Utilization of Waste-Expanded Thermoplastic as a Sustainable Filler for Cement-Based Composites for Greener Construction
Abstract
:1. Introduction
2. Experimental Part
2.1. Raw Materials
2.2. Filler Materials
2.3. Mixtures and Sampling
2.4. Testing Procedures
3. Results and Discussion
3.1. Physical Properties of Produced Mortars
3.2. Strength Parameters: Flexural and Compressive Strength
3.3. Thermal Performance
3.4. Water Transport
3.5. Microscopic Observation
4. Conclusions
- The expanded thermoplastic alternative was found to be an approx. 150 times lighter filling material than the traditional aggregate. In this context, the closed-cell structure of EPS beads provides a very good thermal insulation function: 3.9 up to 4.4. times lower thermal conductivity, depending on the free bulk of compacted-state aggregate, was observed. Moreover, the unique closed structure of EPS beads is also responsible for very low water absorption (only 1.7 vol.%), which is an important benefit compared to siliceous lightweight aggregates with open porous structures.
- In light of the physical properties of the lightweight mortars, the full substitution of silica aggregate of the fraction 2/4 mm with EPS beads resulted in significant decrease in bulk density of the hardened samples by one-third, i.e., by more than 680 kg·m−3. Reducing the weight of building structures constitutes an important aspect in the slimming of bearing structures, and provides material and related financial savings.
- The soft character of the expanded alternative filler impacted the mechanical resistance of the lightweight hardened mortars. Accordingly, a linear decrease in flexural strength induced with increasing EPS content in the mixes was recorded. The initial strength of 8.0 MPa (M-R) was reduced to 4.4 MPa (M-W 100). In the context of compressive strength, the property reduction was not so steep. The maximum decrease was 24.4% for the M-W 100 sample. Strength properties can be improved by adjusting the interfacial transition zone. However, it is still possible to produce resistant composites without adding expensive additives and admixtures and maintain a compressive strength above 20 MPa sufficient for bearing structures.
- Including EPS beads into the compact siliceous skeleton of the produced hardened mortars significantly improved their thermal insulation function. The thermal conductivity linearly decreased with the increasing alternative aggregate content, with a maximum reduction of 47% (M-W 100). An explanation is given by the very low weight (150 times lighter) of W-A 2/4 mm compared to N-A 2/4 mm. On the other hand, the higher open porosity of the lightweight mortars led to a maximum heat accumulation of 14%.
- Filling mortars with expanded thermoplastic directly impacted the mitigation of liquid water absorption. The absorption coefficient, which was highest for the reference mortar (M-R), decreased by 36.4% with a 50% representation of W-A 2/4 mm, and even by 50% for samples with a full content of EPS in relation to fraction size.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- An Introduction to Plastics—Elias, Hans-Georg: 9783527296026—AbeBooks. Available online: https://www.abebooks.com/9783527296026/Introduction-Plastics-Elias-Hans-Georg-3527296026/plp (accessed on 19 February 2024).
- Almohana, A.I.; Abdulwahid, M.Y.; Galobardes, I.; Mushtaq, J.; Almojil, S.F. Producing Sustainable Concrete with Plastic Waste: A Review. Environ. Chall. 2022, 9, 100626. [Google Scholar] [CrossRef]
- Maghfouri, M.; Alimohammadi, V.; Gupta, R.; Saberian, M.; Azarsa, P.; Hashemi, M.; Asadi, I.; Roychand, R. Drying Shrinkage Properties of Expanded Polystyrene (EPS) Lightweight Aggregate Concrete: A Review. Case Stud. Constr. Mater. 2022, 16, e00919. [Google Scholar] [CrossRef]
- Enarevba, D.R.; Haapala, K.R. A Comparative Life Cycle Assessment of Expanded Polystyrene and Mycelium Packaging Box Inserts. Procedia CIRP 2023, 116, 654–659. [Google Scholar] [CrossRef]
- Fernando, P.L.N.; Jayasinghe, M.T.R.; Jayasinghe, C. Structural Feasibility of Expanded Polystyrene (EPS) Based Lightweight Concrete Sandwich Wall Panels. Constr. Build. Mater. 2017, 139, 45–51. [Google Scholar] [CrossRef]
- Sun, Y.; Li, C.; You, J.; Bu, C.; Yu, L.; Yan, Z.; Liu, X.; Zhang, Y.; Chen, X. An Investigation of the Properties of Expanded Polystyrene Concrete with Fibers Based on an Orthogonal Experimental Design. Materials 2022, 15, 1228. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhao, L.; Zhang, Y.; Han, H.; Zhou, L.; Wang, C. Optimizing the Composition Design of Cement-Based Expanded-Polystyrene (EPS) Exterior Wall Based on Thermal Insulation and Flame Retardance. Polymers 2022, 14, 5229. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.S.; Ganesh Babu, K.; Tiong-Huan, W. Effect of Polystyrene Aggregate Size on Strength and Moisture Migration Characteristics of Lightweight Concrete. Cem. Concr. Compos. 2006, 28, 520–527. [Google Scholar] [CrossRef]
- Rajaeifar, M.A.; Abdi, R.; Tabatabaei, M. Expanded Polystyrene Waste Application for Improving Biodiesel Environmental Performance Parameters from Life Cycle Assessment Point of View. Renew. Sustain. Energy Rev. 2017, 74, 278–298. [Google Scholar] [CrossRef]
- Assaad, J.; Chakar, E.; Zéhil, G.-P. Testing and Modeling the Behavior of Sandwich Lightweight Panels against Wind and Seismic Loads. Eng. Struct. 2018, 175, 457–466. [Google Scholar] [CrossRef]
- Poletto, M.; Dettenborn, J.; Zeni, M.; Zattera, A.J. Characterization of Composites Based on Expanded Polystyrene Wastes and Wood Flour. Waste Manag. 2011, 31, 779–784. [Google Scholar] [CrossRef]
- Damghani, A.M.; Savarypour, G.; Zand, E.; Deihimfard, R. Municipal Solid Waste Management in Tehran: Current Practices, Opportunities and Challenges. Waste Manag. 2008, 28, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Sayadi, A.A.; Tapia, J.V.; Neitzert, T.R.; Clifton, G.C. Effects of Expanded Polystyrene (EPS) Particles on Fire Resistance, Thermal Conductivity and Compressive Strength of Foamed Concrete. Constr. Build. Mater. 2016, 112, 716–724. [Google Scholar] [CrossRef]
- Chinnu, S.N.; Minnu, S.N.; Bahurudeen, A.; Senthilkumar, R. Reuse of Industrial and Agricultural By-Products as Pozzolan and Aggregates in Lightweight Concrete. Constr. Build. Mater. 2021, 302, 124172. [Google Scholar] [CrossRef]
- Tittarelli, F.; Carsana, M.; Ruello, M.L. Effect of Hydrophobic Admixture and Recycled Aggregate on Physical–Mechanical Properties and Durability Aspects of No-Fines Concrete. Constr. Build. Mater. 2014, 66, 30–37. [Google Scholar] [CrossRef]
- Carsana, M.; Tittarelli, F.; Bertolini, L. Use of No-Fines Concrete as a Building Material: Strength, Durability Properties and Corrosion Protection of Embedded Steel. Cem. Concr. Res. 2013, 48, 64–73. [Google Scholar] [CrossRef]
- Bayuaji, R.; Ruki Biyanto, T. Deflection Prediction of No-Fines Lightweight Concrete Wall Using Neural Network Caused Dynamic Loads. Buildings 2018, 8, 62. [Google Scholar] [CrossRef]
- Granata, M.F. Pumice Powder as Filler of Self-Compacting Concrete. Constr. Build. Mater. 2015, 96, 581–590. [Google Scholar] [CrossRef]
- Kharun, M.; Klyuev, S.; Koroteev, D.; Chiadighikaobi, P.C.; Fediuk, R.; Olisov, A.; Vatin, N.; Alfimova, N. Heat Treatment of Basalt Fiber Reinforced Expanded Clay Concrete with Increased Strength for Cast-In-Situ Construction. Fibers 2020, 8, 67. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlíková, M.; Vyšvařil, M.; Pavlík, Z. Effect of Aggregate and Binder Type on the Functional and Durability Parameters of Lightweight Repair Mortars. Sustainability 2021, 13, 11780. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhao, M.; Yang, H.; Zhou, S. Testing and Prediction of Shear Performance for Steel Fiber Reinforced Expanded-Shale Lightweight Concrete Beams without Web Reinforcements. Materials 2019, 12, 1594. [Google Scholar] [CrossRef] [PubMed]
- Gencel, O.; Gholampour, A.; Tokay, H.; Ozbakkaloglu, T. Replacement of Natural Sand with Expanded Vermiculite in Fly Ash-Based Geopolymer Mortars. Appl. Sci. 2021, 11, 1917. [Google Scholar] [CrossRef]
- Souza, B.A.; Sánchez, L.E. Biodiversity Offsets in Limestone Quarries: Investigation of Practices in Brazil. Resour. Policy 2018, 57, 213–223. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, T.; Liu, X. Index System to Evaluate the Quarries Ecological Restoration. Sustainability 2018, 10, 619. [Google Scholar] [CrossRef]
- Viana Rodrigues, A.; Roca Bragança, S. An Evaluation of the Increased Expansion of Clay Aggregates Fired at 1300 °C to Maximize Lightness for Non-Structural Concrete. Boletín De La Soc. Española De Cerámica Y Vidr. 2023, 62, 56–65. [Google Scholar] [CrossRef]
- Gonzalez-Torres, M.; Bertoldi, P.; Castellazzi, L.; Perez-Lombard, L. Review of EU Product Energy Efficiency Policies: What Have We Achieved in 40 Years? J. Clean. Prod. 2023, 421, 138442. [Google Scholar] [CrossRef]
- Dubský, Z.; Tichý, L. The Role of Narratives in the Discourse on Energy Security of the European Commission: The EU’s Transition in Energy Relations with Russia. Extr. Ind. Soc. 2024, 17, 101392. [Google Scholar] [CrossRef]
- Rides, M.; Morikawa, J.; Halldahl, L.; Hay, B.; Lobo, H.; Dawson, A.; Allen, C. Intercomparison of Thermal Conductivity and Thermal Diffusivity Methods for Plastics. Polym. Test. 2009, 28, 480–489. [Google Scholar] [CrossRef]
- Ganesh Babu, K.; Saradhi Babu, D. Performance of Fly Ash Concretes Containing Lightweight EPS Aggregates. Cem. Concr. Compos. 2004, 26, 605–611. [Google Scholar] [CrossRef]
- Bogas, J.; Gomes, A. Compressive Behavior and Failure Modes of Structural Lightweight Aggregate Concrete—Characterization and Strength Prediction. Mater. Des. 2013, 46, 832–841. [Google Scholar] [CrossRef]
- Liu, N.; Chen, B. Experimental Study of the Influence of EPS Particle Size on the Mechanical Properties of EPS Lightweight Concrete. Constr. Build. Mater. 2014, 68, 227–232. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, L.; Xu, J.; Chu, H.; Li, Y. Prediction of Compressive Strength and Elastic Modulus of Expanded Polystyrene Lightweight Concrete. Mag. Concr. Res. 2015, 67, 954–962. [Google Scholar] [CrossRef]
- Okechi, I.; Aguayo, F.; Torres, A. Coefficient of Thermal Expansion of Concrete Produced with Recycled Concrete Aggregates. J. Civ. Eng. Constr. 2022, 11, 65–74. [Google Scholar] [CrossRef]
- Herki, B.M.A. Combined Effects of Densified Polystyrene and Unprocessed Fly Ash on Concrete Engineering Properties. Buildings 2017, 7, 77. [Google Scholar] [CrossRef]
- Herki, B. Absorption Characteristics of Lightweight Concrete Containing Densified Polystyrene. Civ. Eng. J. 2017, 3, 594–609. [Google Scholar] [CrossRef]
- EN 197-1; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Comitee for Standardization (CEN): Brussels, Belgium, 2011.
- EN 206-1; Concrete—Part 1: Specification, Performance, Production and Conformity. European Comitee for Standardization (CEN): Brussels, Belgium, 2017.
- Petrounias, P.; Giannakopoulou, P.P.; Rogkala, A.; Lampropoulou, P.; Tsikouras, B.; Rigopoulos, I.; Hatzipanagiotou, K. Petrographic and Mechanical Characteristics of Concrete Produced by Different Type of Recycled Materials. Geosciences 2019, 9, 264. [Google Scholar] [CrossRef]
- Assaad, J.J.; Mikhael, C.; Hanna, R. Recycling of Waste Expanded Polystyrene Concrete in Lightweight Sandwich Panels and Structural Applications. Clean. Mater. 2022, 4, 100095. [Google Scholar] [CrossRef]
- Cai, S.; Zhang, B.; Cremaschi, L. Review of Moisture Behavior and Thermal Performance of Polystyrene Insulation in Building Applications. Build. Environ. 2017, 123, 50–65. [Google Scholar] [CrossRef]
- EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar. European Comitee for Standardization (CEN): Brussels, Belgium, 2000.
- Petrella, A.; Di Mundo, R.; Notarnicola, M. Recycled Expanded Polystyrene as Lightweight Aggregate for Environmentally Sustainable Cement Conglomerates. Materials 2020, 13, 988. [Google Scholar] [CrossRef] [PubMed]
- EN 196-1; Method of Testing Cement—Part 1: Determination of Strength. European Comitee for Standardization (CEN): Brussels, Belgium, 2005.
- Pokorný, J.; Ševčík, R.; Šál, J.; Zárybnická, L. Lightweight Blended Building Waste in the Production of Innovative Cement-Based Composites for Sustainable Construction. Constr. Build. Mater. 2021, 299, 123933. [Google Scholar] [CrossRef]
- EN 12390-2; Testing of Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests. European Comitee for Standardization (CEN): Brussels, Belgium, 2019.
- EN 1097-3; Test of Mechanical and Physical Properties of Aggregate—Part 3: Determination of Loose Bulk Density and Voids. European Comitee for Standardization (CEN): Brussels, Belgium, 1999.
- EN 1097-6; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. European Comitee for Standardization (CEN): Brussels, Belgium, 2014.
- EN 933-1; Test of Geometrical Properties of Aggregate—Part 1: Determination of Particle Size Distribution—Sieving Method. European Comitee for Standardization (CEN): Brussels, Belgium, 2012.
- EN 1015-10; Methods of Test for Mortar for Masonry—Part 10: Determination of Dry Bulk Density of Hardened Mortar. European Comitee for Standardization (CEN): Brussels, Belgium, 1999.
- Záleská, M.; Pavlik, Z.; Pavlíková, M.; Scheinherrova, L.; Pokorny, J.; Trnik, A.; Svora, P.; Fořt, J.; Jankovský, O.; Suchorab, Z.; et al. Biomass Ash-Based Mineral Admixture Prepared from Municipal Sewage Sludge and Its Application in Cement Composites. Clean Technol. Environ. Policy 2018, 20, 159–171. [Google Scholar] [CrossRef]
- EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. European Comitee for Standardization (CEN): Brussels, Belgium, 1999.
- Pokorný, J.; Ševčík, R.; Šál, J.; Zárybnická, L.; Žák, J. Lightweight Concretes with Improved Water and Water Vapor Transport for Remediation of Damp Induced Buildings. Materials 2021, 14, 5902. [Google Scholar] [CrossRef] [PubMed]
- Zárybnická, L.; Pokorný, J.; Machotová, J.; Ševčík, R.; Šál, J.; Viani, A. Study of Keto-Hydrazide Crosslinking Effect in Acrylic Latex Applied to Portland Cements with Respect to Physical Properties. Constr. Build. Mater. 2023, 375, 130897. [Google Scholar] [CrossRef]
- EN 1015-18; Methods of Test for Mortar for Masonry. Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. European Comitee for Standardization (CEN): Brussels, Belgium, 2002.
- Pokorný, J.; Ševčík, R.; Šál, J.; Fiala, L.; Zárybnická, L.; Podolka, L. Bio-Based Aggregate in the Production of Advanced Thermal-Insulating Concrete with Improved Acoustic Performance. Constr. Build. Mater. 2022, 358, 129436. [Google Scholar] [CrossRef]
- Herki, B.; Khatib, J. Valorisation of Waste Expanded Polystyrene in Concrete Using a Novel Recycling Technique. Eur. J. Environ. Civ. Eng. 2016, 21, 1384–1402. [Google Scholar] [CrossRef]
- Záleská, M.; Pavlíková, M.; Pokorný, J.; Jankovský, O.; Pavlík, Z.; Černý, R. Structural, Mechanical and Hygrothermal Properties of Lightweight Concrete Based on the Application of Waste Plastics. Constr. Build. Mater. 2018, 180, 1–11. [Google Scholar] [CrossRef]
- Askar, M.K.; Al-Kamaki, Y.S.S.; Hassan, A. Utilizing Polyethylene Terephthalate PET in Concrete: A Review. Polymers 2023, 15, 3320. [Google Scholar] [CrossRef] [PubMed]
- Le Roy, R.; Parant, E.; Boulay, C. Taking into Account the Inclusions’ Size in Lightweight Concrete Compressive Strength Prediction. Cem. Concr. Res. 2005, 35, 770–775. [Google Scholar] [CrossRef]
- Goyal, S. Properties of expanded polystyrene (EPS) and its environmental effects. Adv. Appl. Math. Sci. 2021, 20, 2151–2162. [Google Scholar]
- Argalis, P.P.; Bumanis, G.; Bajare, D. Gypsum Composites with Modified Waste Expanded Polystyrene. J. Compos. Sci. 2023, 7, 203. [Google Scholar] [CrossRef]
- Suchorab, Z.; Franus, M.; Barnat-Hunek, D. Properties of Fibrous Concrete Made with Plastic Optical Fibers from E-Waste. Materials 2020, 13, 2414. [Google Scholar] [CrossRef] [PubMed]
- Masėnas, V.; Meškėnas, A.; Valivonis, J. Analysis of the Bearing Capacity of Reinforced Concrete Dapped-End Beams. Appl. Sci. 2023, 13, 5228. [Google Scholar] [CrossRef]
- Gomes, M.d.G.; Bogas, J.A.; Real, S.; Moret Rodrigues, A.; Machete, R. Thermal Performance Assessment of Lightweight Aggregate Concrete by Different Test Methods. Sustainability 2023, 15, 11105. [Google Scholar] [CrossRef]
- Demirboga, R.; Kan, A. Thermal Conductivity and Shrinkage Properties of Modified Waste Polystyrene Aggregate Concretes. Constr. Build. Mater. 2012, 35, 730–734. [Google Scholar] [CrossRef]
- Sethi, S.; Manik, G. Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review. Polym.-Plast. Technol. Eng. 2018, 57, 1932–1952. [Google Scholar] [CrossRef]
- Akinyemi, B.; Ojediran, J.; Oyewole, O.; Ayanwola, S. Eflcacy of Expanded Polystyrene as Fine Aggregate in Cement Mortars Modified with Latex Paint as an Alternative to Polymer Admixture. J. Mech. Behav. Mater. 2020, 29, 163–168. [Google Scholar] [CrossRef]
- Lakhiar, M.T.; Kong, S.Y.; Bai, Y.; Susilawati, S.; Zahidi, I.; Paul, S.C.; Raghunandan, M.E. Thermal and Mechanical Properties of Concrete Incorporating Silica Fume and Waste Rubber Powder. Polymers 2022, 14, 4858. [Google Scholar] [CrossRef] [PubMed]
Oxide Composition | (wt.%) |
---|---|
SiO2 | 15.84 |
Fe2O3 | 2.33 |
Al2O3 | 4.57 |
MgO | 2.64 |
CaO | 62.69 |
Na2O | 0.25 |
K2O | 0.63 |
SO3 | 2.93 |
Cl− | 0.08 |
Property | Value |
---|---|
Powder density (kg·m−3) | 980 |
Specific density (kg·m−3) | 3110 |
Specific surface area (m2·kg−1) | 408 |
Initial setting time (min) | 181 |
Final setting time (min) | 273 |
Loss in ignition (wt.%) | 4.55 |
Subs. | Loose Bulk Density (kg·m−3) | Compacted Bulk Density (kg·m−3) | Specific Density (kg·m−3) | Voids (%) | Water Absorption |
---|---|---|---|---|---|
N-A 0/2 mm | 1567.1 | 1887.9 | 2652 | 41 | 2.3 wt.% |
N-A 2/4 mm | 1279.0 | 1563.8 | 2628 | 51 | 1.8 wt.% |
W-A 2/4 mm | 8.5 | 10.2 | 27 | 69 | 1.7 vol.% |
Compact. Time (s) | Bulk Density (kg·m−3) | λ (W·m−1·K−1) | c · 10−6 (J·m−3·K−1) |
---|---|---|---|
N-A 2/4 mm | |||
0 | 1279 ± 18 | 0.215 ± 0.016 | 1.31 ± 0.12 |
10 | 1510 ± 14 | 0.241 ± 0.021 | 1.34 ± 0.19 |
30 | 1561 ± 21 | 0.256 ± 0.020 | 1.38 ± 0.13 |
60 | 1563 ± 18 | 0.256 ± 0.023 | 1.38 ± 0.13 |
W-A 2/4 mm | |||
0 | 8.5 ± 0.1 | 0.055 ± 0.004 | 0.30 ± 0.03 |
10 | 10.2 ± 0.2 | 0.058 ± 0.005 | 0.31 ± 0.04 |
30 | 10.2 ± 0.2 | 0.058 ± 0.005 | 0.31 ± 0.04 |
60 | 10.2 ± 0.2 | 0.058 ± 0.004 | 0.31 ± 0.04 |
Mix | Content (kg·m−3) | ||||
---|---|---|---|---|---|
M-R | M-W 25 | M-W 50 | M-W 75 | M-W 100 | |
C 32.5 | 443.2 | 446.4 | 452.2 | 461.5 | 470.4 |
N-A 0/2 mm | 806.5 | 812.5 | 823.0 | 840.4 | 856.2 |
N-A 2/4 mm | 744.5 | 562.5 | 379.8 | 193.9 | - |
W-A 2/4 mm | - | 1.3 | 2.6 | 3.9 | 5.2 |
Water | 243.7 | 234.4 | 226.1 | 219.3 | 211.7 |
Mortar | Bulk Density (kg·m−3) | Apparent Density (kg·m−3) | Porosity (%) |
---|---|---|---|
M-R | 2066 ± 37 | 2582 ± 13 | 20.0 ± 0.9 |
M-W 25 | 1917 ± 46 | 2570 ± 10 | 25.4 ± 0.8 |
M-W 50 | 1714 ± 21 | 2552 ± 20 | 32.8 ± 1.6 |
M-W 75 | 1538 ± 14 | 2523 ± 18 | 39.0 ± 1.2 |
M-W 100 | 1383 ± 28 | 2517 ± 13 | 45.0 ± 1.9 |
Mix | A (kg·m−2·s−1/2) | wcap (kg·m−3) | Χapp × 10−8 (m2·s−1) |
---|---|---|---|
M-R | 0.022 | 166.2 | 1.73 |
M-W 25 | 0.019 | 148.9 | 1.56 |
M-W 50 | 0.017 | 132.2 | 1.43 |
M-W 75 | 0.014 | 123.0 | 1.20 |
M-W 100 | 0.011 | 118.5 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorný, J.; Zárybnická, L.; Ševčík, R.; Podolka, L. Utilization of Waste-Expanded Thermoplastic as a Sustainable Filler for Cement-Based Composites for Greener Construction. Buildings 2024, 14, 990. https://doi.org/10.3390/buildings14040990
Pokorný J, Zárybnická L, Ševčík R, Podolka L. Utilization of Waste-Expanded Thermoplastic as a Sustainable Filler for Cement-Based Composites for Greener Construction. Buildings. 2024; 14(4):990. https://doi.org/10.3390/buildings14040990
Chicago/Turabian StylePokorný, Jaroslav, Lucie Zárybnická, Radek Ševčík, and Luboš Podolka. 2024. "Utilization of Waste-Expanded Thermoplastic as a Sustainable Filler for Cement-Based Composites for Greener Construction" Buildings 14, no. 4: 990. https://doi.org/10.3390/buildings14040990
APA StylePokorný, J., Zárybnická, L., Ševčík, R., & Podolka, L. (2024). Utilization of Waste-Expanded Thermoplastic as a Sustainable Filler for Cement-Based Composites for Greener Construction. Buildings, 14(4), 990. https://doi.org/10.3390/buildings14040990