Quantitative Analysis of Comprehensive Similarity in Restoration of Ancient Building Walls Using Hue–Saturation–Value Color Space and Circular Local Binary Pattern
Abstract
:1. Introduction
2. Methods
2.1. HSV Color Space
2.2. Local Binary Pattern
2.3. Circular Local Binary Pattern
2.4. Cosine Similarity
3. Ancient Building Wall Restoration Method Based on Integrated Similarity of Images’ Color and Texture
3.1. Research Steps
3.1.1. Image Acquisition
3.1.2. Image Conversion
3.1.3. Color and Texture Feature Extraction
3.1.4. Comprehensive Similarity Calculation
4. Result and Discussion
4.1. Image Color Feature Extraction
4.2. Image Texture Feature Extraction
4.3. Comprehensive Similarity Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ren, T. A Study on the Symbolic Significance of Decorative Art of Huizhou Traditional Residential Buildings. OALib 2021, 8, 1–7. [Google Scholar] [CrossRef]
- Sun, S.; Wang, B. Low-Altitude UAV 3D Modeling Technology in the Application of Ancient Buildings Protection Situation Assessment. Energy Procedia 2018, 153, 320–324. [Google Scholar] [CrossRef]
- Ma, S.; Wang, L.; Bao, P. Study on Properties of Blue-Brick Masonry Materials for Historical Buildings. J. Renew. Mater. 2022, 10, 1961–1978. [Google Scholar] [CrossRef]
- Ma, S.; Wu, Y.; Bao, P. Study on Damage Mechanism and Residual Life of Clay Brick in Central Plains of China Under Freeze–Thaw Environment. Arab. J. Sci. Eng. 2022, 47, 13317–13331. [Google Scholar] [CrossRef]
- Fais, S.; Casula, G.; Cuccuru, F.; Ligas, P.; Bianchi, M.G. An Innovative Methodology for the Non-Destructive Diagnosis of Architectural Elements of Ancient Historical Buildings. Sci. Rep. 2018, 8, 4334. [Google Scholar] [CrossRef]
- Guzmán, P.C.; Roders, A.R.P.; Colenbrander, B.J.F. Measuring Links between Cultural Heritage Management and Sustainable Urban Development: An Overview of Global Monitoring Tools. Cities 2017, 60, 192–201. [Google Scholar] [CrossRef]
- Ma, X.; Li, W.; Han, J.; Huang, X.; Luo, H. Restoring Ancient Civilizations with “Herit-Materials”: Technological Advances in Its Studies. Sci. China Technol. Sci. 2023, 66, 1952–1974. [Google Scholar] [CrossRef]
- Chen, S.; Yang, H.; Wang, S.; Hu, Q. Surveying and Digital Restoration of Towering Architectural Heritage in Harsh Environments: A Case Study of the Millennium Ancient Watchtower in Tibet. Sustainability 2018, 10, 3138. [Google Scholar] [CrossRef]
- Kharfi, F.; Boudraa, L.; Benabdelghani, I.; Bououden, M. TL Dating and XRF Clay Provenance Analysis of Ancient Brick at Cuicul Roman City, Algeria. J. Radioanal. Nucl. Chem. 2019, 320, 395–403. [Google Scholar] [CrossRef]
- Meng, C.L.; Zhang, H.; Zhang, B.J.; Fang, S.Q. Chemical and Microscopic Study of Masonry Mortar in Ancient Pagodas in East China. Int. J. Archit. Herit. 2015, 9, 942–948. [Google Scholar] [CrossRef]
- Fabio, S.; Massimo, B.; Stefano, C.; Carla, L.; Catarina, M.; José, M. Ancient Restoration and Production Technologies of Roman Mortars from Monuments Placed in Hydrogeological Risk Areas: A Case Study. Archaeol. Anthropol. Sci. 2020, 12, 147. [Google Scholar] [CrossRef]
- Peifan, Q.; Deqi, Y.; Qi, M.; Aijun, S.; Jingqi, S.; Zengjun, Z.; Jianwei, H. Study and Restoration of the Yi Ma Wu Hui Layer of the Ancient Coating on the Putuo Zongcheng Temple. Int. J. Archit. Herit. 2021, 15, 1707–1721. [Google Scholar] [CrossRef]
- Luo, L.; Zhou, P.; Zhu, H.; Zhang, B.; Hu, Y. A Thorough Detection of the Mortar Materials for Buddhist Buildings in Bagan, Myanmar. Eur. Phys. J. Plus 2023, 138, 151. [Google Scholar] [CrossRef]
- Zang, W.; Chun, Q. Comparative Study on the Similarity between Ancient White Bricks and the Self-Developed Imitative White Bricks. J. Build. Eng. 2023, 76, 107307. [Google Scholar] [CrossRef]
- Kersten, T.P.; Tschirschwitz, F.; Deggim, S. Development of a virtual museum including a 4D presentation of building history in virtual reality. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2017, Nafplio, Greece, 1–3 March 2017; Volume XLII-2/W3, pp. 361–367. [Google Scholar] [CrossRef]
- Mortara, M.; Catalano, C.E. 3D virtual environments as effective learning contexts for cultural heritage. Ital. J. Educ. Technol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Antonio, J. Application of 3D Laser Scanning Technology for Image Data Processing in the Protection of Ancient Building Sites through Deep Learning. Image Vis. Comput. 2020, 102, 103969. [Google Scholar] [CrossRef]
- Lourenço, P.B. Recommendations for Restoration of Ancient Buildings and the Survival of a Masonry Chimney. Constr. Build. Mater. 2006, 20, 239–251. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, L. Virtual Reality-Based Digital Restoration Methods and Applications for Ancient Buildings. J. Math. 2022, 2022, 2305463. [Google Scholar] [CrossRef]
- Zou, Z.; Zhao, P.; Zhao, X. Virtual Restoration of the Colored Paintings on Weathered Beams in the Forbidden City Using Multiple Deep Learning Algorithms. Adv. Eng. Inform. 2021, 50, 101421. [Google Scholar] [CrossRef]
- Bergamonti, L.; Potenza, M.; Scigliuzzo, F.; Meli, S.; Casoli, A.; Lottici, P.P.; Graiff, C. Hydrophobic and Photocatalytic Treatment for the Conservation of Painted Lecce Stone in Outdoor Conditions: A New Cleaning Approach. Appl. Sci. 2024, 14, 1261. [Google Scholar] [CrossRef]
- Chernov, V.; Alander, J.; Bochko, V. Integer-Based Accurate Conversion between RGB and HSV Color Spaces. Comput. Electr. Eng. 2015, 46, 328–337. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, H.-M.; Li, B. A Naturalness Preserved Fast Dehazing Algorithm Using HSV Color Space. IEEE Access 2018, 6, 10644–10649. [Google Scholar] [CrossRef]
- Miao, M.; Wang, S. PA-ColorNet: Progressive Attention Network Based on RGB and HSV Color Spaces to Improve the Visual Quality of Underwater Images. Signal Image Video Process. 2023, 17, 3405–3413. [Google Scholar] [CrossRef]
- Humeau-Heurtier, A. Texture Feature Extraction Methods: A Survey. IEEE Access 2019, 7, 8975–9000. [Google Scholar] [CrossRef]
- Conners, R.W.; Harlow, C.A. A Theoretical Comparison of Texture Algorithms. IEEE Trans. Pattern Anal. Mach. Intell 1980, PAMI-2, 204–222. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern 1973, SMC-3, 610–621. [Google Scholar] [CrossRef]
- Petrou, M.; García Sevilla, P. Image Processing: Dealing with Texture; John Wiley & Sons, Ltd.: Chichester, UK, 2006; ISBN 978-0-470-03534-4. [Google Scholar]
- Sharma, M.; Ghosh, H. Histogram of Gradient Magnitudes: A Rotation Invariant Texture-Descriptor. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; IEEE: Quebec City, QC, Canada, 2015; pp. 4614–4618. [Google Scholar]
- Soh, L.-K.; Tsatsoulis, C. Texture Analysis of SAR Sea Ice Imagery Using Gray Level Co-Occurrence Matrices. IEEE Trans. Geosci. Remote Sens. 1999, 37, 780–795. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikäinen, M.; Harwood, D. A Comparative Study of Texture Measures with Classification Based on Featured Distributions. Pattern Recognit. 1996, 29, 51–59. [Google Scholar] [CrossRef]
- Kobayashi, T. Discriminative Local Binary Pattern. Mach. Vis. Appl. 2016, 27, 1175–1186. [Google Scholar] [CrossRef]
- Smith, A.R. Color Gamut Transform Pairs. ACM SIGGRAPH Comput. Graph. 1978, 12, 12–19. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Niu, C.; Wang, Y. Template-Activated Strategy toward One-Step Coating Silica Colloidal Microspheres with Sliver. ACS Appl. Mater. Interfaces 2014, 6, 1272–1278. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Q.; Feng, X.; Xiao, X.; Wang, Y.; Xu, Z. Objective Tongue Diagnosis Based on HSV Color Space: Controlled Study of Tongue Appearance in Patients Treated with Percutaneous Coronary Intervention for Coronary Heart Disease. Intell. Med. 2022, 3, 252–257. [Google Scholar] [CrossRef]
- Ojala, T.; Pietikainen, M.; Harwood, D. Performance Evaluation of Texture Measures with Classification Based on Kullback Discrimination of Distributions. In Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem, Israel, 9–13 October 1994; IEEE Computer Society Press: Jerusalem, Israel, 1994; Volume 1, pp. 582–585. [Google Scholar]
- Pietikäinen, M.; Hadid, A.; Zhao, G.; Ahonen, T. Computer Vision Using Local Binary Patterns; Computational Imaging and Vision; Springer: London, UK, 2011; ISBN 978-0-85729-747-1. [Google Scholar]
- Li, Y.; Xu, X.; Li, B.; Ye, F.; Dong, Q. Circular Regional Mean Completed Local Binary Pattern for Texture Classification. J. Electron. Imaging 2018, 27, 1. [Google Scholar] [CrossRef]
- Xia, P.; Zhang, L.; Li, F. Learning Similarity with Cosine Similarity Ensemble. Inf. Sci. 2015, 307, 39–52. [Google Scholar] [CrossRef]
- Akbaş, C.E.; Günay, O.; Taşdemir, K.; Çetin, A.E. Energy Efficient Cosine Similarity Measures According to a Convex Cost Function. Signal Image Video Process. 2017, 11, 349–356. [Google Scholar] [CrossRef]
Criteria (Color Compared to the Texture) | ||
---|---|---|
Very important | 0.9 | 0.1 |
Relatively important | 0.8 | 0.2 |
Important | 0.7 | 0.3 |
Little importance | 0.6 | 0.4 |
As important as each other | 0.5 | 0.5 |
Total Similarity | Result |
---|---|
0.9–1 | Good restoration effect |
0.8–0.9 | Average repair effect |
Less than 0.8 | Poor restoration effect |
Number | Color Similarity | Texture Similarity | Comprehensive Similarity |
---|---|---|---|
1 | 0.4415492 | 0.9663997 | 0.5990044 |
2 | 0.5559807 | 0.9951636 | 0.6877356 |
3 | 0.5009628 | 0.9961462 | 0.6495178 |
4 | 0.9031662 | 0.9974285 | 0.9314449 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, C.; Zeng, S.; Liu, D. Quantitative Analysis of Comprehensive Similarity in Restoration of Ancient Building Walls Using Hue–Saturation–Value Color Space and Circular Local Binary Pattern. Buildings 2024, 14, 1478. https://doi.org/10.3390/buildings14051478
Gong C, Zeng S, Liu D. Quantitative Analysis of Comprehensive Similarity in Restoration of Ancient Building Walls Using Hue–Saturation–Value Color Space and Circular Local Binary Pattern. Buildings. 2024; 14(5):1478. https://doi.org/10.3390/buildings14051478
Chicago/Turabian StyleGong, Chun, Shuisheng Zeng, and Dunwen Liu. 2024. "Quantitative Analysis of Comprehensive Similarity in Restoration of Ancient Building Walls Using Hue–Saturation–Value Color Space and Circular Local Binary Pattern" Buildings 14, no. 5: 1478. https://doi.org/10.3390/buildings14051478
APA StyleGong, C., Zeng, S., & Liu, D. (2024). Quantitative Analysis of Comprehensive Similarity in Restoration of Ancient Building Walls Using Hue–Saturation–Value Color Space and Circular Local Binary Pattern. Buildings, 14(5), 1478. https://doi.org/10.3390/buildings14051478