Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections
Abstract
:1. Introduction
2. Slabs Tested in the Lab
2.1. Test Setup
2.2. Major Results
3. The Numerical Study
3.1. General
3.2. Concrete
3.3. Reinforcement
3.4. Bond Slippage Models
3.5. Solution Control
3.6. The FE Slabs
3.7. The Verifying Step
3.8. The Parametric Step
3.8.1. Column–Aspect Ratio
3.8.2. Perimeter-to-Depth Ratio
3.8.3. Span-to-Depth Ratio
3.9. Punching Shear Values According to the FRP-RC Standards
3.10. Available Literature
4. Conclusions
- Increasing either the column–aspect ratio or the perimeter-to-depth ratio leads to a reduction in the punching shear stresses, curvature, and captured strains. However, the combined effect of these factors with the span-to-depth ratio can yield varied outcomes, influenced by factors such as the test setup and support locations. Moreover, increasing the span-to-depth ratio decreases the shear stresses, while notably increasing the curvature and strains, particularly at failure.
- The American code for FRP-RC materials [12] requires substantial revision. Based on the findings of this study, it is not recommended for use, as its current version significantly underestimates the punching shear capacity of slabs. The equation provided in the code relies on outdated research, highlighting the need for comprehensive updates.
- The Canadian code for FRP-RC materials [7] offers three equations for predicting the punching shear capacity of slabs. While it performs better than the American guidelines [12] in predicting slab strength, further revisions are necessary, particularly to incorporate the influence of the span-to-depth ratio.
- This study presents three equations (Equations (7)–(9)) to estimate the punching shear stresses in FRP-RC slabs. These equations offer more accurate predictions for the strength of interior and edge slab–column connections compared to the standards discussed.
- Based on the data and discussion outlined in the article, it seems that this behavior is primarily governed by the column–aspect ratio. This observation is supported by Equation (7), derived from this parameter, which consistently yielded the lowest strength values across multiple specimens, as demonstrated in Appendix A.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
bo & up | perimeter for the shear strength calculated at d/2 from the column’s face |
C | depth of the uncracked concrete (mm) |
d | slab’s depth |
Ef | modulus of elasticity of the GFRP bars |
Es | elastic modulus of the steel bars |
Ec | elastic modulus of the concrete |
fpcd & | concrete compressive strength (MPa) |
k | relation between the neutral axis to the depth of the reinforced GFRP bars |
nf | relation between Ef to Ec |
u | column cross-section (mm) |
V | shear force (N) |
νc | shear strength (MPa) |
αs | 4.0 for interior slab–column connection |
βc | the relationship between the long to the short side of the column cross-section |
βd | depth’s coefficient |
βr | the influence of the loaded area |
βp | effect of the reinforcement ratio |
γb | safety factor (1.3) |
λ | concrete type’s coefficient |
ϕc | material resistance factor |
ρf | reinforcement ratio |
Appendix A
Slab | L1 (mm) | Supported dim. | L2 (mm) | Supported dim. | Column dim. (mm) | Total Depth (mm) | Effective Depth (mm) | (MPa) | Flexural Reinforcement | M/V | Vexp (kN) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L1 (mm) | L2 (mm) | Type | pf | Ef (MPa) | |||||||||
Interior slab–column connections | |||||||||||||
[6] | |||||||||||||
H-1.0-XX | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 80 | G | 0.98 | 65 | 0.15 | 461 |
H-1.5-XX | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 84 | G | 1.46 | 65 | 0.15 | 541 |
H-2.0-XX | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 87 | G | 1.91 | 65 | 0.15 | 604 |
[5] | |||||||||||||
GN-0.65 | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 42 | G | 0.65 | 68 | 0.15 | 363 |
GN-0.98 | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 38 | G | 0.98 | 68 | 0.15 | 378 |
GN-1.30 | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 39 | G | 1.30 | 68 | 0.15 | 425 |
GH-0.65 | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 70 | G | 0.65 | 68 | 0.15 | 380 |
[4] | |||||||||||||
G-00-XX | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 38 | G | 0.65 | 68 | 0.00 | 421 |
G-30-XX | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 42 | G | 0.65 | 68 | 0.30 | 296 |
R-15-XX | 2800 | 2600 | 2800 | 2600 | 300 | 200 | 160 | 40 | G | 0.65 | 63.1 | 0.15 | 320 |
[14] | |||||||||||||
G(0.7)30/20 | 2500 | 2000 | 2500 | 2000 | 300 | 200 | 134 | 34.3 | G | 0.71 | 48.2 | 0 | 329 |
G(1.6)30/20 | 2500 | 2000 | 2500 | 2000 | 300 | 200 | 131 | 38.6 | G | 1.56 | 48.1 | 0 | 431 |
G(0.7)45/20 | 2500 | 2000 | 2500 | 2000 | 450 | 200 | 134 | 44.9 | G | 0.71 | 48.2 | 0 | 400 |
G(1.6)45/20 | 2500 | 2000 | 2500 | 2000 | 450 | 200 | 131 | 32.4 | G | 1.56 | 48.1 | 0 | 504 |
G(0.3)30/35 | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 284 | 34.3 | G | 0.34 | 48.2 | 0 | 825 |
G(0.7)30/35 | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 281 | 39.4 | G | 0.73 | 48.1 | 0 | 1071 |
G(0.3)45/35 | 2500 | 2000 | 2500 | 2000 | 450 | 350 | 284 | 48.6 | G | 0.34 | 48.2 | 0 | 911 |
G(0.7)45/35 | 2500 | 2000 | 2500 | 2000 | 450 | 350 | 281 | 29.6 | G | 0.73 | 48.1 | 0 | 1248 |
[3] | |||||||||||||
G(1.6)30/20-H | 2500 | 2000 | 2500 | 2000 | 300 | 200 | 131 | 75.8 | G | 1.56 | 57.4 | 0 | 547 |
G(1.2)30/20 | 2500 | 2000 | 2500 | 2000 | 300 | 200 | 131 | 37.5 | G | 1.21 | 64.9 | 0 | 438 |
G(1.6)30/35-H | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 275 | 38.2 | G | 1.61 | 57.4 | 0 | 1492 |
G(1.6)30/35-H | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 275 | 75.8 | G | 1.61 | 57.4 | 0 | 1600 |
[4] | |||||||||||||
G(0.7)30/20-B | 2500 | 2000 | 2500 | 2000 | 300 | 200 | 134 | 39 | G | 0.71 | 48.2 | 0 | 386 |
G(1.6)30/20-B | 2500 | 2000 | 2500 | 2000 | 300 | 200 | 131 | 32 | G | 1.56 | 48.1 | 0 | 451 |
G(1.6)45/20-B | 2500 | 2000 | 2500 | 2000 | 450 | 200 | 131 | 39 | G | 1.56 | 48.1 | 0 | 511 |
G(0.3)30/35-B | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 284 | 39 | G | 0.34 | 48.2 | 0 | 782 |
G(0.7)30/35-B-1 | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 281 | 30 | G | 0.73 | 48.1 | 0 | 1027 |
G(0.7)30/35-B-2 | 2500 | 2000 | 2500 | 2000 | 300 | 350 | 281 | 47 | G | 0.73 | 48.1 | 0 | 1195 |
G(0.3)45/35-B | 2500 | 2000 | 2500 | 2000 | 450 | 350 | 284 | 32 | G | 0.34 | 48.2 | 0 | 1020 |
[23] | |||||||||||||
GSL-PUNC-0.4 | 2200 | 2000 | 2200 | 2000 | 200 | 150 | 129 | 39 | G | 0.48 | 48 | 0 | 180 |
GSL-PUNC-0.6 | 2200 | 2000 | 2200 | 2000 | 200 | 150 | 129 | 39 | G | 0.68 | 48 | 0 | 212 |
GSL-PUNC-0.8 | 2200 | 2000 | 2200 | 2000 | 200 | 150 | 129 | 39 | G | 0.92 | 48 | 0 | 244 |
[22] | |||||||||||||
GFU1 | 2300 | 2000 | 2300 | 2000 | 225 | 150 | 110 | 36.3 | G | 1.18 | 48.2 | 0 | 222 |
GFB2 | 2300 | 2000 | 2300 | 2000 | 225 | 150 | 110 | 36.3 | G | 2.15 | 48.2 | 0 | 246 |
GFB3 | 2300 | 2000 | 2300 | 2000 | 225 | 150 | 110 | 36.3 | G | 3 | 48.2 | 0 | 248 |
[24] | |||||||||||||
SG1 | 2000 | 1700 | 2000 | 1700 | 200 | 175 | 142 | 32 | G | 0.18 | 45 | 0 | 170 |
SC1 | 2000 | 1700 | 2000 | 1700 | 200 | 175 | 142 | 32.8 | G | 0.15 | 110 | 0 | 229 |
SG2 | 2000 | 1700 | 2000 | 1700 | 200 | 175 | 142 | 46.4 | G | 0.38 | 45 | 0 | 271 |
SG3 | 2000 | 1700 | 2000 | 1700 | 200 | 175 | 142 | 30.4 | G | 0.38 | 45 | 0 | 237 |
SC2 | 2000 | 1700 | 2000 | 1700 | 200 | 175 | 142 | 29.6 | G | 0.35 | 110 | 0 | 317 |
[22] | |||||||||||||
GFR-1 | 2150 | 1670 | 2150 | 1670 | 250 | 155 | 120 | 29.5 | G | 0.73 | 34 | 0 | 199 |
GFR-2 | 2150 | 1670 | 2150 | 1670 | 250 | 155 | 120 | 28.9 | G | 1.46 | 34 | 0 | 249 |
NEF-1 | 2150 | 1670 | 2150 | 1670 | 250 | 155 | 120 | 37.5 | G grid | 0.87 | 28.4 | 0 | 203 |
[25] | |||||||||||||
C1 | 1000 | 900 | 1000 | 900 | 150 * | 120 | 96 | 36.7 | C grid | 0.27 | 91.8 | 0 | 181 |
C1′ | 1000 | 900 | 1000 | 900 | 230 * | 120 | 96 | 37.3 | C grid | 0.27 | 91.8 | 0 | 189 |
C2 | 1000 | 900 | 1000 | 900 | 150 * | 120 | 95 | 35.7 | C grid | 1.05 | 95 | 0 | 255 |
C2′ | 1000 | 900 | 1000 | 900 | 230 * | 120 | 95 | 36.3 | C grid | 1.05 | 95 | 0 | 273 |
C3 | 1000 | 900 | 1000 | 900 | 150 * | 150 | 126 | 33.8 | C grid | 0.52 | 92 | 0 | 347 |
C3′ | 1000 | 900 | 1000 | 900 | 230 * | 150 | 126 | 34.3 | C grid | 0.52 | 92 | 0 | 343 |
CS | 1000 | 900 | 1000 | 900 | 150 * | 120 | 95 | 32.6 | C | 0.19 | 147.6 | 0 | 142 |
CS’ | 1000 | 900 | 1000 | 900 | 230 * | 120 | 95 | 33.2 | C | 0.189 | 147.6 | 0 | 150 |
H1 | 1000 | 900 | 1000 | 900 | 150 * | 120 | 95 | 118 | H grid | 0.62 | 37.3 | 0 | 207 |
H2 | 1000 | 900 | 1000 | 900 | 150 * | 120 | 89 | 35.8 | H grid | 3.76 | 40.7 | 0 | 231 |
H2′ | 1000 | 900 | 1000 | 900 | 80 * | 120 | 89 | 35.9 | H grid | 3.76 | 40.7 | 0 | 171 |
H3 | 1000 | 900 | 1000 | 900 | 150 * | 150 | 122 | 32.1 | H grid | 1.22 | 44.8 | 0 | 237 |
H3′ | 1000 | 900 | 1000 | 900 | 80 * | 150 | 122 | 32.1 | H grid | 1.22 | 44.8 | 0 | 217 |
Edge slab–column connections | |||||||||||||
[26] | |||||||||||||
G | 2500 | 2000 | 1350 | 1150 | 300 | 200 | 160 | 41.4 | G | 1.55 | 53 | 0.31 | 314 |
[27] | |||||||||||||
GSC-1.35 | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 42 | G | 1.28 | 60.9 | 0.40 | 264 |
GSC-1.8 | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 42 | G | 1.7 | 60.9 | 0.40 | 278 |
[28] | |||||||||||||
H-0.9-XX | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 81 | G | 0.85 | 60.9 | 0.40 | 251 |
H-1.35-XX | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 85 | G | 1.28 | 60.9 | 0.40 | 272 |
H-1.8-XX | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 80 | G | 1.7 | 60.9 | 0.40 | 288 |
[22] | |||||||||||||
RD-XX-M | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 45.8 | G | 0.85 | 60.2 | 0.40 | 191 |
SC-XX-L | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 49.4 | G | 0.85 | 60.9 | 0.20 | 239 |
SC-XX-M | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 47.3 | G | 0.85 | 60.9 | 0.40 | 227 |
SC-XX-H | 2800 | 2600 | 1550 | 1450 | 300 | 200 | 160 | 48.4 | G | 0.85 | 60.9 | 0.60 | 159 |
Slab | Vexp,0.5d (MPa) | [7] | [12] | [21] | Proposed Equations | Failure Shear Strength (Vf) ** (MPa) | Vexp,0.5d/Vf | ||
---|---|---|---|---|---|---|---|---|---|
Vexp,0.5d/VCSA | Vexp,0.5d/VACI | Vexp,0.5d/VJSCE | EQ7 (MPa) | EQ8 (MPa) | EQ9 (MPa) | ||||
Interior slab–column connections | |||||||||
[6] | |||||||||
H-1.0-XX | 2.16 | 1.14 | 1.89 | 1.30 | 2.24 | 2.37 | 2.18 | 2.18 | 0.99 |
H-1.5-XX | 2.54 | 1.18 | 1.84 | 1.34 | 2.60 | 2.75 | 2.53 | 2.53 | 1.00 |
H-2.0-XX | 2.83 | 1.20 | 1.79 | 1.36 | 2.89 | 3.06 | 2.81 | 2.81 | 1.01 |
[5] | |||||||||
GN-0.65 | 1.70 | 1.15 | 2.10 | 1.16 | 1.60 | 1.69 | 1.56 | 1.56 | 1.09 |
GN-0.98 | 1.77 | 1.08 | 1.87 | 1.05 | 1.78 | 1.88 | 1.73 | 1.73 | 1.02 |
GN-1.30 | 1.99 | 1.09 | 1.84 | 1.08 | 1.97 | 2.08 | 1.92 | 1.92 | 1.04 |
GH-0.65 | 1.78 | 1.07 | 1.92 | 1.21 | 1.90 | 2.01 | 1.85 | 1.85 | 0.96 |
[4] | |||||||||
G-00-XX | 1.43 | 1.00 | 1.82 | 0.97 | 1.55 | 1.64 | 1.51 | 1.51 | 0.95 |
G-30-XX | 1.77 | 1.19 | 2.19 | 1.21 | 1.60 | 1.69 | 1.56 | 1.56 | 1.13 |
R-15-XX | 1.50 | 1.05 | 1.94 | 1.05 | 1.54 | 1.62 | 1.50 | 1.50 | 1.00 |
[14] | |||||||||
G(0.7)30/20 | 1.41 | 1.11 | 2.08 | 1.11 | 1.37 | 1.39 | 1.37 | 1.37 | 1.03 |
G(1.6)30/20 | 1.91 | 1.11 | 1.90 | 1.13 | 1.86 | 1.86 | 1.85 | 1.85 | 1.03 |
G(0.7)45/20 | 1.28 | 0.92 | 1.75 | 1.04 | 1.50 | 1.34 | 1.53 | 1.34 | 0.95 |
G(1.6)45/20 | 1.66 | 1.02 | 1.73 | 1.10 | 1.75 | 1.56 | 1.77 | 1.56 | 1.06 |
G(0.3)30/35 | 1.24 | 1.25 | 2.58 | 1.20 | 1.08 | 1.27 | 1.18 | 1.08 | 1.15 |
G(0.7)30/35 | 1.64 | 1.22 | 2.29 | 1.20 | 1.45 | 1.71 | 1.60 | 1.45 | 1.13 |
G(0.3)45/35 | 1.09 | 0.98 | 2.07 | 1.10 | 1.21 | 1.33 | 1.34 | 1.21 | 0.90 |
G(0.7)45/35 | 1.52 | 1.24 | 2.29 | 1.31 | 1.32 | 1.45 | 1.46 | 1.32 | 1.15 |
[3] | |||||||||
G(1.6)30/20-H | 2.42 | 1.15 | 1.85 | 1.35 | 2.47 | 2.48 | 2.45 | 2.45 | 0.99 |
G(1.2)30/20 | 1.94 | 1.12 | 1.91 | 1.13 | 1.87 | 1.88 | 1.86 | 1.86 | 1.04 |
G(1.6)30/35-H | 2.36 | 1.28 | 2.15 | 1.25 | 1.98 | 2.33 | 2.18 | 1.98 | 1.19 |
G(1.6)30/35-H | 2.53 | 1.18 | 1.91 | 1.34 | 2.49 | 2.93 | 2.74 | 2.49 | 1.02 |
[4] | |||||||||
G(0.7)30/20-B | 1.66 | 1.25 | 2.35 | 1.27 | 1.43 | 1.45 | 1.43 | 1.43 | 1.16 |
G(1.6)30/20-B | 2.00 | 1.24 | 2.10 | 1.25 | 1.74 | 1.75 | 1.74 | 1.74 | 1.15 |
G(1.6)45/20-B | 1.68 | 0.97 | 1.67 | 1.06 | 1.86 | 1.65 | 1.89 | 1.65 | 1.02 |
G(0.3)30/35-B | 1.18 | 1.13 | 2.36 | 1.11 | 1.12 | 1.32 | 1.24 | 1.12 | 1.05 |
G(0.7)30/35-B-1 | 1.57 | 1.28 | 2.37 | 1.26 | 1.33 | 1.56 | 1.46 | 1.33 | 1.18 |
G(0.7)30/35-B-2 | 1.83 | 1.28 | 2.44 | 1.34 | 1.54 | 1.81 | 1.69 | 1.54 | 1.19 |
G(0.3)45/35-B | 1.22 | 1.26 | 2.58 | 1.31 | 1.05 | 1.15 | 1.16 | 1.05 | 1.16 |
[23] | |||||||||
GSL-PUNC-0.4 | 1.06 | 0.91 | 1.81 | 0.87 | 1.26 | 1.39 | 1.23 | 1.23 | 0.86 |
GSL-PUNC-0.6 | 1.25 | 0.96 | 1.81 | 0.92 | 1.41 | 1.56 | 1.38 | 1.38 | 0.90 |
GSL-PUNC-0.8 | 1.44 | 0.99 | 1.81 | 0.95 | 1.56 | 1.72 | 1.53 | 1.53 | 0.94 |
[22] | |||||||||
GFU1 | 1.51 | 0.98 | 1.73 | 0.96 | 1.66 | 1.72 | 1.57 | 1.57 | 0.96 |
GFB2 | 1.67 | 0.89 | 1.47 | 0.87 | 2.03 | 2.10 | 1.92 | 1.92 | 0.87 |
GFB3 | 1.68 | 0.80 | 1.28 | 0.78 | 2.26 | 2.34 | 2.14 | 2.14 | 0.78 |
[24] | |||||||||
SG1 | 0.88 | 1.14 | 2.58 | 1.06 | 0.83 | 0.93 | 0.86 | 0.83 | 1.06 |
SC1 | 1.18 | 1.20 | 2.46 | 1.11 | 1.06 | 1.19 | 1.09 | 1.06 | 1.11 |
SG2 | 1.40 | 1.25 | 2.62 | 1.24 | 1.21 | 1.36 | 1.24 | 1.21 | 1.16 |
SG3 | 1.22 | 1.26 | 2.56 | 1.18 | 1.05 | 1.18 | 1.08 | 1.05 | 1.16 |
SC2 | 1.63 | 1.29 | 2.36 | 1.22 | 1.36 | 1.53 | 1.40 | 1.36 | 1.20 |
[22] | |||||||||
GFR-1 | 1.12 | 1.03 | 1.99 | 1.04 | 1.17 | 1.21 | 1.19 | 1.17 | 0.96 |
GFR-2 | 1.40 | 1.03 | 1.82 | 1.04 | 1.47 | 1.51 | 1.49 | 1.47 | 0.95 |
NEF-1 | 1.14 | 0.97 | 1.91 | 0.96 | 1.27 | 1.31 | 1.28 | 1.27 | 0.90 |
[25] | |||||||||
C1 | 2.05 | 1.76 | 3.44 | 1.61 | 1.26 | 1.50 | 1.35 | 1.26 | 1.63 |
C1′ | 1.64 | 1.39 | 2.73 | 1.38 | 1.27 | 1.38 | 1.38 | 1.27 | 1.29 |
C2 | 2.94 | 1.59 | 2.64 | 1.46 | 1.99 | 2.36 | 2.13 | 1.99 | 1.48 |
C2′ | 2.40 | 1.29 | 2.15 | 1.28 | 2.00 | 2.17 | 2.17 | 2.00 | 1.20 |
C3 | 2.65 | 1.87 | 3.36 | 1.65 | 1.53 | 1.89 | 1.68 | 1.53 | 1.73 |
C3′ | 2.06 | 1.45 | 2.59 | 1.37 | 1.54 | 1.77 | 1.71 | 1.54 | 1.34 |
CS | 1.64 | 1.40 | 2.67 | 1.30 | 1.26 | 1.50 | 1.35 | 1.26 | 1.30 |
CS’ | 1.32 | 1.12 | 2.14 | 1.11 | 1.27 | 1.38 | 1.38 | 1.27 | 1.04 |
H1 | 2.38 | 1.77 | 3.03 | 1.92 | 1.82 | 2.16 | 1.95 | 1.82 | 1.31 |
H2 | 2.92 | 1.37 | 2.18 | 1.27 | 2.30 | 2.69 | 2.44 | 2.30 | 1.27 |
H2′ | 3.00 | 1.41 | 2.24 | 1.17 | 2.30 | 2.94 | 2.42 | 2.30 | 1.31 |
H3 | 1.90 | 1.31 | 2.30 | 1.17 | 1.57 | 1.93 | 1.73 | 1.57 | 1.21 |
H3′ | 2.30 | 1.58 | 2.78 | 1.28 | 1.57 | 2.06 | 1.71 | 1.57 | 1.46 |
Mean | - | 1.20 | 2.18 | 1.19 | - | - | - | - | 1.11 |
SD | - | 0.22 | 0.43 | 0.20 | - | - | - | - | 0.18 |
COV (%) | - | 18.3 | 19.7 | 16.6 | - | - | - | - | 16.4 |
Edge slab–column connections | |||||||||
[26] | |||||||||
G | 2.43 | 1.26 | 2.16 | 1.23 | 1.96 | 2.32 | 2.02 | 1.96 | 1.24 |
[27] | |||||||||
GSC-1.35 | 2.36 | 1.32 | 2.26 | 1.27 | 1.93 | 2.29 | 1.88 | 1.88 | 1.25 |
GSC-1.8 | 2.48 | 1.26 | 2.10 | 1.21 | 2.13 | 2.52 | 2.07 | 2.07 | 1.20 |
[28] | |||||||||
H-0.9-XX | 2.24 | 1.27 | 2.16 | 1.38 | 2.10 | 2.49 | 2.04 | 2.04 | 1.10 |
H-1.35-XX | 2.43 | 1.21 | 1.92 | 1.31 | 2.45 | 2.90 | 2.38 | 2.38 | 1.02 |
H-1.8-XX | 2.57 | 1.16 | 1.82 | 1.26 | 2.64 | 3.12 | 2.57 | 2.57 | 1.00 |
[22] | |||||||||
RD-XX-M | 1.71 | 1.10 | 1.99 | 1.05 | 1.73 | 2.05 | 1.68 | 1.68 | 1.02 |
SC-XX-L | 1.50 | 1.00 | 1.79 | 0.93 | 1.78 | 2.11 | 1.73 | 1.73 | 0.87 |
SC-XX-M | 2.03 | 1.32 | 2.37 | 1.25 | 1.76 | 2.08 | 1.71 | 1.71 | 1.19 |
SC-XX-H | 1.84 | 1.23 | 2.19 | 1.13 | 1.77 | 2.09 | 1.72 | 1.72 | 1.07 |
Mean | - | 1.22 | 2.08 | 1.20 | - | - | - | - | 1.10 |
SD | - | 0.10 | 0.18 | 0.12 | - | - | - | - | 0.12 |
COV (%) | - | 8.27 | 8.71 | 10.4 | - | - | - | - | 10.7 |
References
- Aslam, F.; AbdelMongy, M.; Alzara, M.; Ibrahim, T.; Deifalla, A.F.; Yosri, A.M. Two-Way Shear Resistance of FRP Reinforced-Concrete Slabs: Data and a Comparative Study. Polymers 2022, 14, 3799. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Sun, S.; Cao, X.; Wang, H. Pullout Behaviors of Basalt Fiber-Reinforced Polymer Bars with Mechanical Anchorages for Concrete Structures Exposed to Seawater. Constr. Build. Mater. 2023, 373, 130866. [Google Scholar] [CrossRef]
- Hassan, M.; Ahmed, E.; Benmokrane, B. Punching Shear Strength of Glass Fiber-Reinforced Polymer Reinforced Concrete Flat Slabs. Can. J. Civ. Eng. 2013, 40, 951–960. [Google Scholar] [CrossRef]
- Hassan, M.; Ahmed, E.; Benmokrane, B. Punching-Shear Strength of Normal and High-Strength Two-Way Concrete Slabs Reinforced with GFRP Bars. ASCE J. Compos. Constr. 2013, 17, 04013003. [Google Scholar] [CrossRef]
- Gouda, A.; El-Salakawy, E.F. Punching Shear Strength of GFRP-RC Interior Slab–Column Connections Subjected to Moment Transfer. ASCE J. Compos. Constr. 2015, 20, 04015037. [Google Scholar] [CrossRef]
- Hussein, A.; El-Salakawy, E.F. Punching Shear Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Slab-Column Interior Connections. ACI Struct. J. 2018, 115, 1075–1088. [Google Scholar] [CrossRef]
- CAN/CSAS806-12; Design and Construction of Building Components with Fiber Reinforced Polymers. Canadian Standards Association (CSA): Toronto, ON, Canada, 2012.
- Cervenka, V.; Jendele, L.; Cervenka, J. ATENA Program Documentation Part 1: Theory; Cervenka Consulting Ltd.: Prague, Czech Republic, 2013. [Google Scholar]
- CEB-FIB. Model Code for Concrete Structures; Comite Euro-International Du Beton, Thomas Telford Ltd.: London, UK, 1990. [Google Scholar]
- Hordijk, D.A. Local Approach to Fatigue of Concrete. PhD Thesis, Delft University of Technology, Delft, The Netherlands, 1991. ISBN 90/9004519-8. [Google Scholar]
- Alves, J.; El-Ragaby, A.; El-Salakawy, E. Durability of GFRP Bars’ Bond to Concrete under Different Loading and Environmental Conditions. ASCE J. Compos. Constr. 2011, 15, 249–262. [Google Scholar] [CrossRef]
- American Concrete Institute (ACI) Committee 440. Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer Bars. ACI 440.1R-22; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2022; 83p. [Google Scholar]
- Hawkins, N.M.; Fallsen, H.B.; Hinojosa, R.C. Influence of Column Rectangularity on the Behaviour of Flat Plate Structures; in Cracking, Deflection and Ultimate Load of Concrete Slab System. ACI Spec. Publ. 1971, 30, 127–146. [Google Scholar]
- Dulude, C.; Hassan, M.; Ahmed, E.; Benmokrane, B. Punching Shear Behavior of Flat Slabs Reinforced with Glass Fiber-Reinforced Polymer Bars. ACI Struct. J. 2013, 110, 723–734. [Google Scholar]
- Sherif, A.G.; Emara, M.B.; Ibrahim, A.H.; Magd, S.A. Effect of the Column Dimensions on the Punching Shear Strength of Edge Column-Slab Connections. ACI Struct. J. 2005, 232, 175–192. [Google Scholar]
- Marzouk, H.; Hussein, A. Experimental Investigation on the Behaviour of High-Strength Concrete Slabs. ACI Struct. J. 1991, 88, 701–713. [Google Scholar]
- Lovrovich, J.S.; McLean, D.A. Punching Shear Behaviour of Slabs with Varying Span-Depth Ratios. ACI Struct. J. 1990, 87, 507–512. [Google Scholar]
- American Concrete Institute (ACI) Committee 318. Building Code Requirments for Structural Concrete. ACI 318-83 and Commentary; American Concrete Institute (ACI): Detroit, MI, USA, 1983; 111p. [Google Scholar]
- Ospina, C.E. Alternative Model for Concentric Punching Capacity Evaluation of Reinforced Concrete Two-Way Slabs. Concr. Int. 2005, 27, 53–57. [Google Scholar]
- American Concrete Institute (ACI) Committee 440. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. ACI 440.1R-06; American Concrete Institute (ACI): Farmington Hills, MI, USA, 2006; 44p. [Google Scholar]
- Japan Society of Civil Engineers (JSCE). Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials; Japan Society of Civil Engineers (JSCE): Tokyo, Japan, 1997. [Google Scholar]
- El-Gendy, M.G.; El-Salakawy, E.F. Assessment of Punching Shear Design Models for FRP-RC Slab–Column Connections. ASCE J. Compos. Constr. 2020, 24, 04020047. [Google Scholar] [CrossRef]
- Nguyen-Minh, L.; Rovňák, M. Punching Shear Resistance of Interior GFRP Reinforced Slab-Column Connections. ASCE J. Compos. Constr. 2013, 17, 2–13. [Google Scholar] [CrossRef]
- El-Ghandour, A.W.; Pilakoutas, K.; Waldron, P. Punching Shear Behavior of Fiber Reinforced Polymers Reinforced Concrete Flat Slabs: Experimental Study. ASCE J. Compos. Constr. 2003, 7, 258–265. [Google Scholar] [CrossRef]
- Matthys, S.; Taerwe, L. Concrete Slabs Reinforced with FRP Grids. II: Punching Resistance. ASCE J. Compos. Constr. 2000, 4, 154–161. [Google Scholar] [CrossRef]
- Salama, A.E.; Hassan, M.; Benmokrane, B. Effectiveness of Glass Fiber-Reinforced Polymer Stirrups as Shear Reinforcement in Glass Fiber-Reinforced Polymer- Reinforced Concrete Edge Slab-Column Connections. ACI Struct. J. 2019, 116, 97–112. [Google Scholar] [CrossRef]
- El-Gendy, M.G.; El-Salakawy, E.F. Effect of Shear Studs and High Moments on Punching Behavior of GFRP-RC Slab–Column Edge Connections. ASCE J. Compos. Constr. 2016, 20, 04016007. [Google Scholar] [CrossRef]
- Mostafa, A.M.; El-Salakawy, E.F. Behavior of GFRP-RC Slab–Column Edge Connections with High-Strength Concrete and Shear Reinforcement. ASCE J. Compos. Constr. 2018, 22, 04018001. [Google Scholar] [CrossRef]
Diameter, Øf (mm) | Cross-Sectional Area, Af (mm2) | Failure Strength, ffu (MPa) | Modulus of Elasticity, Ef (GPa) | Failure Strain, εfu (με) |
---|---|---|---|---|
20 | 284 | 765 | 48.1 ± 0.7 | 15,900 |
15 | 199 | 769 | 48.2 ± 0.4 | 15,950 |
Slab ID | (MPa) | Thickness | Reinforcement | Failure Load Vexp (kN) | Reinforcement Strain (με) | FE Model Failure Load VMod (kN) | Vexp/VMod | |
---|---|---|---|---|---|---|---|---|
m | Longitudinal | (%) | ||||||
G-0.20-0.70 | 34.3 | 0.20 | 12 No. 15 | 0.7 | 329 | 8975 | 325 | 1.01 |
G-0.20-1.60 | 38.6 | 0.20 | 18 No. 20 | 1.6 | 431 | 5010 | 427 | 1.01 |
G-0.35-0.30 | 34.3 | 0.35 | 12 No. 15 | 0.3 | 825 | 8190 | 852 | 0.97 |
G-0.35-0.70 | 39.4 | 0.35 | 18 No. 20 | 0.7 | 1071 | 4625 | 1056 | 1.01 |
Average | -- | -- | -- | 1.00 | ||||
Vexp/VModel | -- | -- | -- | 1.00 | ||||
S.D (%) | -- | -- | -- | 1.70 | ||||
COV (%) | -- | -- | -- | 1.70 |
Slab’s Designation | Shear Force VMod (kN) | Failure Shear Stress (vc) (MPa) | Failure Strain (με) Bars | Ultimate Mid Deflection (mm) |
---|---|---|---|---|
Series I: Column–Aspect Ratio | ||||
G-1-0.3-6 | 427 | 1.91 | 5910 | 19.6 |
G-2-0.3-6 | 523 | 1.73 | 5010 | 31.2 |
G-3-0.3-6 | 610 | 1.61 | 4540 | 29.4 |
G-4-0.3-6 | 668 | 1.46 | 4680 | 36.1 |
G-5-0.3-6 | 746 | 1.39 | 4700 | 35.8 |
Series II: Perimeter-to-Depth Ratio | ||||
G-1-0.3-6 | 427 | 1.91 | 5910 | 19.6 |
G-1-0.4-6 | 497 | 1.80 | 6320 | 33.3 |
G-1-0.5-6 | 531 | 1.62 | 4850 | 23.2 |
G-1-0.6-6 | 605 | 1.59 | 5630 | 31.1 |
G-1-0.7-6 | 663 | 1.54 | 6010 | 31.3 |
Series III: Span-to-Depth Ratio | ||||
G-1-0.3-4 | 447 | 2.00 | 2370 | 5.57 |
G-1-0.3-6 | 427 | 1.91 | 5910 | 19.6 |
G-1-0.3-8 | 392 | 1.75 | 4900 | 26.9 |
G-1-0.3-10 | 366 | 1.64 | 5930 | 58.8 |
G-1-0.3-12 | 350 | 1.56 | 8230 | 92.8 |
Slabs | The Canadia Code Predictions [7] | The American Code Predictions [12] | The Japanese Code Predictions [21] | |||
---|---|---|---|---|---|---|
(kN) | (kN) | (kN) | ||||
Series I: Column–Aspect Ratio | ||||||
G-1-0.3-6 | 387.8 | 1.10 | 226.5 | 1.88 | 380.1 | 1.12 |
G-2-0.3-6 | 521.8 | 1.00 | 305.6 | 1.71 | 483.4 | 1.08 |
G-3-0.3-6 | 546.6 | 1.11 | 384.6 | 1.58 | 585.4 | 1.04 |
G-4-0.3-6 | 595.2 | 1.12 | 463.6 | 1.44 | 687.6 | 0.97 |
G-5-0.3-6 | 650.2 | 1.15 | 542.6 | 1.37 | 789.7 | 0.94 |
Series II: Perimeter-to-Depth Ratio | ||||||
G-1-0.3-6 | 387.8 | 1.10 | 226.5 | 1.88 | 380.1 | 1.12 |
G-1-0.4-6 | 476.8 | 1.04 | 279.2 | 1.78 | 449.3 | 1.11 |
G-1-0.5-6 | 566.7 | 0.94 | 331.9 | 1.60 | 517.4 | 1.03 |
G-1-0.6-6 | 636.1 | 0.95 | 384.6 | 1.57 | 585.4 | 1.03 |
G-1-0.7-6 | 681.1 | 0.97 | 437.3 | 1.52 | 653.5 | 1.01 |
Series III: Span-to-Depth Ratio | ||||||
G-1-0.3-4 | 387.8 | 1.15 | 226.5 | 1.97 | 380.1 | 1.18 |
G-1-0.3-6 | 387.8 | 1.10 | 226.5 | 1.88 | 380.1 | 1.12 |
G-1-0.3-8 | 387.8 | 1.01 | 226.5 | 1.73 | 380.1 | 1.03 |
G-1-0.3-10 | 387.8 | 0.94 | 226.5 | 1.61 | 380.1 | 0.96 |
G-1-0.3-12 | 387.8 | 0.90 | 226.5 | 1.54 | 380.1 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkhattabi, L.; Ayash, N.M.; Hassan, M.; Gouda, A. Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections. Buildings 2024, 14, 1251. https://doi.org/10.3390/buildings14051251
Alkhattabi L, Ayash NM, Hassan M, Gouda A. Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections. Buildings. 2024; 14(5):1251. https://doi.org/10.3390/buildings14051251
Chicago/Turabian StyleAlkhattabi, Loai, Nehal M. Ayash, Mohamed Hassan, and Ahmed Gouda. 2024. "Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections" Buildings 14, no. 5: 1251. https://doi.org/10.3390/buildings14051251
APA StyleAlkhattabi, L., Ayash, N. M., Hassan, M., & Gouda, A. (2024). Investigation of Key Parameters Influencing Shear Behavior in Glass-Fiber-Reinforced Polymer (GFRP)-Reinforced Concrete (RC) Interior Slab–Column Connections. Buildings, 14(5), 1251. https://doi.org/10.3390/buildings14051251