down-sampled to different
sampling rates, such as 200, 100, 50, 40, and 20 Hz to discuss the computation time.
Different RSSI approaches are first studied and they are individually conducted using
the same measurement, and parameters for comparison. Moreover, all the analysis is
performed in the same computer environment for comparison, which are:

• Intel(R) Core(TM) i5-13600KF
• 64.0 GB RAM

For the software environment, the OS is 64 bit Windows and the program is MATLAB
R2022b [43]. The computational results and the detailed parameters are arranged in
Tables 2 and 3.

The tables show the computation time over various sampling rates. In Table 2, as
expected, the size of Hankel matrices is related to the averaged computation time for each
step; a similar trend can be again observed in Table 3. Definitely, the computation time
should be smaller than the sampling ratio in order to ensure that each sampling interval can
accommodate the proposed recursive formulation. Doubtless, a high sampling rate could
bring no benefits to SHM applications for infrastructures. For example, it is impossible
to implement RSSI with a 200 Hz sampling rate. Additionally, the computation time for
RSSI-Cov is less than RSSI-Data though there is some computation overhead, making
the difference insignificant for low sampling rate. An adequate sampling rate for both
approaches is around 50 Hz since the averaged computation time for each step is slightly
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larger than the sampling interval for RSSI-Data. Fortunately, some literature suggested
50 Hz or 60 Hz as sampling rates [44–47]. Overall, both RSSI-Data and RSSI-Cov are capable
of an online or real-time application under suitable sampling rates. Furthermore, down-
sampling processing is generally necessary for an online SHM although the computation
time varied with different hardware and software environments.

Table 2. Time efficiency for various sampling rates using RSSI-Data.

Measurement 1st, 2nd, 3rd, and 4th Floor for 120 s

Sampling Rate (Hz) 200 100 50 40 20

Row Number (i) 200 100 50 40 20

MAC Criterion (CMAC) 0.95

Forgetting Factor (λ) 0.998

Total Computation Time (seconds) 1443.98 159.49 21.87 13.77 4.45

Averaged Computation Time for each step (ms) 61.70 13.63 3.74 2.94 1.90

Sampling Interval (ms) 5 10 20 25 50

Table 3. Time efficiency for various sampling rates using RSSI-Cov.

Measurement 1st, 2nd, 3rd, and 4th Floor for 120 s

Sampling Rate (Hz) 200 100 50 40 20

Row Number (i) 200 100 50 40 20

MAC Criterion (CMAC) 0.95

Forgetting Factor (λ) 0.998

Total Computation Time (seconds) 719.95 106.19 18.57 11.93 4.04

Averaged Computation Time for each step (ms) 30.76 9.07 3.17 2.55 1.72

Sampling Interval (ms) 5 10 20 25 50

To further compare the efficiency of the proposed method, the common methods
to achieve online SSI are implemented using similar user-defined parameters. They are
implemented through a moving window technique with a fixed window length and
constant weighting. The first one is moving window SSI-Data which successively performs
SSI-Data in each time window. The second and third ones are moving window SSI-Cov
and SSI-MOESP, respectively. However, differing from RSSI approaches, moving window
SSI has no accumulation of past data; it uses only the limited data included in the allocated
window. If the Hankel matrices are still assumed to be square, the row number, i, and the
column number, j, are equally set as 50 for the measurement with a 50 Hz sampling rate.
The window length for a moving window is 149 points (3 s) according to Equation (27),
which is far from the stable estimations discussed in Section 3.2. For example, Figure 8
shows the identified frequencies with short and long windows using moving window SSI.
Poor results can be found once the column number is 50 and increasing the column number
significantly improves the results just like the RSSI approaches with larger forgetting factors.
After some preliminary trials, the column number is selected as 1000 and the window length
for a moving window is 1099 points (22 s) in order to compare with the RSSI approaches
with a 0.998 forgetting factor.
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For comparison with moving window SSI, both RSSI-Data and RSSI-Cov are listed
and the computation time over different methods is shown in Table 4. The averaged
computation time for each step resulted from the five approaches confirms the efficiency of
the proposed method (which needs only 3 to 4 milliseconds in each step). It is noteworthy
that the time efficiency from moving window SSI-MOESP has no advantage compared to
moving window SSI-Data although the orthogonal projection in terms of LQ decomposition
is derived to save the computation effort originally. Especially, using RSSI-Data can cut
down the computation effort by almost three times compared to the use of moving window
SSI-Data. On the other hand, using RSSI-Cov can cut down the computation effort by almost
two times compared to the usage of moving window SSI-Cov. Hence, both implementations
of RSSI-Data and RSSI-Cov can dramatically reduce laborious computation, save precious
time, and secure timeliness.

Table 4. Comparison of computation time between different RSSI approaches.

Method Moving Window
SSI-Data

Moving Window
SSI-Cov

Moving Window
SSI-MOESP RSSI-Data RSSI-Cov

Sampling Rate (Hz) 50

Row Number (i) 50

Column Number (j) 1000 1000 1000 50 50

MAC Criterion (CMAC) 0.95

Forgetting Factor (λ) N/A N/A N/A 0.998 0.998

Total Computation Time
(seconds) 48.65 33.84 52.03 21.87 18.57

Averaged Computation Time
for each step (ms) 9.92 6.09 10.63 3.74 3.17

4. Study of Experiment Verification

The proposed method has been preliminarily demonstrated through a numerically
simulated 4-story shear-type frame with the consideration of noise. To further confirm
the workability of the RSSI approaches using an experimental study, the effectiveness
has been demonstrated through shaking table tests of two full-scale specimens. The
first specimen is a steel frame excited with white noise excitation. The column of the
steel frame is sequentially cut to mimic four damage scenarios. The next specimen is a
concrete frame damaged by earthquake excitations. In between each earthquake excitation,
the concrete frame is subjected to white noise excitation to identify intact and damaged
dynamic characteristics. However, both experiments were not implemented using RSSI
online; instead, the measurements were collected during the experiment and then analyzed
with the proposed methods.
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4.1. Experiment of Steel Frame

The steel frame consisting of one bay and four stories is designed and constructed at
National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. The
frame shares the same design on every floor, which is 3.15 m by 2.15 m area and the floor
height is 2.2 m each. Furthermore, the floor is assumed to be almost rigid during excitation
and the floor weight is 5 tons. The photographs of the specimens are shown in Figure 9.
The wide flange H-beams (H150 × 150) are used to form beams and columns and every
joint is designed as a bolted connection to connect beams/columns. During the formal
tests, the constructed specimen was screwed on the shaking table and tested using white
noise excitations.
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The input excitation for the 4-story frame is the acceleration waveform and the peak
ground acceleration (PGA) was scaled to 30 gals against the noisy vibration from the
shaking table system. The four damage scenarios were made in between the five white
noise excitations. The flange of H steel was sequentially cut with 3 cm, 6 cm, 9 cm, and
12 cm in length; in other words, the flange of H steel was reduced from 15 cm to 3 cm before
the last excitation. A 200 Hz sampling rate was used to measure the structural responses
and was resampled to 50 Hz for implementing RSSI. Considering the result in Section 3,
the size (both the row number and column number) of Hankel matrices is selected as 50.
To effectively separate the physical and spurious modes, the MAC criterion is 0.95. Hence,
the modal parameters identified by RSSI are shown in Figure 10.

Figure 10a shows the identification results of the 4-story steel frame under the first white
noise excitation. Note that, in the figure, the identified frequencies are extracted using RSSI-
Cov and are shown every 1 s for clearness. Obviously, the effectiveness of implementing
RSSI can be easily observed as all four modal frequencies can be constantly identified in
Figure 10a. Each identified frequency is 1.34, 4.41, 7.51, and 10.36 Hz, respectively. This
result not only shows the correctness of the recursive formulation but also exhibits the
capability of implementing RSSI online.

Figure 10 also shows the four identified frequencies under the five white noise ex-
citations and, to be noted, the damage scenarios are sequentially applied between each
white noise excitation. Here, each identified frequency is averaged to individually compare
between different excitations. Apparently, the identified frequencies are decreased after
each damage scenario so that the lowest frequencies are identified during the last excitation,
marked as green stars. Although the frequencies of the first mode under the first excitation
are not the highest, the frequencies are still getting lower under the other four excitations.
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After investigation, the small increase between the first and second excitations comes from
the jointed reasons of the short column effect and the rotational spring formed by the cut
column. Overall, the results indicate that RSSI can track the modal parameters and detect
damage accordingly.
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4.2. Experiment of Concrete Frame

The 10-story reinforced concrete (RC) frame is designed and conducted at the NIED
(National Research Institute for Earth Science and Disaster Resilience) institute, Japan. The
floor area is 13.5 m by 9.5 m. On each floor, it has 4.0 m for each span in the longitudinal
direction and has 3.1, 1.8, and 3.1 m for the spans in the transverse direction, as shown in
Figure 11. Although the structural design is different in two directions, the study focuses
on the longitudinal direction because the concrete frame is formed by simple beams and
columns in this plane. It is constructed on the largest shaking table test facility in the world.
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Figure 11. The photograph and schematic of the full-scale specimen on the shaking table.

The input excitation used to damage the 10-story frame is the acceleration time history
of the Kobe earthquake. The earthquake excitations were simultaneously applied in three
directions and sequentially increased to introduce damage. Here, the five white noise
excitations are conducted in between each earthquake excitation and were used to identify
the modal parameters. Moreover, the measurement was again resampled to 50 Hz from
1000 Hz. Rather than the full measurement, only the acceleration from the 2nd, 4th, 6th,
8th, and 10th floors are exploited for efficient computation. Similar to Section 4.1, the size
of Hankel matrices is selected. To separate spurious modes, the MAC criterion is 0.95 and
the modal frequencies identified by RSSI are shown in Figure 12.
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Figure 12a shows the identification results of the 10-story RC frame under the first
white noise excitation. For clear observation, the modal frequencies extracted using RSSI-
Cov are only displayed at each second. Again, the effectiveness of implementing RSSI
can be easily observed even with high DOFs structures and RC structures. In total, four
modal frequencies can be constantly identified, which are 1.77, 7.75, 14.59, and 21.75 Hz.
After this, the target excitations were escalated to introduce damage and 93.27% of the
original time history was finally achieved. It is noteworthy that the RC frame has been
slightly damaged during the third earthquake excitation and moderately damaged during
the last one so the four modal frequencies were reduced to 1.22, 5.63, 11.75, and 16.94 Hz,
as shown in Figure 12b. Meanwhile, the identification results are more dispersed compared
to the first one because the damaged frame included more local behaviors or measurement
noise. To exhibit the stiffness degradation evidently, the identified second mode under
different white noise excitation is shown in Figure 12c. Apparently, the identified values
are decreased and the results indicate that RSSI can track damage scenarios, though the
identification results are more dispersed due to the complex behaviors from the RC frames.

5. Conclusions

Considering that the modal parameters exhibit time-varying dynamic characteristics,
continuous and autonomous system identification during operations is critical to SHM
and SIM. Generally, the recursive formulation can be used to track the structural state
under ambient excitations. In this study, RSSI implementation using the matrix inversion
lemma is introduced to track the modal parameters as well as the time-varying dynamic
characteristics. The derivation and flowchart have confirmed that the proposed method is
accessible compared to other RSSI approaches. Either numerical simulation or experimental
investigation has been presented and the discussion is conducted to demonstrate and verify
the effectiveness under white noise excitations (or ambient excitations).

In the numerical simulation, the reliability of the proposed method is discussed via a 4-
story shear-type frame. The user-defined parameters are described, the assurance criterion
is used to discriminate between the spurious modes and the true modes, and the forgetting
factor is employed to fade the past data as time passes. Moreover, the varied stiffness is
exploited to examine the capability of tracking the change of modal parameters. The time
efficiency is also studied through numerical simulation. Although the sampling rate may
be reduced for an online (or real-time) system, the proposed method shows great potential
in field applications. The consistency of RSSI-Data and RSSI-Cov validates the proposed
recursive formulation. In the experimental demonstration, the workability of the proposed
method is further evaluated via shaking table tests of two full-scale specimens. Both the
results from the steel frame and the RC frame indicate that RSSI can track the slow time-
varying changes of modal parameters and provide the estimation of the equivalent modal
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parameters, although the identification results are more dispersed due to the complex
behaviors from the RC frames.

As a result, the effectiveness and reliability of implementing RSSI have been demon-
strated and verified in this study. Some potential areas for future research can be located
on the on-site implementation of RSSI, the true performance from long-term monitoring,
and the effect of the environment.
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