Comparison of Performance Analysis Results with Developed Site-Specific Response Spectra and Turkish Seismic Design Code: A Case Study from the SW Türkiye Region
Abstract
:1. Introduction
2. Geology, Tectonics, and Seismicity of SW Türkiye
3. Probabilistic Seismic Hazard Assessment (PSHA) for SW Türkiye Region and Developing Site-Specific Earthquake Spectra for the Cities
4. Structural Analyses
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alpyürür, M. Kayseri Kenti Için Olasılıksal Sismik Tehlikenin Değerlendirilmesi. Mehmet Akif Ersoy Üniv. Fen Bilim. Enstitüsü Derg. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Yakut, A.; Sucuoǧlu, H.; Akkar, S. Seismic Risk Prioritization of Residential Buildings in Istanbul. Earthq. Eng. Struct. Dyn. 2012, 41, 1533–1547. [Google Scholar] [CrossRef]
- Papazafeiropoulos, G.; Plevris, V. Kahramanmaraş-Gaziantep, Türkiye Mw 7.8 Earthquake on 6 February 2023: Preliminary Report on Strong Ground Motion and Building Response Estimations. Buildings 2023, 13, 1194. [Google Scholar] [CrossRef]
- Arkan, E.; Işık, E.; Harirchian, E.; Topçubaşı, M.; Avcil, F. Architectural Characteristics and Determination Seismic Risk Priorities of Traditional Masonry Structures: A Case Study for Bitlis (Eastern Türkiye). Buildings 2023, 13, 1042. [Google Scholar] [CrossRef]
- Işık, E.; Işık, M.F.; Bülbül, M.A. Web Based Evaluation of Earthquake Damages for Reinforced Concrete Buildings. Earthq. Struct. 2017, 13, 423–432. [Google Scholar]
- Büyüksaraç, A.; Işık, E.; Harirchian, E.; Isik, E.; Harirchian, E. A Case Study for Determination of Seismic Risk Priorities in Van (Eastern Turkey). Earthq. Struct. 2021, 20, 445–455. [Google Scholar] [CrossRef]
- Özmen, B. Türkiye Deprem Bölgeleri Haritalarının Tarihsel Gelişimi. Türkiye Jeol. Bülteni 2012, 55, 43–55. [Google Scholar]
- Bilgin, H.; Hadzima-Nyarko, M.; Işık, E.; Ozmen, H.B.; Harirchian, E. A Comparative Study on the Seismic Provisions of Different Codes for RC Buildings. Struct. Eng. Mech. An Int’l J. 2022, 83, 195–206. [Google Scholar]
- TBEC, Turkey Building Earthquake Code; DEMP, Ministry of Interior, Disaster and Emergency Management Presidency: Ankara, Turkey, 2018.
- Akkar, S.; Azak, T.; Çan, T.; Çeken, U.; Demircioğlu Tümsa, M.B.; Duman, T.Y.; Erdik, M.; Ergintav, S.; Kadirioğlu, F.T.; Kalafat, D.; et al. Evolution of Seismic Hazard Maps in Turkey. Bull. Earthq. Eng. 2018, 16, 3197–3228. [Google Scholar] [CrossRef]
- Akkar, S.; Kale, Ö.; Yakut, A.; Ceken, U. Ground-Motion Characterization for the Probabilistic Seismic Hazard Assessment in Turkey. Bull. Earthq. Eng. 2018, 16, 3439–3463. [Google Scholar] [CrossRef]
- Akkar, S.; Sandıkkaya, M.A.; Bommer, J.J. Empirical Ground-Motion Models for Point- and Extended-Source Crustal Earthquake Scenarios in Europe and the Middle East. Bull. Earthq. Eng. 2014, 12, 359–387. [Google Scholar] [CrossRef]
- Yel, N.S.; Arslan, M.H.; Aksoylu, C.; Erkan, İ.H.; Arslan, H.D.; Işık, E. Investigation of the Earthquake Performance Adequacy of Low-Rise RC Structures Designed According to the Simplified Design Rules in TBEC-2019. Buildings 2022, 12, 1722. [Google Scholar] [CrossRef]
- Hu, Y.; Lam, N.; Khatiwada, P.; Menegon, S.J.; Looi, D.T.W. Site-Specific Response Spectra: Guidelines for Engineering Practice. CivilEng 2021, 2, 712–735. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Bajaj, K.; Patel, S. Seismic Hazard Maps and Spectrum for Patna Considering Region-Specific Seismotectonic Parameters. Nat. Hazards 2015, 78, 1163–1195. [Google Scholar] [CrossRef]
- Li, B.; Cai, Z.; Xie, W.C.; Pandey, M. Probabilistic Seismic Hazard Analysis Considering Site-Specific Soil Effects. Soil Dyn. Earthq. Eng. 2018, 105, 103–113. [Google Scholar] [CrossRef]
- Ayele, A. Probabilistic Seismic Hazard Analysis (PSHA) for Ethiopia and the Neighboring Region. J. Afr. Earth Sci. 2017, 134, 257–264. [Google Scholar] [CrossRef]
- Silacheva, N.V.; Kulbayeva, U.K.; Kravchenko, N.A. Probabilistic Seismic Hazard Assessment of Kazakhstan and Almaty City in Peak Ground Accelerations. Geod. Geodyn. 2018, 9, 131–141. [Google Scholar] [CrossRef]
- Mäntyniemi, P.; Tsapanos, T.M.; Kijko, A. An Estimate of Probabilistic Seismic Hazard for Five Cities in Greece by Using the Parametric-Historic Procedure. Eng. Geol. 2004, 72, 217–231. [Google Scholar] [CrossRef]
- Zahran, H.M.; Sokolov, V.; Youssef, S.E.H.; Alraddadi, W.W. Preliminary Probabilistic Seismic Hazard Assessment for the Kingdom of Saudi Arabia Based on Combined Areal Source Model: Monte Carlo Approach and Sensitivity Analyses. Soil Dyn. Earthq. Eng. 2015, 77, 453–468. [Google Scholar] [CrossRef]
- Deniz, A.; Korkmaz, K.A.; Irfanoglu, A. Probabilistic Seismic Hazard Assessment for Izmir, Turkey. Pure Appl. Geophys. 2010, 167, 1475–1484. [Google Scholar] [CrossRef]
- Dipova, N.; Cangir, B. Probabilistic Seismic Hazard Assessment for the Two Layer Fault System of Antalya (SW Turkey) Area. J. Seismol. 2017, 21, 1067–1077. [Google Scholar] [CrossRef]
- İnce, G.Ç.; Yılmazoğlu, M.U. Probabilistic Seismic Hazard Assessment of Muğla, Turkey. Nat. Hazards 2021, 107, 1311–1340. [Google Scholar] [CrossRef]
- Alpyürür, M. Probabilistic Seismic Hazard Analysis of Burdur City. Int. J. Eng. Appl. Sci. 2023, 14, 91–99. [Google Scholar] [CrossRef]
- Kırım, S.; Budakoğlu, E.; Horasan, G. Probabilistic Seismic Hazard Assessment for Isparta Province (Turkey) and Mapping Based on GIS. Arab. J. Geosci. 2021, 14, 2227. [Google Scholar] [CrossRef]
- TEC, Turkish Seismic Design Code; Ministry of Public Works and Settlement, General Directorate of Disaster Affairs, Earthquake Research Department: Ankara, Turkey, 2007.
- Ulutaş, H. DBYBHY (2007) ve TBDY (2018) Deprem Yönetmeliklerinin Kesit Hasar Sınırları Açısından Kıyaslanması. Eur. J. Sci. Technol. 2019, 17, 351–359. [Google Scholar] [CrossRef]
- Işık, E.; Ulutaş, H.; Harirchian, E.; Avcil, F.; Aksoylu, C.; Arslan, M.H. Performance-Based Assessment of RC Building with Short Columns Due to the Different Design Principles. Buildings 2023, 13, 750. [Google Scholar] [CrossRef]
- Işık, E.; Ulutaş, H.; Büyüksaraç, A. The Comparison of Sectional Damages in Reinforced-Concrete Structures and Seismic Parameters on Regional Basis; A Case Study from Western Türkiye (Aegean Region). Earthq. Struct. 2023, 24, 37–51. [Google Scholar] [CrossRef]
- Prendergast, L.J.; Limongelli, M.P.; Ademovic, N.; Anžlin, A.; Gavin, K.; Zanini, M. Structural Health Monitoring for Performance Assessment of Bridges under Flooding and Seismic Actions. Struct. Eng. Int. 2018, 28, 296–307. [Google Scholar] [CrossRef]
- Ademovic, N.; Hrasnica, M.; Oliveira, D.V. Pushover Analysis and Failure Pattern of a Typical Masonry Residential Building in Bosnia and Herzegovina. Eng. Struct. 2013, 50, 13–29. [Google Scholar] [CrossRef]
- Avcil, F.; Işık, E.; İzol, R.; Büyüksaraç, A.; Arkan, E.; Arslan, M.H.; Aksoylu, C.; Eyisüren, O.; Harirchian, E. Effects of the February 6, 2023, Kahramanmaraş Earthquake on Structures in Kahramanmaraş City. Nat. Hazards 2023, 120, 2953–2991. [Google Scholar] [CrossRef]
- Mertol, H.C.; Tunç, G.; Akış, T.; Kantekin, Y.; Aydın, İ.C. Investigation of RC Buildings after 6 February 2023, Kahramanmaraş, Türkiye Earthquakes. Buildings 2023, 13, 1789. [Google Scholar] [CrossRef]
- Işık, E.; Avcil, F.; Büyüksaraç, A.; İzol, R.; Arslan, M.H.; Aksoylu, C.; Harirchian, E.; Eyisüren, O.; Arkan, E.; Güngür, M.Ş. Structural Damages in Masonry Buildings in Adıyaman during the Kahramanmaraş (Turkiye) Earthquakes (Mw 7.7 and Mw 7.6) on 06 February 2023. Eng. Fail. Anal. 2023, 151, 107405. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Zhou, Y.; Wang, X.; Lin, X.; Wang, X.; Shang, Q. Preliminary Investigation of Building Damage in Hatay under February 6, 2023 Turkey Earthquakes. Earthq. Eng. Eng. Vib. 2023, 22, 853–866. [Google Scholar] [CrossRef]
- Kutanis, M.; Ulutaş, H.; Işik, E. PSHA of Van Province for Performance Assessment Using Spectrally Matched Strong Ground Motion Records. J. Earth Syst. Sci. 2018, 127, 99. [Google Scholar] [CrossRef]
- Işık, E.; Kutanis, M. Determination of Local Site-Specific Spectra Using Probabilistic Seismic Hazard Analysis for Bitlis Province, Turkey. Earth Sci. Res. J. 2015, 19, 129–134. [Google Scholar] [CrossRef]
- Bozkurt, E. Neotectonics of Turkey–a Synthesis. Geodin. Acta 2001, 14, 3–30. [Google Scholar] [CrossRef]
- Barka, A.A.; Kadinsky-Cade, K. Strike-slip Fault Geometry in Turkey and Its Influence on Earthquake Activity. Tectonics 1988, 7, 663–684. [Google Scholar] [CrossRef]
- Şengör, A.M.C.; Görür, N.; Şaroğlu, F. Strike-Slip Faulting and Related Basin Formation in Zones of Tectonic Escape: Turkey as a Case Study. In Strike-Slip Deformation, Basin Formation, and Sedimentation; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 1985; Volume 37. [Google Scholar]
- Seyitoglu, G.; Scott, B.C.; Rundle, C.C. Timing of Cenozoic Extensional Tectonics in West Turkey. J. Geol. Soc. 1992, 149, 533–538. [Google Scholar] [CrossRef]
- Seyitoǧlu, G.; Scott, B.C. The Cause of N-S Extensional Tectonics in Western Turkey: Tectonic Escape vs Back-Arc Spreading vs Orogenic Collapse. J. Geodyn. 1996, 22, 145–153. [Google Scholar] [CrossRef]
- Gürer, Ö.F.; Sarica-Filoreau, N.; Özburan, M.; Sangu, E.; Doǧan, B. Progressive Development of the Büyük Menderes Graben Based on New Data, Western Turkey. Geol. Mag. 2009, 146, 652–673. [Google Scholar] [CrossRef]
- Kürçer, A.; Özdemir, E.; Olgun, Ş.; Özalp, S.; Çan, T.; Elmacı, H. Active Tectonic and Paleoseismological Characteristics of the Dinar Fault, SW Anatolia, Turkey. Mediterr. Geosci. Rev. 2021, 3, 219–251. [Google Scholar] [CrossRef]
- Paton, S. Active Normal Faulting, Drainage Patterns and Sedimentation in Southwestern Turkey. J. Geol. Soc. 1992, 149, 1031–1044. [Google Scholar] [CrossRef]
- Kırkan, E.; Akyüz, H.S.; Basmenji, M.; Dikbaş, A.; Zabcı, C.; Yazıcı, M.; Erturaç, M.K. Earthquake History of the Milas Fault: An Active Dextral Fault in an Extensional Province (SW Anatolia, Türkiye). Nat. Hazards 2023, 116, 1639–1662. [Google Scholar] [CrossRef]
- Barka, A.; Reilinger, R. Active Tectonics of the Eastern Mediterranean Region: Deduced from GPS, Neotectonic and Seismicity Data. Ann. Geophys. 1997, 40, 587–610. [Google Scholar] [CrossRef]
- Reilinger, R.; McClusky, S.; Vernant, P.; Lawrence, S.; Ergintav, S.; Cakmak, R.; Ozener, H.; Kadirov, F.; Guliev, I.; Stepanyan, R.; et al. GPS Constraints on Continental Deformation in the Africa-Arabia-Eurasia Continental Collision Zone and Implications for the Dynamics of Plate Interactions. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Basmenji, M.; Akyüz, H.S.; Kirkan, E.; Aksoy, M.E.; Uçarkuş, G.; Yakupoğlu, N. Earthquake History of the Yatağan Fault (Muğla, Sw Turkey): Implications for Regional Seismic Hazard Assessment and Paleoseismology in Extensional Provinces. Turkish J. Earth Sci. 2021, 30, 161–181. [Google Scholar] [CrossRef]
- Şengör, A.M.C. Cross-Faults and Differential Stretching of Hanging Walls in Regions of Low-Angle Normal Faulting: Examples from Western Turkey. Geol. Soc. Spec. Publ. 1987, 28, 575–589. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Genç, Ş.C.; Gürer, F.; Bozcu, M.; Yilmaz, K.; Karacik, Z.; Altunkaynak, Ş.; Elmas, A. When Did the Western Anatolian Grabens Begin to Develop? Geol. Soc. Spec. Publ. 2000, 173, 353–384. [Google Scholar] [CrossRef]
- Emre, Ö.; Duman, T.Y.; Özalp, S.; Şaroğlu, F.; Olgun, Ş.; Elmacı, H.; Çan, T. Active Fault Database of Turkey. Bull. Earthq. Eng. 2018, 16, 3229–3275. [Google Scholar] [CrossRef]
- Meng, J.; Sinoplu, O.; Zhou, Z.; Tokay, B.; Kusky, T.; Bozkurt, E.; Wang, L. Greece and Turkey Shaken by African Tectonic Retreat. Sci. Rep. 2021, 11, 6486. [Google Scholar] [CrossRef]
- Cohen, H.A.; Dart, C.J.; Akyuz, H.S.; Barka, A. Syn-Rift Sedimentation and Structural Development of the Gediz and Buyuk Menderes Graben, Western Turkey. J. Geol. Soc. 1995, 152, 629–638. [Google Scholar] [CrossRef]
- Hetzel, R.; Ring, U.; Akal, C.; Troesch, M. Miocene NNE-Directed Extensional Unroofing in the Menderes Massif, Southwestern Turkey. J. Geol. Soc. 1995, 152, 639–654. [Google Scholar] [CrossRef]
- Hetzel, R.; Romer, R.L.; Candan, O.; Passchier, C.W. Geology of the Bozdag Area, Central Menderes Massif, SW Turkey: Pan-African Basement and Alpine Deformation. Geol. Rundsch. 1998, 87, 394–406. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Schmid, S.M. Map View Restoration of Aegean-West Anatolian Accretion and Extension since the Eocene. Tectonics 2012, 31, TC5005. [Google Scholar] [CrossRef]
- Türe, O.; Çobanoğlu, İ.; Gül, M.; Karacan, E. Seismic Record Approach for the Evaluation of Natural Hazards: A Key Study from SW Anatolia/Turkey. Environ. Earth Sci. 2021, 80, 500. [Google Scholar] [CrossRef]
- Stucchi, M.; Rovida, A.; Gomez Capera, A.A.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.W.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000-1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef]
- Bommer, J.J.; Abrahamson, N.A. Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates? Bull. Seismol. Soc. Am. 2006, 96, 1967–1977. [Google Scholar] [CrossRef]
- McGuire, R.K. Probabilistic Seismic Hazard Analysis: Early History. Earthq. Eng. Struct. Dyn. 2008, 37, 329–338. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering Seismic Risk Analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Kijko, A.; Smit, A. Extension of the Aki-Utsu b-Value Estimator for Incomplete Catalogs. Bull. Seismol. Soc. Am. 2012, 102, 1283–1287. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Bajaj, K.; Moustafa, S.S.R.; Al-Arifi, N.S.N. Maximum Magnitude Estimation Considering the Regional Rupture Character. J. Seismol. 2015, 19, 695–719. [Google Scholar] [CrossRef]
- Kijko, A.; Sellevoll, M.A. Estimation of Earthquake Hazard Parameters from Incomplete Data Files. Part I. Utilization of Extreme and Complete Catalogs with Different Threshold Magnitudes. Bull. Seismol. Soc. Am. 1989, 79, 645–654. [Google Scholar] [CrossRef]
- Weichert, D.H. Estimation of the Earthquake Recurrence Parameters for Unequal Observation Periods for Different Magnitudes. Bull. Seismol. Soc. Am. 1980, 70, 1337–1346. [Google Scholar] [CrossRef]
- Tinti, S.; Mulargia, F. Effects of Magnitude Uncertainties on Estimating the Parameters in the Gutenberg-Richter Frequency-Magnitude Law. Bull. Seismol. Soc. Am. 1985, 75, 1681–1697. [Google Scholar] [CrossRef]
- Kijko, A. Ha3 Matlab Code, Released 3.01; Seismic Hazard Assessment for Selected Area; University of Pretoria: Pretoria, South Africa, 2016. [Google Scholar]
- İlki, A.; Celep, Z. Betonarme Yapıların Deprem Güvenliği. In Proceedings of the 1st Turkish Earthquake Engineering and Seismology Conference, Ankara, Turkey, 11–14 October 2011. [Google Scholar]
- SAP2000. Integrated Software for Structural Analysis & Design; Computers & Structures, Inc.: Berkeley, CA, USA, 2011. [Google Scholar]
Date (dd/mm/yyyy) | Latitude (°N) (WGS 84) | Longitude (°E) (WGS 84) | Magnitude () | Date (dd/mm/yyyy) | Latitude (°N) (WGS 84) | Longitude (°E) (WGS 84) | Magnitude () |
---|---|---|---|---|---|---|---|
30.10.2020 | 37.89 | 26.71 | 6.9 | 22.4.1863 | 36.40 | 27.60 | 7.5 |
20.7.2017 | 36.97 | 27.41 | 6.6 | 3.11.1862 | 38.50 | 27.71 | 6.5 |
9.10.1996 | 34.44 | 32.13 | 6.8 | 2.12.1860 | 39.30 | 29.70 | 6.6 |
25.4.1957 | 36.42 | 28.68 | 6.7 | 28.2.1851 | 36.57 | 29.21 | 6.8 |
24.4.1957 | 36.43 | 28.63 | 6.5 | 23.6.1845 | 38.60 | 27.50 | 6.7 |
16.7.1955 | 37.65 | 27.26 | 6.5 | 3.7.1778 | 38.42 | 27.14 | 6.5 |
9.2.1948 | 35.41 | 27.20 | 6.8 | 1.9.1771 | 38.44 | 27.59 | 6.6 |
6.10.1944 | 39.48 | 26.56 | 6.5 | 13.2.1756 | 36.30 | 27.50 | 7.5 |
26.6.1926 | 36.54 | 27.33 | 7.2 | 24.2.1755 | 39.10 | 26.55 | 6.8 |
18.3.1926 | 35.84 | 29.50 | 6.5 | 18.6.1751 | 37.71 | 27.01 | 6.7 |
18.03.1926 | 35.99 | 30.13 | 6.7 | 31.1.1741 | 36.16 | 28.50 | 7.5 |
13.08.1922 | 35.51 | 27.98 | 6.6 | 4.4.1739 | 38.58 | 26.89 | 6.8 |
3.10.1914 | 37.70 | 30.40 | 6.6 | 25.2.1702 | 37.78 | 29.08 | 6.8 |
20.9.1899 | 37.88 | 28.08 | 6.7 | 10.7.1688 | 38.37 | 27.13 | 6.8 |
29.1.1898 | 39.42 | 28.06 | 6.9 | 10.9.1688 | 39.65 | 27.88 | 6.6 |
19.8.1895 | 37.87 | 27.93 | 6.5 | 22.2.1653 | 37.88 | 28.17 | 6.7 |
15.10.1883 | 38.30 | 26.43 | 6.7 | 00.00.1609 | 36.20 | 29.00 | 7.2 |
13.5.1876 | 38.80 | 30.50 | 6.8 | 00.00.1528 | 39.10 | 26.55 | 6.9 |
3.5.1875 | 38.10 | 30.10 | 6.8 | 18.10.1493 | 36.65 | 27.21 | 6.9 |
16.11.1874 | 36.50 | 27.90 | 7.0 | 20.3.1389 | 38.26 | 26.54 | 6.6 |
18.4.1869 | 36.50 | 27.60 | 6.8 | 6.8.1384 | 39.10 | 26.55 | 6.6 |
1.12.1869 | 37.03 | 28.33 | 6.8 | 30.4.1366 | 36.43 | 28.23 | 6.7 |
7.3.1867 | 39.24 | 26.26 | 6.8 | 17.7.1296 | 39.09 | 27.43 | 6.9 |
23.7.1865 | 39.43 | 26.25 | 6.6 | 2.2.1040 | 38.42 | 27.14 | 6.5 |
Performance Level | Structural Element Type | Condition |
---|---|---|
CUPL | Beam | All beams are in the limited damage zone. |
Column | All columns are in the limited damage zone. | |
LDPL | Beam | Maximum of 20% of the beams in the direction of calculation may pass into the significant damage zone. |
Column | All columns are in the limited damage zone. | |
CDPL | Beam | Maximum of 35% of the beams in the direction of calculation may pass into the significant damage zone. |
Column | The ratio of the sum of the shear forces of the vertical elements in the advanced damage zone at each floor to the sum of the shear forces of all vertical elements at that floor should be less than 20%. At the top story, this ratio can be at maximum 40%. | |
The ratio of the shear forces carried by the vertical members whose upper and lower sections both exceed the significant damage limit at any story to the ratio of the shear forces carried by all vertical members at that story should not exceed 30%. | ||
There should be no column passing into the collapse zone. | ||
CPPL | Beam | In the calculation direction, a maximum of 20% of the beams may pass into the collapse zone. |
Column | The ratio of the shear forces carried by the vertical members whose upper and lower sections both exceed the significant damage limit at any story to the ratio of the shear forces carried by all vertical members at that story should not exceed 30%. | |
There should be no column passing into the collapse zone. |
Section Damage Limit | Plastic Rotation Upper Limits () |
---|---|
PCD | |
CD | |
LD |
Province | Used Spectrum Curve | Floor Performance Levels | Building Performance Level | ||||
---|---|---|---|---|---|---|---|
1. Floor | 2. Floor | 3. Floor | 4. Floor | 5. Floor | |||
Antalya | Site-specific | CDPL | CDPL | CDPL | CDPL | LDPL | CDPL |
TBEC-2018 | CDPL | CDPL | CDPL | CDPL | LDPL | CDPL | |
Isparta | Site-specific | CDPL | CDPL | CDPL | CDPL | LDPL | CDPL |
TBEC-2018 | CDPL | CDPL | CDPL | CDPL | LDPL | CDPL | |
Burdur | Site-specific | CDPL | CDPL | CDPL | CDPL | LDPL | CDPL |
TBEC-2018 | CPPL | CPPL | CDPL | CDPL | LDPL | CPPL | |
Denizli | Site-specific | CC | CC | CDPL | CDPL | LDPL | CC |
TBEC-2018 | CPPL | CPPL | CDPL | CDPL | LDPL | CPPL | |
İzmir | Site-specific | CC | CC | CPPL | CDPL | LDPL | CC |
TBEC-2018 | CC | CPPL | CDPL | CDPL | LDPL | CPPL | |
Muğla | Site-specific | CPPL | CPPL | CDPL | CDPL | LDPL | CPPL |
TBEC-2018 | CPPL | CPPL | CDPL | CDPL | LDPL | CPPL | |
Aydın | Site-specific | CC | CC | CPPL | CDPL | LDPL | CC |
TBEC-2018 | CC | CC | CPPL | CDPL | LDPL | CC |
Province | Used Spectrum Curve | Floor Performance Levels | Building Performance Level | ||||
---|---|---|---|---|---|---|---|
1. Floor | 2. Floor | 3. Floor | 4. Floor | 5. Floor | |||
Antalya | Site-specific | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL |
TBEC-2018 | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL | |
Isparta | Site-specific | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL |
TBEC-2018 | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL | |
Burdur | Site-specific | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL |
TBEC-2018 | CPPL | LDPL | LDPL | LDPL | LDPL | CPPL | |
Denizli | Site-specific | CC | LDPL | CDPL | CDPL | LDPL | CC |
TBEC-2018 | CC | LDPL | LDPL | CDPL | LDPL | CC | |
İzmir | Site-specific | CC | LDPL | CDPL | CDPL | LDPL | CC |
TBEC-2018 | CC | LDPL | LDPL | CDPL | LDPL | CC | |
Muğla | Site-specific | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL |
TBEC-2018 | CDPL | LDPL | LDPL | LDPL | LDPL | CDPL | |
Aydın | Site-specific | CC | LDPL | CDPL | CDPL | LDPL | CC |
TBEC-2018 | CC | LDPL | CDPL | CDPL | CDPL | CC |
Province | Used Spectrum Curve | Building Performance Level | Building Earthquake Safety |
---|---|---|---|
Antalya | Site-specific | CDPL | Safe |
TBEC-2018 | CDPL | Safe | |
Isparta | Site-specific | CDPL | Safe |
TBEC-2018 | CDPL | Safe | |
Burdur | Site-specific | CDPL | Safe |
TBEC-2018 | CPPL | Unsafe | |
Denizli | Site-specific | CC | Unsafe |
TBEC-2018 | CC | Unsafe | |
İzmir | Site-specific | CC | Unsafe |
TBEC-2018 | CC | Unsafe | |
Muğla | Site-specific | CPPL | Unsafe |
TBEC-2018 | CPPL | Unsafe | |
Aydın | Site-specific | CC | Unsafe |
TBEC-2018 | CC | Unsafe |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alpyürür, M.; Ulutaş, H. Comparison of Performance Analysis Results with Developed Site-Specific Response Spectra and Turkish Seismic Design Code: A Case Study from the SW Türkiye Region. Buildings 2024, 14, 1233. https://doi.org/10.3390/buildings14051233
Alpyürür M, Ulutaş H. Comparison of Performance Analysis Results with Developed Site-Specific Response Spectra and Turkish Seismic Design Code: A Case Study from the SW Türkiye Region. Buildings. 2024; 14(5):1233. https://doi.org/10.3390/buildings14051233
Chicago/Turabian StyleAlpyürür, Mehmet, and Hakan Ulutaş. 2024. "Comparison of Performance Analysis Results with Developed Site-Specific Response Spectra and Turkish Seismic Design Code: A Case Study from the SW Türkiye Region" Buildings 14, no. 5: 1233. https://doi.org/10.3390/buildings14051233
APA StyleAlpyürür, M., & Ulutaş, H. (2024). Comparison of Performance Analysis Results with Developed Site-Specific Response Spectra and Turkish Seismic Design Code: A Case Study from the SW Türkiye Region. Buildings, 14(5), 1233. https://doi.org/10.3390/buildings14051233