Martian Regolith Simulant-Based Geopolymers with Lithium Hydroxide Alkaline Activator
Abstract
:1. Introduction
- (1)
- To examine the influence of the alkaline solution type and concentration on the compressive strength performance of Martian regolith-based geopolymers.
- (2)
- To gain insight into the strength–microstructure relations through FTIR, XRD and SEM analyses of the Martian regolith-based geopolymer samples.
2. Materials and Methods
2.1. Geopolymer Precursors
2.2. Alkaline Activators
2.3. Geopolymer Raw Material Preparation
2.4. Geopolymer Mixtures
2.5. Geopolymer Synthesis and Production
2.6. Curing
2.7. Particle Size Distribution Analysis of Precursors
2.8. Characterization of Geopolymers
2.9. Compressive Strength
3. Results
3.1. Grinding and Calcination Effects on Particle Size Distribution of Precursors
3.1.1. Grinding Effect of MGS-1
3.1.2. Calcination Effect of Kaolinite
3.2. Compressive Strength
3.3. FTIR Analysis
3.3.1. Precursors: MGS-1 and Metakaolin
3.3.2. Geopolymer Mixtures
3.4. Scanning Electron Microscope (SEM) Analysis
3.5. XRD Analysis
4. Discussion
4.1. Grinding and Calcination Effects on Particle Size Distribution of Precursors
4.2. Effects of Alkaline Solution Type and Concentration on Geopolymers’ Compressive Strength
4.3. FTIR Analysis
4.4. Strength–Microstructure Relations in Geopolymers
4.5. XRD Analysis
5. Conclusions
- -
- Geopolymers with the Martian regolith simulant MGS-1 as a precursor and NaOH and Na2SiO3 as alkaline activator solutions have only very low compressive strength. A combined use of LiOH·H2O, NaOH and Na2SiO3 as an alkaline activator solution led to a significant increase in the compressive strength of the geopolymers.
- -
- Geopolymer mixtures 2–7 prepared with a combined lithium hydroxide and sodium silicate solution achieved compressive strengths of up to 30 MPa at a curing age of 7 d.
- -
- The most optimal geopolymer mixture from this research was prepared with 8 M LiOH·H2O + 1.5 M NaOH and 11.6 wt% Na2SiO3 and showed a 7 d compressive strength of 30 ± 2 MPa.
- -
- The FTIR spectra confirm successful geopolymerization based on the peaks at 970–1220 cm−1, which are related to Si-O-Si stretching vibrations. This indicates the formation of silicate tetrahedral structures, which are crucial for the formation of the geopolymer network.
- -
- The results from the SEM analysis explain the high compressive strength of some geopolymers, which is caused by a dense geopolymer structure, resulting in higher internal friction and interlocking with limited pore space.
- -
- Other strength and durability properties of the developed geopolymers should be investigated to further evaluate their feasibility as suitable materials for building and infrastructure projects.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nazari-Sharabian, M.; Aghababaei, M.; Karakouzian, M.; Karami, M. Water on Mars—A literature review. Galaxies 2020, 8, 40. [Google Scholar] [CrossRef]
- Banfield, D.; Spiga, A.; Newman, C.; Forget, F.; Lemmon, M.; Lorenz, R.; Murdoch, N.; Viudez-Moreiras, D.; Pla-Garcia, J.; Garcia, R.F.; et al. The atmosphere of Mars as observed by InSight. Nat. Geosci. 2020, 13, 190–198. [Google Scholar] [CrossRef]
- Javaherikhah, A.; Valiente Lopez, M. Effective Factors for Implementing Building Information Modeling Using Fuzzy Method to Manage Buildings on Mars. Buildings 2023, 13, 2991. [Google Scholar] [CrossRef]
- Hecht, M.; Hoffman, J.; Rapp, D.; McClean, J.; SooHoo, J.; Schaefer, R.; Aboobaker, A.; Mellstrom, J.; Hartvigsen, J.; Meyen, F.; et al. Mars Oxygen ISRU Experiment (MOXIE). Space Sci. Rev. 2021, 217, 9. [Google Scholar] [CrossRef]
- Reidt, U.; Helwig, A.; Plobner, L.; Lugmayr, V.; Treutlein, U.; Kharin, S.; Smirnov, Y.; Novikova, N.; Lenic, J.; Fetter, V.; et al. Study of Initial Colonization by Environmental Microorganisms in the Russian Segment of the International Space Station (ISS). Gravitational Space Res. 2014, 2, 46–57. [Google Scholar] [CrossRef]
- Golitsyn, G.S. Estimates of Boundary Layer Parameters in Planetary Atmospheres of the Terrestrial Group; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1969.
- Certini, G.; Karunatillake, S.; Zhao, Y.-Y.S.; Meslin, P.-Y.; Cousin, A.; Hood, D.R.; Scalenghe, R. Disambiguating the soils of Mars. Planet. Space Sci. 2020, 186, 104922. [Google Scholar] [CrossRef]
- Davis, J.; Balme, M.; Grindrod, P.; Williams, R.; Gupta, S. Extensive Noachian fluvial systems in Arabia Terra: Implications for early Martian climate. Geology 2016, 44, 847–850. [Google Scholar] [CrossRef]
- Leovy, C. Weather and Climate on Mars. 2001. Available online: www.nature.com (accessed on 18 July 2023).
- Liu, J.; Li, H.; Sun, L.; Guo, Z.; Harvey, J.; Tang, Q.; Lu, H.; Jia, M. In-situ resources for infrastructure construction on Mars: A review. Int. J. Transp. Sci. Technol. 2022, 11, 1–16. [Google Scholar] [CrossRef]
- Kass, D.M.; Schofield, J.T.; Kleinböhl, A.; McCleese, D.J.; Heavens, N.G.; Shirley, J.H.; Steele, L.J. Mars Climate Sounder Observation of Mars’ 2018 Global Dust Storm. Geophys. Res. Lett. 2020, 47, e2019GL083931. [Google Scholar] [CrossRef]
- Dobrijevic, M.; Bertrix, I. Les Satellites de Jupiter et la Troisième loi de Kepler. 2022. Available online: https://www.researchgate.net/publication/359482126_Les_satellites_de_Jupiter_et_la_troisieme_loi_de_Kepler?channe (accessed on 20 March 2024).
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Davidovits, J. Synthetic Mineral Polymer Compound of the Silicoaluminates Family and Preparation Process. U.S. Patent 4472199A, 18 September 1984. [Google Scholar]
- Davidovits, J. Mineral Polymers and Methods of Making Them. U.S. Patent US4349386A, 14 September 1982. [Google Scholar]
- Davidovits, J. Properties of Geopolymer Cements. Available online: www.geopolymer.org (accessed on 20 July 2023).
- Lingyu, T.; Dongpo, H.; Jianing, Z.; Hongguang, W. Durability of geopolymers and geopolymer concretes: A review. Rev. Adv. Mater. Sci. 2021, 60, 1–14. [Google Scholar] [CrossRef]
- Alexiadis, A.; Alberini, F.; Meyer, M.E. Geopolymers from lunar and Martian soil simulants. Adv. Space Res. 2017, 59, 490–495. [Google Scholar] [CrossRef]
- Chakraborty, S. Geopolymerization of Simulated Martian Soil. Master’s Thesis, Tennessee Tech University, Cookeville, TN, USA, 2019. [Google Scholar] [CrossRef]
- Ma, S.; Fu, S.; Wang, Q.; Xu, L.; He, P.; Sun, C.; Duan, X.; Zhang, Z.; Jia, D.; Zhou, Y. 3D Printing of Damage-tolerant Martian Regolith Simulant-based Geopolymer Composites. Addit. Manuf. 2022, 58, 103025. [Google Scholar] [CrossRef]
- Golombek, M.; Warner, N.H.; Grant, J.A.; Hauber, E.; Ansan, V.; Weitz, C.M.; Williams, N.; Charalambous, C.; Wilson, S.A.; DeMott, A.; et al. Geology of the InSight landing site on Mars. Nat. Commun. 2020, 11, 1014. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.-P.; Jones, S.C.; Billings, K.J.; Pasalic, J.; Bugga, R.V.; Krause, F.C.; Smart, M.C.; Brandon, E.J. Radiation effects on lithium CFX batteries for future spacecraft and landers. J. Power Sources 2020, 471, 228464. [Google Scholar] [CrossRef]
- Saleh, E.E.; Algradee, M.A.; El-Fiki, S.; Youssef, G. Fabrication of novel lithium lead bismuth borate glasses for nuclear radiation shielding. Radiat. Phys. Chem. 2022, 193, 109939. [Google Scholar] [CrossRef]
- Askarian, M.; Tao, Z.; Samali, B.; Adam, G.; Shuaibu, R. Mix composition and characterisation of one-part geopolymers with different activators. Constr. Build. Mater. 2019, 225, 526–537. [Google Scholar] [CrossRef]
- Durand-Manterola, H.J. Lithium generated by cosmic rays Lithium generated by cosmic rays: An estimator of the time that Mars had a thicker atmosphere and liquid water. arXiv 2012, arXiv:1208.6311. [Google Scholar]
- Chen, C.; Li, Q.; Shen, L.; Zhai, J. Feasibility of manufacturing geopolymer bricks using circulating fluidized bed combustion bottom ash. Environ. Technol. 2012, 33, 1313–1321. [Google Scholar] [CrossRef]
- Tchakoute Kouamo, H.; Elimbi, A.; Mbey, J.; Sabouang, C.N.; Njopwouo, D. The effect of adding alumina-oxide to metakaolin and volcanic ash on geopolymer products: A comparative study. Constr. Build. Mater. 2012, 35, 960–969. [Google Scholar] [CrossRef]
- Sarraf-Mamoory, R.; Demopoulos, G.P.; Drew, R.A.L. Preparation of fine copper powders from organic media by reaction with hydrogen under pressure: Part II. The kinetics of particle nucleation, growth, and dispersion. Met. Mater. Trans. B 1996, 27, 585–594. [Google Scholar] [CrossRef]
- Cannon, K.M.; Britt, D.T.; Smith, T.M.; Fritsche, R.F.; Batcheldor, D. Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants. Icarus 2019, 317, 470–478. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Brown, I.W.M.; Meinhold, R.H.; Bowden, M.E. Outstanding Problems in the Kaolinite-Mullite Reaction Sequence Investigated by 29Si and 27Al Solid-state Nuclear Magnetic Resonance: I, Metakaolinite. J. Am. Ceram. Soc. 1985, 68, 293–297. [Google Scholar] [CrossRef]
- Karym, H.; Chbihi, M.E.M.; Benmokhtar, S.; Belaaouad, S.; Moutaabbid, M. Caracterisation of the Kaolinite Clay Minerals (Nador-North Morocco) Using Infrared Spectroscopy and Calorimetry of Dissolution. Int. J. Recent Sci. Res. 2015, 6, 4444–4448. [Google Scholar]
- Tan, J.; Cai, J.; Li, J. Recycling of unseparated construction and demolition waste (UCDW) through geopolymer technology. Constr. Build. Mater. 2022, 341, 127771. [Google Scholar] [CrossRef]
- Montes, C.; Broussard, K.; Gongre, M.; Simicevic, N.; Mejia, J.; Tham, J.; Allouche, E.; Davis, G. Evaluation of lunar regolith geopolymer binder as a radioactive shielding material for space exploration applications. Adv. Space Res. 2015, 56, 1212–1221. [Google Scholar] [CrossRef]
- Lumley, J.S. The ASR expansion of concrete prisms made from cements partially replaced by ground granulated blastfurnace slag. Constr. Build. Mater. 1993, 7, 95–99. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L. Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 2008, 91, 3864–3869. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Puligilla, S.; Mondal, P. Co-existence of aluminosilicate and calcium silicate gel characterized through selective dissolution and FTIR spectral subtraction. Cem. Concr. Res. 2015, 70, 39–49. [Google Scholar] [CrossRef]
- T. S. EN. 196-1; Methods of Testing Cement–Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2005; Volume 26.
- Tian, Q.; Nordman, D.J.; Meeker, W.Q. Methods to Compute Prediction Intervals: A Review and New Results. Stat. Sci. 2022, 37, 580–597. [Google Scholar] [CrossRef]
- Macário, I.P.E.; Veloso, T.; Frankenbach, S.; Serôdio, J.; Passos, H.; Sousa, C.; Gonçalves, F.J.M.; Ventura, S.P.M.; Pereira, J.L. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front. Microbiol. 2022, 13, 840098. [Google Scholar] [CrossRef] [PubMed]
- Dong, R.; Tian, J.; Huang, Z.; Yu, Q.; Xie, J.; Li, B.; Li, C.; Chen, Y. Intermolecular binding of blueberry anthocyanins with water-soluble polysaccharides: Enhancing their thermostability and antioxidant abilities. Food Chem. 2023, 410, 135375. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, S.; Girija, K. Development of High-Strength Geopolymer Concrete. 2014, pp. 8–13. Available online: www.stmjournals.com (accessed on 23 July 2023).
- Caballero, L.R.; Paiva, M.d.D.M.; Fairbairn, E.d.M.R.; Filho, R.D.T. Thermal, mechanical and microstructural analysis of metakaolin based geopolymers. Mater. Res. 2019, 22, e20180716. [Google Scholar] [CrossRef]
- Ayeni, O.; Onwualu, A.P.; Boakye, E. Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications. Constr. Build. Mater. 2021, 272, 121938. [Google Scholar] [CrossRef]
- Madavarapu, S.B.; Neithalath, N.; Rajan, S.; Marzke, R. FTIR Analysis of Alkali Activated Slag and Fly Ash Using Deconvolution Techniques. Master’s Thesis, Arizona State University, Tempe, AZ, USA, 2014. [Google Scholar]
- Aredes, F.; Campos, T.; Machado, J.; Sakane, K.; Thim, G.; Brunelli, D. Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 2015, 41, 7302–7311. [Google Scholar] [CrossRef]
- He, P.; Wang, M.; Fu, S.; Jia, D.; Yan, S.; Yuan, J.; Xu, J.; Wang, P.; Zhou, Y. Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer. Ceram. Int. 2016, 42, 14416–14422. [Google Scholar] [CrossRef]
- Albidah, A.; Alghannam, M.; Abbas, H.; Almusallam, T.; Al-Salloum, Y. Characteristics of metakaolin-based geopolymer concrete for different mix design parameters. J. Mater. Res. Technol. 2021, 10, 84–98. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymers: Inorganic polymeric new materials. J. Therm. Anal. Calorim. 1991, 37, 1633–1656. [Google Scholar] [CrossRef]
- Sohn, H.Y.; Moreland, C. The effect of particle size distribution on packing density. Can. J. Chem. Eng. 1968, 46, 162–167. [Google Scholar] [CrossRef]
- Shakrani, S.A.; Ayob, A.; Ab Rahim, M.A.; Alias, S. Effect of Calcination Processes on the Crystallite Size, Grain Size and Particle Size of Water-Washed Kaolin Particles. IOP Conf. Ser. Earth Environ. Sci. 2024, 1303, 012006. [Google Scholar] [CrossRef]
- McConville, C. Thermal Transformations in Kaolinite Clay Minerals. Ceram. Eng. Sci. Proc. 2008, 22, 149–160. [Google Scholar] [CrossRef]
- Pavlova, A.; Trinh, T.T.; van Santen, R.A.; Meijer, E.J. Clarifying the role of sodium in the silica oligomerization reaction. Phys. Chem. Chem. Phys. 2013, 15, 1123–1129. [Google Scholar] [CrossRef]
- Karacasulu, L.; Karl, D.; Gurlo, A.; Vakifahmetoglu, C. Cold sintering as a promising ISRU technique: A case study of Mars regolith simulant. Icarus 2023, 389, 115270. [Google Scholar] [CrossRef]
- Xiao, C.; Zheng, K.; Chen, S.; Li, N.; Shang, X.; Wang, F.; Liang, J.; Khan, S.B.; Shen, Y.; Lu, B.; et al. Additive manufacturing of high solid content lunar regolith simulant paste based on vat photopolymerization and the effect of water addition on paste retention properties. Addit. Manuf. 2023, 71, 103607. [Google Scholar] [CrossRef]
- Rakhimova, N.R.; Rakhimov, R.Z. Reaction products, structure and properties of alkali-activated metakaolin cements incorporated with supplementary materials—A review. J. Mater. Res. Technol. 2019, 8, 1522–1531. [Google Scholar] [CrossRef]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; Mallicoat, S.W.; Kriven, W.M.; van Deventer, J.S.J. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2005, 269, 47–58. [Google Scholar] [CrossRef]
- Wan-En, O.; Yun-Ming, L.; Li-Ngee, H.; Abdullah, M.M.A.B.; Shee-Ween, O. The Effect of Sodium Carbonate on the Fresh and Hardened Properties of Fly Ash-Based One-Part Geopolymer. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd.: Bristol, UK, 2020. [Google Scholar] [CrossRef]
- Zhang, X.; Bai, C.; Qiao, Y.; Wang, X.; Jia, D.; Li, H.; Colombo, P. Porous geopolymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2021, 150, 106629. [Google Scholar] [CrossRef]
- Gurvich, L.V.; Bergman, G.A.; Gorokhov, L.N.; Iorish, V.S.; Leonidov, V.Y.; Yungman, V.S. Thermodynamic properties of alkali metal hydroxides. Part 1. Lithium and sodium hydroxides. J. Phys. Chem. Ref. Data 1996, 25, 1211–1276. [Google Scholar] [CrossRef]
- Hajimohammadi, A.; Provis, J.L.; van Deventer, J.S.J. Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 2010, 22, 5199–5208. [Google Scholar] [CrossRef]
- Song, M.; Jiaping, L.; Qian, J.; Jianzhong, L.; Liang, S. Experimental Study on Utilization of Quartz Mill Tailings as a Filler to Prepare Geopolymer. Miner. Process. Extr. Met. Rev. 2016, 37, 311–322. [Google Scholar] [CrossRef]
- Sauffi, A.S.; Ibrahim, W.M.W.; Abdulla, M.M.A.B.; Ahmad, R.; Zaidi, F.A.; Sandu, A.V. A Review of Carbonate Minerals as an Additive to Geopolymer Materials. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2019. [Google Scholar] [CrossRef]
- Yip, C.K.; Lukey, G.C.; Provis, J.L.; van Deventer, J.S. Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 2008, 38, 554–564. [Google Scholar] [CrossRef]
- Klyuev, A.; Kashapov, N.; Klyuev, S.; Ageeva, M.; Fomina, E.; Sabitov, L.; Nedoseko, I.; Vatin, N.I.; Kozlov, P.; Vavrenyuk, S. Alkali-activated binders based on technogenic fibrous waste. Case Stud. Constr. Mater. 2023, 18, e02202. [Google Scholar] [CrossRef]
Precursor | SiO2 | TiO2 | Al2O3 | Cr2O3 | FeOT | MnO |
MGS-1 | 50.8 | 0.3 | 8.9 | 0.1 | 13.3 | 0.1 |
MK | 53.4 | 0.8 | 44.5 | 0.1 | 0.4 | 0.1 |
Precursor | MgO | CaO | Na2O | K2O | P2O5 | SiO3 |
MGS-1 | 16.7 | 3.7 | 3.4 | 0.2 | 0.4 | 2.1 |
MK | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
No. | Alkali Hydroxide Activators | Molar Ratios in Alkaline Solution | |
---|---|---|---|
SiO2/Na2O | SiO2/Li2O | ||
1 | 8 M NaOH | 0.242 | - |
2 | 6 M LiOH·H2O + 1 M NaOH | 0.718 | 0.425 |
3 | 8 M LiOH·H2O + 1 M NaOH | 0.319 | |
4 | 6 M LiOH·H2O + 0.5 M NaOH | 0.836 | 0.425 |
5 | 8 M LiOH·H2O + 0.5 M NaOH | 0.319 | |
6 | 6 M LiOH·H2O + 1.5 M NaOH | 0.630 | 0.425 |
7 | 8 M LiOH·H2O + 1.5 M NaOH | 0.319 |
Geopolymer Mixture | MGS-1 (Milled) | Metakaolin | NaOH Pellets | LiOH·H2O Flakes | Na2SiO3 Solution | Water a |
---|---|---|---|---|---|---|
1 | 72.2 | 36.7 | 9.6 | - | 34.2 | 11.6 |
2 | 72.2 | 36.7 | 5 | 7.6 | 33.5 | 11.3 |
3 | 72.2 | 36.7 | 5 | 10.1 | 31.3 | 10.6 |
4 | 72.2 | 36.7 | 2.5 | 7.6 | 33.5 | 11.3 |
5 | 72.2 | 36.7 | 2.5 | 10.1 | 31.3 | 10.6 |
6 | 72.2 | 36.7 | 7.5 | 7.6 | 33.5 | 11.3 |
7 | 72.2 | 36.7 | 7.5 | 10.1 | 31.3 | 10.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitse, J.; Li, J.; Boehme, L.; Briers, R.; Vandeginste, V. Martian Regolith Simulant-Based Geopolymers with Lithium Hydroxide Alkaline Activator. Buildings 2024, 14, 1365. https://doi.org/10.3390/buildings14051365
Vitse J, Li J, Boehme L, Briers R, Vandeginste V. Martian Regolith Simulant-Based Geopolymers with Lithium Hydroxide Alkaline Activator. Buildings. 2024; 14(5):1365. https://doi.org/10.3390/buildings14051365
Chicago/Turabian StyleVitse, Jasper, Jiabin Li, Luc Boehme, Rudy Briers, and Veerle Vandeginste. 2024. "Martian Regolith Simulant-Based Geopolymers with Lithium Hydroxide Alkaline Activator" Buildings 14, no. 5: 1365. https://doi.org/10.3390/buildings14051365
APA StyleVitse, J., Li, J., Boehme, L., Briers, R., & Vandeginste, V. (2024). Martian Regolith Simulant-Based Geopolymers with Lithium Hydroxide Alkaline Activator. Buildings, 14(5), 1365. https://doi.org/10.3390/buildings14051365