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Abstract: To study the eccentric compression mechanical properties of ECC and UHPC filled-in dou-
ble steel tubular (EUFDST) composite columns, 35 full-scale EUCFDST composite column specimens
were designed by ABAQUS software with the slenderness ratio (λ), UHPC cylinder compressive
strength (f cu), inner and outer steel tubular strength (f y1, f y2), inner and outer steel tubular thickness
(t1, t2), inner and outer steel tubular diameter ratio (Ω), eccentricity (e), and fiber content (γ) as the
main parameters. By comparison with the simulation of the existing test, the correctness of the finite
element modeling is verified. The parameter analysis of 35 full-scale EUFDST composite columns
was carried out to obtain the eccentric load-mid-span deflection curve of the specimens. The failure
mechanism, ductility coefficient, and stiffness degradation of the composite columns under different
parameters were analyzed, and the section of the composite column was verified to satisfy the plane
section assumption. The variation trend of maximum load-bearing capacity and the ductility of
composite columns under different parameter conditions was obtained. By introducing the eccentric-
ity correction coefficient and slenderness ratio correction coefficient, the calculation equation of the
eccentric maximum load-bearing capacity of EUCFDST composite columns is statistically regressed,
which provides a basis for the practical use of these columns.

Keywords: ECC and UHPC filled-in double steel tubes; finite element model; eccentrical load;
bearing capacity

1. Introduction

With the ongoing advancement in modern building structures, concrete-filled steel
tubular composite structures are now being extensively utilized to cater to the require-
ments of contemporary construction. This composite structure amalgamates the benefits
of steel and concrete structures while addressing their respective shortcomings. Concur-
rently, with the continuous advancement in concrete materials, numerous novel materials
have been implemented [1]. Recent concrete materials such as ultra-high-performance
concrete [2] and high-ductility cement-based composite (ECC) have been progressively
developed and utilized in contemporary building structures by scholars both domestically
and internationally [3–9].
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This paper introduces the concept of an ECC and UHPC filled-in double steel tubular
(EUFDST) composite column based on the conventional concrete-filled double steel tubular
composite structure. The EUFDST column consists of UHPC, ECC, and double steel tubes.
The UHPC core enhances the bearing capacity of the column, while the inner steel tube,
interlayer ECC, and outer steel tube collectively provide robust support to the UHPC,
reducing the risk of rapid strength loss post maximum load-bearing capacity due to its
brittleness. Moreover, the interlayer ECC benefits from constraints imposed by the inner
and outer steel tubes, resulting in enhanced ultimate stress. The interlayer ECC contributes
to the structural bearing capacity and significantly improves the structure’s bending and
seismic resistance owing to its high ductility.

Scholars have extensively researched the mechanical properties of constrained concrete
members. Ahmed et al. [10] studied concrete-filled double steel tubular short columns (CFD-
STs); established a new confining pressure model; verified the influence of the diameter–
thickness ratio of inner and outer steel tubes, steel strength, and concrete strength on
CFDST columns; and deduced the bearing capacity equation of CFDST columns under
axial compression load. The same year, Ahmed [11] studied the eccentric compression
performance of square thin-walled CFDST columns. The actual ultimate strength and
stress–strain curves were obtained by taking the section size, the diameter–thickness ratio
of the inner and outer steel tubes, and the eccentricity as the investigation parameters. The
constraint effect of the inner steel tube on the core concrete and the influence of the outer
steel tube on the post-local buckling are clarified. Ci et al. [12] studied the axial compression
performance of circular double concrete-filled steel tubular short columns. Taking the diam-
eter and thickness of the inner and outer steel tubes, concrete strength, and diameter ratio
as the investigation parameters, compared with traditional concrete-filled steel tubular
columns, the new column has better structural performance. Hu et al. [13] conducted
experimental and numerical studies on the compression performance of 16 UHPC-filled
rectangular high-strength steel tubular (UFHST) short columns under eccentric load. The
results indicated that using high-strength steel tubes and steel fiber-free UHPC significantly
improved the bearing capacity of concrete-filled steel tubular columns. However, fiber-free
UHPC was found to reduce ductility and increase brittleness. On the other hand, including
steel fiber in UHPC during casting enhanced the ductility of the composite column and
provided additional bearing capacity. Cai et al. [14] conducted a finite element study on
the eccentric compression mechanical properties of reinforced ECC concrete composite
columns, investigating the impact of various parameters on these properties and failure
mechanisms. The findings highlighted that eccentricity significantly affected the maximum
load-bearing capacity of the composite column, with higher eccentricity leading to a lower
maximum load-bearing capacity. Based on the finite element results, an equation for the
bearing capacity of this type of composite column was proposed. Chai et al. [15] conducted
an experimental study on the tensile mechanical properties of hybrid fiber cement-based
composites. The results indicate that the tensile properties of composites doped with both
steel fiber and PVA fiber are significantly enhanced compared to those doped with PVA
fiber alone. Including steel fiber materials notably improves the composites’ peak tensile
and cracking stress.

There is a lack of research on the mechanical properties of full-scale EUFDST compos-
ite columns. To address this lack, finite element models of the EUFDST composite columns
are developed by ABAQUS, considering ECC and UHPC constitutive models, along with a
simplified bilinear constitutive model of steel. The eccentric compression behavior of the
composite columns has been systematically analyzed. The load–displacement curves and
failure modes of the specimens subjected to eccentric compression have been determined.
Ultimately, a statistical regression method has been utilized to derive an eccentric com-
pression capacity formula for the ECC and UHPC filled-in double steel tubular composite
columns.
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2. Analysis Process of the Paper

The analysis process of this paper mainly includes the design of the specimen, the
establishment of the FEM, the rationality verification of the FEM, the analysis of the
extended parameters, the analysis of the stress mechanism, and the establishment of the
calculation equation of the maximum load-bearing capacity of the eccentric compression.
The detailed flow chart of the paper is depicted in Figure 1.
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Figure 1. The flow chart of the paper.

3. Specimen Design

To study the mechanical properties of EUFDST composite columns under eccen-
tric compression, this paper refers to the research on concrete-filled double steel tubular
columns by Ci et al. [16]. The research shows that the thickness of the steel tubes, the
strength of the concrete, and the strength of the steel affect the performance of concrete-
filled double steel tubular columns. At the same time, the ultimate strength of concrete-
filled double steel tubular short columns is also affected by load eccentricity. When the
slenderness ratio is limited to 4, the influence of overall buckling can be prevented.

In this paper, a total of 35 EUFDST composite columns were designed, taking the
strength of the inner and outer steel tubes (f y1, f y2), thickness of the inner and outer steel
tubes (t1, t2), compressive strength of the UHPC cylinders (f cu), content of PVA (γ), diameter
ratio of the inner and outer steel tubes (Ω), slenderness ratio (λ), and eccentricity (e) as the
main parameters. The specific parameters of the specimens are depicted in Table 1, and the
cross-section diagram of the specimens is depicted in Figure 2, among λ = L/D1.

Table 1. The specific sizes and main variables of the EUFDST composite columns.

Specimens f cu
/MPa

f y1
/MPa

f y2
/MPa

D1
/mm

D2
/mm

γ
/%

t1
/mm

t2
/mm

e
/mm λ

EUFDST-1 120 235 335 600 400 1.2 10 5 100 4
EUFDST-2 120 335 335 600 400 1.2 10 5 100 4
EUFDST-3 120 435 335 600 400 1.2 10 5 100 4
EUFDST-4 120 535 335 600 400 1.2 10 5 100 4
EUFDST-5 120 335 235 600 400 1.2 10 5 100 4
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Table 1. Cont.

Specimens f cu
/MPa

f y1
/MPa

f y2
/MPa

D1
/mm

D2
/mm

γ
/%

t1
/mm

t2
/mm

e
/mm λ

EUFDST-6 120 335 435 600 400 1.2 10 5 100 4
EUFDST-7 120 335 535 600 400 1.2 10 5 100 4
EUFDST-8 120 335 335 600 400 1.2 5 5 100 4
EUFDST-9 120 335 335 600 400 1.2 15 5 100 4
EUFDST-10 120 335 335 600 400 1.2 20 5 100 4
EUFDST-11 120 335 335 600 400 1.2 5 10 100 4
EUFDST-12 120 335 335 600 400 1.2 5 15 100 4
EUFDST-13 120 335 335 600 400 1.2 5 20 100 4
EUFDST-14 120 335 335 600 400 1.2 10 5 50 4
EUFDST-15 120 335 335 600 400 1.2 10 5 75 4
EUFDST-16 120 335 335 600 400 1.2 10 5 125 4
EUFDST-17 120 335 335 600 400 1.2 10 5 150 4
EUFDST-18 120 335 335 600 400 1.2 10 5 175 4
EUFDST-19 120 335 335 600 400 1.2 10 5 200 4
EUFDST-20 120 335 335 600 400 1.2 10 5 230 4
EUFDST-21 120 335 335 600 400 1.2 10 5 260 4
EUFDST-22 120 335 335 600 400 1.2 10 5 290 4
EUFDST-23 120 335 335 600 240 1.2 10 5 100 4
EUFDST-24 120 335 335 600 300 1.2 10 5 100 4
EUFDST-25 120 335 335 600 360 1.2 10 5 100 4
EUFDST-26 120 335 335 600 460 1.2 10 5 100 4
EUFDST-27 120 335 335 600 400 1.2 10 5 100 3.5
EUFDST-28 120 335 335 600 400 1.2 10 5 100 4.5
EUFDST-29 120 335 335 600 400 1.2 10 5 100 5
EUFDST-30 120 335 335 600 400 1.2 10 5 100 5.5
EUFDST-31 120 335 335 600 400 1.2 10 5 100 6
EUFDST-32 100 335 335 600 400 1.2 10 5 100 4
EUFDST-33 140 335 335 600 400 1.2 10 5 100 4
EUFDST-34 120 335 335 600 400 1.6 10 5 100 4
EUFDST-35 120 335 335 600 400 2 10 5 100 4
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Figure 2. The sketch of the EUFDST composite columns.

4. Finite Element Model (FEM)
4.1. Constitutive Model of Materials
4.1.1. Concrete and Steel Tubes

The steel constitutive model adopts the double-line elastic-plastic constitutive model,
which takes stress hardening into consideration.
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There are many constitutive models of constrained concrete, such as L.H. Han [17],
Z. Tao [18], J.G. Teng [19], J.B. Mander [20], M. Pagoulatou [21], etc. Different constitutive
models of constrained concrete are given.

Despite the considerable variations in the constitutive models for different types of
confined concrete, the strength variation of confined concrete subjected to an eccentric
compression load is minimal [22]. Moreover, these diverse constitutive models have a
negligible impact on the behavior of concrete-filled steel tubular (CFST) columns under
eccentric compression loads [23]. In this paper, the constitutive model of confined concrete
given by Tao Zhong [18] is selected as the constitutive model of the core concrete of
composite columns. The concrete damage plasticity model is selected in the ABAQUS finite
element analysis process.

4.1.2. Constrained ECC Constitutive Model

There is no relational literature to propose the constitutive model of steel tubular-
constrained ECC, according to the triaxial compression, and the lateral pressure of concrete
restricts the lateral deformation of concrete after compression and inhibits the generation
and development of vertical cracks in concrete, which is similar to the constraint law
of concrete-filled steel tubes, so the constitutive model of ECC under triaxial confining
pressure proposed by Y. Li [24] is adopted in this paper. The confining pressure stress in
the model is transformed by the strength of the steel tube, the thickness of the steel tube,
and the diameter of the steel tube. The constitutive model of the steel tubular-constrained
ECC is obtained. The expression is depicted in Equation (1), and the constitutive model
curve is depicted in Figure 3a:

y =

{
Ax−x2

1+(A−2)x 0 < x ≤ 1
Bx

1+(B−2)x+x2 1 ≤ x
(1)

where,y = ε1c
ε10

,x = σ
fc

,A = E0
EC

,B = 0.001 + 1.672
[

2t fy
(D−2t) fc

]
,ε10 = ε0

[
1 + 6.730 2t fy

(D−2t) fc

]
.
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Among them, E0 is the initial tangent modulus of constrained ECC, EC is the secant
modulus of constrained ECC at the peak stress point, ε0 is the peak compressive strain of
ECC concrete under peak compressive stress without constraints, t is the thickness of the
steel tube, f y is the yield strength of the steel tube, and f c is the design value of ECC axial
compressive strength.

The above constitutive model can only provide the strength and deformation char-
acteristics of concrete under compression, but the steel tubular constraint has little effect
on the tensile stress–strain relationship of concrete. Y.K. Wang [25] proposed a three-fold
constitutive model, which is adopted as the ECC tensile constitutive model in this paper.
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The expression is depicted in Equation (2), and Figure 3b shows the constitutive model
curve.

σt =


E0ε (0 ≤ ε ≤ εt0)

ft0 + ( ft1 − ft0)
ε−εt0

εt1−εt0
(εt0 ≤ ε < εt1)

ft1

(
ε−εtu

εt1−εtu

)
(εt1 ≤ ε ≤ εtu)

0 (ε > εtu)

(2)

4.2. Establishment of the Finite Element Model
4.2.1. Boundary Conditions and Contact Definitions

This paper uses the finite element analysis software ABAQUS to establish the finite
element model of full-scale EUFDST composite columns under eccentric load. Each com-
ponent of the EUFDST composite column adopts an eight-node three-dimensional solid
element (C3D8R). The reference points RP-1 and RP-2 are set at the specimen’s upper and
lower ends, and the two points are coupled with the upper and lower ends of the specimen,
respectively. The displacement load is set at RP-1, Ux = Uy = URy = URz = 0 is used to
constrain the degree of freedom of RP-1, and Ux = Uy = Uz = URy = URz = 0 is used to
constrain the degree of freedom of RP-2. The same rotational displacement constraint is set
at two points to simulate the hinged situation at both ends. Hexahedral elements are used
to mesh the finite element model in this paper, and the grid and boundary conditions are
depicted in Figure 4. The contact between the steel tube and the concrete is defined as the
hard contact in the normal direction, and the tangent direction is defined as the penalty
function, taking 0.6.
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4.2.2. Mesh Subdivision

In this paper, the mapping method is used to realize the element decomposition of the
model through the grid. The mesh shape is mainly a hexahedron. To ensure the calculation
accuracy and improve the calculation speed, it is necessary to find the appropriate mesh
size. Therefore, based on the above finite element modeling method, this paper determines
the mesh size by comparing the calculation results of different mesh sizes. However, there
is currently little test data on full-scale double steel tubular composite columns. Therefore,
this paper selects a set of scale specimens in Reference [26] and determines the mesh size of
the full-scale specimens in this paper by determining the proportional relationship between
the mesh size and the size of the test specimens. The specific parameters of the selected test
specimens are depicted in Table 2. The comparisons of different mesh sizes are depicted in
Figure 5. It is more reasonable to choose the mesh size of 20 mm by comparison. It shows
that when the ratio of grid size and specimen size is about 0.1, the calculation speed is
faster, and the calculation accuracy can be maintained. Therefore, the grid size selected in
this paper is determined to be 50 mm.
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Table 2. The specific parameters of two test specimens.

Specimens t1
/mm

t2
/mm

f ck1 × f ck2
/MPa

D1
/mm

D2
/mm

L
/mm

Na
/kN

Mesh Size
/mm

Nt
/kN

∣∣∣Na−Nt
Nt

∣∣∣
× 100%

1 5 3.6 51.6 × 193.3 219.1 114.3 600 5317.2

15 5432.8 2.12
20 5239.8 1.47
25 5201.6 2.22
30 5148.5 3.28

2 5 3.6 51.6 × 175 219.1 114.3 600 4895.5

15 5241.3 6.60
20 4968.2 1.49
25 4786.1 2.29
30 4745.3 3.17
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4.3. Experimental Verification of Finite Element Model
4.3.1. Verification of Nonlinear Constitutive Model Test of Constrained UHPC

Eight UHPC-filled steel tubular composite column test specimens [27,28] were ana-
lyzed using finite element analysis, and the resulting load–displacement curves for axial
and eccentric compression are presented in Figure 6. The comparison and error of the
maximum load-bearing capacity values of the eight groups of specimens are depicted in
Table 3, and the error scatter plot is depicted in Figure 7. It is evident that the simulation
results of specimens are in good agreement with the load–displacement curves of the
test, the failure modes of all specimens were largely consistent with those observed in the
experiments, as depicted in Figure 8, and the maximum error was 4.73%, which was within
7% of the error line and met the engineering accuracy requirements.

Table 3. The specific parameters of 8 groups of UHPC-filled steel tubular composite columns.

Specimens t
/mm

f y
/MPa

f ck
/MPa

e
/mm

L
/mm

D/
mm ξ

Na
/kN

Nt
/kN

∣∣∣Na−Nt
Nt

∣∣∣
× 100%

U-1 4.4 1020 142.1 0 420 140 1.00 4436.12 4516.36 2.25
U-2 6.2 1153 142.1 0 420 140 1.68 5582.38 5386.75 3.63
U-3 10.4 773 142.1 0 420 140 1.66 6354.45 6339.26 0.53
U-4 8.3 813 142.1 0 420 140 2.08 5310.30 5502.35 3.88
U-5 6.2 359 142.1 0 420 140 0.52 3186.18 3202.47 4.73

UP-1 6.2 1153 146.3 14 420 140 1.63 3810.36 3762.21 1.26
UP-2 6.2 1153 146.3 42 420 140 1.63 2501.33 2479.02 0.90
UP-3 6.2 1153 146.3 84 420 140 1.63 1694.94 1757.75 3.39

Note: ξ is the restraint coefficient.
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4.3.2. Verification of FEM of Concrete-Filled Double Steel Tubular Composite Columns

Eight concrete-filled double steel tubular composite column test specimens [26] were
analyzed using finite element analysis, and the resulting load–displacement curves for
axial compression are presented in Figure 9. The comparison and error of the maximum
load-bearing capacity of the eight groups of specimens are depicted in Table 4, and the
error scatter diagram is depicted in Figure 7. It is evident that the simulation results of
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specimens are in good agreement with the load–displacement curves of the test, the failure
modes of all specimens were largely consistent with those observed in the experiments, as
depicted in Figure 10, and the maximum error is 1.77%, which is within 7% of the error line
and meets the engineering accuracy requirements.
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Table 4. The specific parameters of 8 groups of double steel tubular concrete composite columns.

Specimens t1
/mm

t2
/mm

f ck1 × f ck2
/MPa

D1
/mm

D2
/mm

L
/mm

Na
/kN

Nt
/kN

∣∣∣Na−Nt
Nt

∣∣∣ ×
100%

DC-1 5 3.6 51.6 × 51.6 219.1 114.3 600 3626.1 3688.3 1.68
DC-2 5 3.6 175 × 175 219.1 114.3 600 8577.6 8529.5 0.56
DC-3 5 3.6 51.6 × 175 219.1 114.3 600 4895.5 4968.2 1.49
DC-4 5 3.6 51.6 × 193.3 219.1 114.3 600 5317.2 5239.8 1.47
DC-8 10 6.3 51.6 × 193.3 219.1 114.3 600 7160.3 7074.1 1.22
DC-9 6.3 6.3 163 × 163 219.1 114.3 600 7640.1 7507.2 1.77
DC-11 6.3 6.3 148.8 × 148.8 219.1 114.3 600 6882.5 6835.7 0.69
DC-12 6.3 6.3 175.4 × 175.4 219.1 114.3 600 8375.6 8455.3 0.95

Note: t1, t2 are the thickness of outer and inner steel tubes; f ck1, f ck2 are the compressive strength of outer and
inner concrete prisms; D1, D2 are the outer diameters of outer and inner steel tubes.
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4.3.3. Verification of Finite Element Model of Constrained ECC Composite Columns

Eight constrained ECC composite column test specimens [29,30] were analyzed using
finite element analysis, and the resulting load–displacement curves for axial compression
are presented in Figure 11. The test and finite element axial compression maximum load-
bearing capacity values of specimens are depicted in Table 5, and the error scatter diagram
of the test and finite element is depicted in Figure 7. It is evident that the simulation
results of specimens are in good agreement with the load–displacement curves of the
test, the failure modes of all specimens were largely consistent with those observed in the
experiments, as depicted in Figure 12, and the maximum error is 6.09%, which is within 7%
of the error line and meets the engineering accuracy requirements.
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Table 5. Specific parameters of 8 groups of constrained ECC composite columns.

Specimens t
/mm

f y
/MPa

γ f ck
/MPa

Na
/kN

Nt
/kN

∣∣∣Na−Nt
Nt

∣∣∣ ×
100%

STCE40-52 2.70 300 2% 31.2 872.46 929.03 6.09%
STCE40-35 4.00 295 2% 31.2 1115.17 1096.23 1.73%
STCE60-52 2.70 300 2% 49.0 1252.72 1270.25 1.42%
STCE60-35 4.00 295 2% 49.0 1512.11 1474.36 2.58%
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Table 5. Cont.

Specimens t
/mm

f y
/MPa

γ f ck
/MPa

Na
/kN

Nt
/kN

∣∣∣Na−Nt
Nt

∣∣∣ ×
100%

STCE60-70 2.00 310 2% 49.0 1210.58 1182.99 2.37%
STCE60-82 1.71 330 2% 49.0 1181.63 1138.71 3.78%
STCE80-70 2.00 310 2% 65.9 1263.26 1223.44 3.27%
STCE80-82 1.71 330 2% 65.9 1234.86 1176.73 4.93%

5. Parameter Analysis
5.1. Load–Mid-Span Deflection (N-µm) Curve and Ductility Coefficient Curve

Thirty-five specimens were analyzed using finite element analysis under eccentric
compression using ABAQUS software. The effects of various parameters on the N-µm
curve were examined. The primary parameters investigated in this study are as follows:
(1) strength of outer and inner steel tubes; (2) thickness of outer and inner steel tubes;
(3) eccentricity; (4) diameter ratio of outer and inner steel tubes; (5) slenderness ratio;
(6) compressive strength of UHPC cylinder; (7) PVA fiber content.

The structural deformation capacity under different parameters is difficult to judge
directly by analyzing the load–displacement curve and the deformation cloud diagram.
Therefore, it is necessary to analyze the data of the load–displacement curve and extract the
ductility coefficient that reflects the overall deformation capacity of the structure. The larger
the ductility coefficient, the better the deformation capacity of the structure. The ductility
coefficient mainly includes the displacement, curvature, and corner ductility coefficient.
In this paper, the displacement ductility µ coefficient is used to analyze the ductility of
the component. The expression of the displacement ductility coefficient is depicted in
Equation (3):

µ =
∆u

∆y
(3)

In this paper, the energy equivalent approach is utilized to ascertain the yield displace-
ment of the component, as illustrated in Figure 13.
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5.1.1. Strength of the Outer and Inner Steel Tubes (f y1, f y2)

The N-µm curves and ductility coefficient curves for specimens with varying f y1 and
f y2 are depicted in Figures 14 and 15. As f y1 (Mpa) increases from 235 to 335, 435, and 535,
the maximum load-bearing capacity (kN) of the specimens sequentially rises to 18,713.53,
20,455.98, and 22,051.87, representing increments of 8.8%, 16.6%, and 22.6%, respectively.
Conversely, µm (mm) diminished from 125.67 to 121.96, 119.07, and 116.43, decreasing by
3.0%, 4.8%, and 7.2%, respectively. With the incremental increase in f y1, the maximum load-
bearing capacity of the EUFDST composite columns subjected to eccentric compression
progressively increases, µm gradually declines, the post-peak load curve’s descent rate
mitigates, and the bearing capacity steadily amplifies. Concurrently, the ductility coefficient
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of the EUFDST composite columns escalates from 5.65 to 6.78, 10.78, and 12.96, increasing
by 16.7%, 38.4%, and 56.5%, respectively. This indicates that as f y1 gradually elevates, the
deformation capacity of the composite column is significantly augmented, with a marked
improvement in the ductility coefficient.
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As illustrated in the figure, when f y2 (Mpa) escalates from 235 to 335, 435, and 535, the
maximum load-bearing capacity (kN) of the specimens sequentially augments to 18,713.53,
19,262.17, and 19,774.35, representing increments of 2.3%, 5.1%, and 7.6%, respectively.
The µm sequentially expanded from 120.61 mm to 121.90 mm, 123.47 mm, and 124.79 mm,
increasing by 1.1%, 2.4%, and 3.4%, respectively. With the progressive increment of f y2, the
maximum load-bearing capacity of the EUFDST composite columns subjected to eccentric
compression progressively increases, µm progressively amplifies, and the post-peak load
curve’s descent rate alleviates. However, in comparison with the influence of f y1, the
variation in f y2 exerts no pronounced effect on the strength and deflection alterations of
the EUFDST composite columns. With the amplification of f y2, the ductility coefficient of
the EUFDST composite columns sequentially increased from 6.06 to 6.78, 7.34, and 8.11,
escalating by 10.1%, 17.5%, and 25.3%, respectively. This observation indicates that as f y2
incrementally elevates, the deformation capacity of the composite column progressively
intensifies, with a gradual increment in the ductility coefficient.

5.1.2. Thickness of Outer and Inner Steel Tubes (t1, t2)

The N-µm curves and ductility coefficient curves for specimens with varying t1 and t2
dimensions are presented in Figures 16 and 17. With the increment of t1 (mm) from 5 to
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10, 15, and 20, the maximum load-bearing capacity (kN) of the specimens correspondingly
elevates to 18,713.53, 21,077.85, and 23,295.45, marking increments of 12.5%, 22.6%, and
30.0%, respectively. Conversely, µm reduces from 128.58 to 121.90, 118.29, and 115.15,
respectively, by 5.2%, 8.6%, and 10.9%. Upon increasing t2 (mm) from 5 to 10, 15, and 20,
the maximum load-bearing capacity (kN) of the specimens sequentially rises to 17,663.71,
19,230.63, and 20,329.92, reflecting increases of 7.6%, 15.2%, and 19.8%, respectively. Con-
currently, µm diminishes from 128.58 to 126.41, 122.65, and 121.11, respectively, by 1.7%,
4.7%, and 5.9%. As t1 and t2 gradually increase, the maximum load-bearing capacity of
the EUFDST composite columns under eccentric compression is significantly enhanced,
µm is progressively reduced, and the post-peak load curve’s descent rate is alleviated,
thereby substantially boosting the bearing capacity. This suggests that augmenting t1 and t2
effectively amplifies the confining effect on the core concrete and improves the steel content
of the EUFDST composite columns, leading to a marked enhancement in the maximum
load-bearing capacity under eccentric compression.
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With the escalation of t1, the ductility coefficient of the EUFDST composite columns
ascends from 4.28 to 6.78, 7.72, and 9.18, exhibiting increases of 36.9%, 45.6%, and 53.4%,
respectively. Similarly, with the upsurge of t2, the ductility coefficient of the EUFDST
composite columns increases from 4.28 to 4.89, 5.18, and 6.47, signifying increments of
12.5%, 17.4%, and 33.9%, respectively. It is evident that the gradual increase in t1 and t2
progressively enhances the deformation capacity of the composite column, with a significant
amplification in the ductility coefficient. The impact of elevating t1 and t2 on the composite
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column’s maximum load-bearing capacity and deformation capacity is more pronounced
than that of f y1 and f y2.

5.1.3. Eccentricity (e)

The N-µm curves and ductility coefficient curves for specimens with varying e are
presented in Figure 18. With the increment of e (mm) from 50 to 75, 100, 125, 150, 175, 200,
230, 260, 290, the maximum load-bearing capacity (kN) of the specimens decreases from
23,298.62 to 20,995.93, 18,713.53, 16,918.25, 15,261.86, 13,722.65, 12,455.19, 11,063.38, 9899.51,
and 8901.11, by 9.88%, 19.68%, 27.39%, 34.49%, 41.10%, 46.54%, 52.52%, 57.51%, and 61.80%,
respectively. Conversely, µm reduces from 126.56 to 122.57, 121.90, 119.64, 116.49, 112.53,
109.55, 103.48, 97.45, and 90.78, by 3.15%, 3.68%, 5.47%, 7.96%, 11.09%, 13.44%, 18.24%,
23.00%, and 28.27%, respectively. As e increases, the maximum load-bearing capacity of the
EUFDST composite columns under eccentric compression progressively declines, as does
µm, and the post-peak load curve’s rate of descent is mitigated. The ductility coefficient of
the EUFDST composite columns correspondingly decreases from 7.61 to 6.94, 6.78, 6.14,
5.97, 5.85, 5.68, 5.43, 5.11, 4.95, by 8.8%, 10.91%, 19.32%, 21.55%, 23.12%, 25.36%, 28.65%,
32.85%, and 34.95%. It is evident that with the gradual increase in e, the deformation ability
and ductility coefficient of the composite column decrease gradually.
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5.1.4. Diameter Ratio of Outer and Inner Steel Tubes (Ω)

The N-µm curves and ductility coefficient curves for specimens with varying Ω are
presented in Figure 19. With the decrement of Ω from 2.5 to 2, 1.7, 1.5, and 1.3, the maximum
load-bearing capacity (kN) of the specimens increases from 18,517.77 to 18,588.72, 18,732.93,
18,713.53, and 20,138.27, by 0.38%, 1.11%, 1.33%, and 8.75%, respectively. The µm increased
from 117.16 mm to 119.85 mm, 121.31 mm, 121.90 mm, and 122.35 mm, which increased
by 2.30%, 2.54%, 4.05%, and 4.43%, respectively. With the decrease in Ω, the maximum
load-bearing capacity of the composite columns increases gradually, and the µm of the
composite columns increases gradually. When Ω decreases from 1.5 to 1.3, the maximum
load-bearing capacity of the composite columns undergoes significant changes. When Ω
changes in the range of 2.5 to 1.5, the maximum load-bearing capacity of the composite
column changes slightly. It is found that when Ω decreases from 2.5 to 2, 1.7, and 1.5,
the ductility coefficient of the EUFDST composite columns increases from 3.78 to 4.8, 5.7,
and 6.78, which increases by 21.25%, 33.68%, and 44.25%, respectively. However, when Ω
decreases from 1.5 to 1.3, the ductility coefficient of the composite column under eccentric
load decreases from 6.78 to 4.82, which decreases by 29.0%. It is evident that when Ω
decreases from 2.5 to 1.5, the ductility coefficient of the composite column under eccentric
load increases gradually. Therefore, it is suggested that the composite column Ω should
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be kept above 1.5 to improve the deformation capacity of the composite column under
eccentric load.
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5.1.5. Slenderness Ratio (λ)

The N-µm curves and ductility coefficient curves for specimens with varying λ are
presented in Figure 20. With the decrement of λ from 3.5 to 4, 4.5, 5, 5.5, and 6, the maximum
load-bearing capacity (kN) of the specimens decreased from 18,928.32 to 18,713.53, 18,568.11,
18,416.26, 18,265.75, and 18,244.82, which decrease by 1.04%, 1.90%, 2.71%, 3.50%, and
3.77%, respectively. The µm increased from 99.32 mm to 121.9 mm, 136.88 mm, 145.36 mm,
162.61 mm, and 170.56 mm, which increases by 18.52%, 27.44%, 31.67%, 38.92%, and 41.77%,
respectively. With the increase in λ, the maximum load-bearing capacity of the composite
column decreases gradually, and the µm of the composite column increases gradually.
When λ increases from 3.5 to 4, 4.5, 5, 5.5, and 6, the ductility coefficient of the EUFDST
composite columns decreases from 7.8 to 6.78, 6.19, 5.8, 5.65, and 5.57, which decrease
by 13.08%, 20.64%, 25.64%, 27.56%, and 28.59%, respectively. It is evident that with the
increase in composite column λ, the deformation capacity of the composite column under
eccentric load decreases gradually, and the ductility coefficient decreases gradually.
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5.1.6. Compressive Strength of UHPC Cylinder (f cu)

The N-µm curves and ductility coefficient curves for specimens with varying f cu are
presented in Figure 21. With the increment of f cu (Mpa) from 100 to 120 and 140, the
maximum load-bearing capacity (kN) of the EUFDST composite columns increased from
18,271.82 to 18,713.53 and 19,657.82, which increased by 2.72% and 7.90%, respectively.
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At the same time, µm decreases from 121.01 mm to 121.90 mm and 120.38 mm, which
decreases by 0.9% and 2.14%, respectively. It is evident that with the gradual increase
in f cu, the maximum load-bearing capacity of the EUFDST composite columns under
eccentric compression increases gradually, and their µm decreases gradually. However,
the decreasing rate of the N-µm curve after peak load increases with the gradual increase
in f cu. When f cu (Mpa) increases from 100 to 120 and 140, the ductility of the EUFDST
composite columns decreases from 7.6 to 6.78 and 5.43, which decreases by 4.5% and 26.9%,
respectively. It is evident that with the increase in f cu, the ductility of the composite column
decreases gradually.
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5.1.7. PVA Fiber Content (γ)

The N-µm curves and ductility coefficient curves for specimens with varying γ are
presented in Figure 22. When γ is 1.2%, 1.6%, and 2%, the maximum load-bearing capacity
(kN) of the EUFDST composite columns under eccentric compression increases from
18,713.53 to 192,743.91 and 20,584.23, which increase by 3.00% and 10.00% respectively,
while µm decreases from 121.90 mm to 119.40 mm and 115.80 mm, which decrease by 2.05%
and 5.00%, respectively. It is evident that with the increase in γ, the maximum load-bearing
capacity of the EUFDST composite column increases gradually, and the deflection in the
column decreases gradually at the end of loading. When γ increases from 1.2% to 1.6, 2%.
The ductility of the EUFDST composite columns rose from 6.78 to 7.12 and 8.87, which
increased by 5.01% and 30.8%, respectively. It is evident that with the increase in γ, the
ductility of the composite column gradually increases.
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5.2. Analysis of Deformation Law of Full-Scale EUFDST Composite Columns under
Eccentric Load
5.2.1. Lateral Deflection Curves

To study the deformation capacity of EUFDST composite columns under eccentric
load, the column height–lateral deflection (H-µm) curves of typical specimens EUFDST-2,
EUFDST-26, EUFDST-20, and EUFDST-31 are drawn, as depicted in Figure 23. In the early
loading stage, the H-µm curve of the EUFDST composite column under eccentric load is
basically a linear distribution. When the load gradually increases to 0.54 Nu, the deflection
changes little with height. When the load increases to 0.54–0.57 Nu, the H-µm curve shows
a nonlinear distribution. When the load increases from 0.54 Nu to 0.86 Nu, the deflection
increases significantly with height. When the load increases from 0.86 Nu to the peak load,
the deflection change begins to stabilize, and the gradual increase is significantly greater
than the initial loading. Under the action of loads at all levels, the deflection changes
along the section height are basically symmetrically distributed, which is approximately a
sinusoidal function curve [31]. The column height–lateral deflection curve is similar to that
of ordinary concrete-filled steel tubular columns. The deflection relationship between each
point can be expressed by Equation (4) [32]:

µa = µm × sin
(πz

H

)
(4)
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In the equation, µm represents the deflection of the column under various loads. Z
denotes the distance from each point on the specimen to the mid-span position. H signifies
the height of the column.

5.2.2. Longitudinal Strain Distribution Law of Mid-Span Section

Given that the maximum deflection of a full-size EUFDST composite column is located
at the mid-span section under eccentric load, it is necessary to study whether this composite
column satisfies the plane section assumption. To this end, four typical specimens were
selected from 35 EUFDST composite columns, and the longitudinal strain distribution
curve of the mid-span section was drawn. As shown in Figure 24, the three selected
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measuring points are located at the end points of the compression side, tension side, and
midpoint of the mid-span section. As the load gradually increases, the longitudinal strain
curves of the mid-span section show smaller differences, and the strain changes linearly
along the section height. This result shows that the mid-span section does comply with
the plane section assumption when subjected to stress. This analysis shows that even
under eccentric loading conditions, the mid-span section of the EUFDST composite column
can better maintain structural integrity and consistency, indicating that the materials
and structural layout used in the design can effectively transmit and distribute the load.
This uniform distribution of longitudinal strain provides an experimental basis for the
further verification and optimization of composite column design, helping to improve
the prediction accuracy and reliability of the structure. These observations also provide
important reference information for similar structural design, especially in performing
eccentric loading analysis and assessing structural integrity.
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5.2.3. Load–Strain Curve Analysis of Steel Tubes

When eccentric loads were applied to full-size EUFDST composite columns, six typical
specimens were selected to study the stress–strain curves in the compression zone of the
steel tubes and concrete in the mid-span section. The load–strain curve for the mid-span
section is shown in Figure 25. It was observed that when the eccentricity was 100 mm,
the outer steel tube in the tension and compression zone and the inner steel tube in the
compression zone reached the yield strength before the composite column reached the peak
load, while the inner steel tube in the tensile zone had not yet reached the yield strength
and the compression zone. The strain degree of the steel tube is significantly higher than
that of the steel tube in the tensile zone. When the eccentricity increases to 150 mm, both
the inner and outer steel tubes in the tensile zone and compression zone reach the yield
strength before reaching the peak load, which shows that when the eccentricity of the
EUFDST composite column is larger, the steel tubes in each area can effectively perform
their strength effect. This finding is crucial for understanding the structural behavior of
composite columns under different eccentric loads. The data show that even under high
eccentric loads, the yield behavior of the steel tubes provides the necessary structural
support for the composite columns, helping to maintain overall stability and safety. By
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analyzing the strain distribution in detail, the configuration and design of steel tubes
and concrete can be further optimized to improve the performance and durability of the
structure in real-world applications. This detailed stress and strain analysis provides
valuable reference information for future structural design, especially when considering
the safety and functionality of the structure under extreme conditions.
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6. Bending Stiffness Analysis

The preceding analysis reveals that the lateral deflection profile of the EUFDST com-
posite column subjected to an eccentric load adheres to a distribution pattern resembling a
sinusoidal half-wave, so its stiffness can be expressed as Equation (5) [32]:

EI =
NeH2

π2µm
(5)

In the equation, EI is the secant flexural rigidity, unit kN·mm2; N is the bias load,
unit KN; e is the eccentricity, unit mm; H is the specimen height, unit mm; and µm is the
specimen mid-span deflection, unit mm.

In the process of bearing eccentric load, the stiffness of the concrete-filled steel tubular
composite column does not remain unchanged with the continuous advancement of the
loading process. Because the destruction of the material accompanies the concrete-filled
steel tubular composite column during the loading process, the effective stress area of the
composite column’s cross-section and the material’s comprehensive deformation modulus
gradually decrease. Therefore, the flexural stiffness of the composite column cannot remain
unchanged but gradually decreases with the increase in lateral deflection. Figure 26 shows
that the component is in the elastic stage at the initial loading stage, and the stiffness does
not change. With the gradual increase in load, the specimen enters the elastic-plastic stage.
At this time, the stiffness begins to decrease with the increase in deflection. At the initial
stage of the elastic-plastic stage, the stiffness decreases rapidly, and the later decline rate
gradually slows down. The stiffness degradation curves of full-scale EUFDST composite
columns under different t1 and t2 are depicted in Figure 26a,c. It is evident that with the
increase in t1 and t2, the initial stiffness of the composite column gradually increases. With
the gradual increase in load, the stiffness of the composite column gradually increases
with the increase in t1 and t2, and the stiffness of the composite column begins to stabilize
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at the later stage of loading, indicating that the composite column has been completely
destroyed. The degree of influence of t1 and t2 on the overall stiffness is reduced, and the
stiffness degradation rate gradually decreases with the increase in t1 and t2. The stiffness
degradation curves of full-scale EUFDST composite columns under f y1 and f y2 are depicted
in Figure 26b,d. It is evident that when f y1 and f y2 increase in the range of 235 MPa to
535 MPa, the initial rigidity of the composite column is identical.
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However, with the gradual advancement of the loading process, the flexural stiffness
of the composite column begins to increase with the increase in f y1 and f y2, and the decrease
rate of flexural stiffness gradually decreases with the increase in f y1 and f y2, but f y2 has
little effect on the flexural stiffness of the EUFDST composite column. The flexural stiffness
degradation curves of the EUFDST composite columns under different Ω are depicted in
Figure 26e. It is evident that the initial flexural stiffness of the EUFDST composite columns
decreases gradually with the decrease in Ω. When µm is in the range of 0–23 mm, the
flexural stiffness of the EUFDST composite columns decreases with the decrease in Ω.
When µm is greater than 23 mm, the flexural stiffness of the EUFDST composite columns
with different diameter ratios is approximately the same. The bending stiffness degradation
curve of the EUFDST composite column under different e is depicted in Figure 26f. It is
clear that as the value of e increases progressively, the bending rigidity of the EUFDST
composite column diminishes progressively. With the gradual increase in load, the bending
stiffness gap between composite columns of different e decreases.

7. Contact Stress Analysis

In the process of bearing eccentric load, the coordinated deformation between the steel
tubes and concrete on the tension side of the compression side is different. Therefore, in
order to study the coordinated deformation trend after contact between the steel tubes and
concrete in a full-scale EUFDST composite column, the contact stress between the steel
tubes and concrete in the composite column is analyzed. Five groups of typical specimens
were selected to extract three points, A, B, and C, inside the outer steel tube of the mid-span
section. The distribution of the three points is depicted in Figure 27a. The distribution of
three points, D, E, and F, outside the inner steel tube of the mid-span section is depicted in
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Figure 27b. The distribution of three points, G, H, and I, inside the inner steel tube of the
mid-span section is depicted in Figure 27c.
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The contact stress–mid-span deflection curve between the steel tubes and the concrete
of the five groups of typical specimens is depicted in Figure 28. It is apparent from Figure 28
that the contact stress between the five groups of typical specimens from point A to point
I and the concrete is maintained at 0 at the initial stage of loading, indicating that the
specimens are in the elastic stage at the initial stage of loading. Currently, the inner and
outer steel tubes are in an independent working state with the interlayer ECC and the
core UHPC, and there is no contact between the steel tubes and the concrete. With the
gradual increase in displacement load, the specimen enters the elastic-plastic stage, and the
concrete and steel tubes begin to deform. At this time, the contact stress gradually increases
with the increase in deflection. Among them, the contact stress of points C, F, and I on the
compression side rises the fastest, followed by the rising rates of points B, E, and H on the
tension side, and the rising rates of points A, D, and G in the middle are the slowest. The
contact stress of point C of the EUFDST-2 outer steel tube of the specimen decreases slowly
after reaching the peak value. With the increase in the eccentricity and slenderness ratio, the
contact stress of point C decreases more significantly after the peak value. This is because
with the increased eccentricity and slenderness ratio, the concrete on the compression side
is crushed, so the contact stress between the steel tube and the concrete gradually decreases.
The contact stress of point B increases with the gradual increase in mid-span deflection
from the initial stage of loading to the later stage of loading, and the increased rate of
contact stress of point B after the specimen enters the plastic stage is smaller than that of
the initial stage of loading, which indicates that the concrete on the tensile side is better
constrained by the steel tube on the tensile side in the process of outward expansion. The
contact stress at point A of the mid-span section is the minimum contact stress at the three
measuring points selected for the outer steel tube. Except that the EUFDST-2 contact stress
rises, the contact stress has a downward trend after reaching the peak. The overall trend of
the contact stress at point F outside the compression zone of the inner steel tube is similar
to that of point B. With the increase in eccentricity and slenderness ratio, the decrease rate
of the contact stress at point F increases after the peak value. The contact stress at point
E outside the tensile zone of the inner steel tube gradually increases with the mid-span
deflection increase at the initial loading stage. However, with the gradual increase in the
displacement load, the contact stress at point E begins to fluctuate nonlinearly. This is due
to the gradual increase in the load between the inner steel tube and the interlayer concrete
in the mid-span section, and the deformation coordination between the two is reduced. The
contact stress at point D is the minimum at the three measuring points selected on the outer
side of the inner steel tube. Except that the contact stress of EUFDST-2 keeps rising, the
contact stress decreases after reaching the peak value. The overall trend of contact stress
at point I on the inner side of the inner steel tubular compression zone is similar to that
of point B. With the eccentricity and slenderness ratio increase, the contact stress at point
I decreases after the peak value. The overall trend of the contact stress at point H in the
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tension zone of the inner steel tube is similar to that of point E. However, the contact stress
is obviously larger than that of point E in the later loading stage, and the contact stress of
some specimens is larger than that of the compression side after the end of loading. This is
because the inner steel tube is constrained by the interlayer ECC and the outer steel tube,
and the degree of outward buckling is small. Therefore, the contact between the inner steel
tube and the concrete is more sufficient, resulting in the overall contact stress of point H
being larger. The contact stress at point G is the minimum at the three measuring points
selected on the inner steel tube’s inner side. Except that the contact stress of EUFDST-2
keeps rising, the contact stress decreases after reaching the peak value.

When analyzing contact stress behavior, interface properties and bonding conditions
have a decisive influence on the interaction between steel tubes and concrete. It can be
observed from Figure 28 that the response of contact stress is significantly different at
different loading stages, which reveals the important role of interface bonding performance
in force transmission and stress distribution. The bonding conditions not only affect the
peak stress but also have an important impact on the shape of the stress–displacement
curve. Under perfect bonding conditions, the stress between the steel tubes and concrete is
more evenly distributed, thereby improving the overall load-bearing capacity and stiffness
of the component. However, when bonding conditions are insufficient or slippage exists,
the contact stress curve shows greater dispersion and the peak stress decreases, indicating
that poor bonding leads to discontinuous transmission of force, thereby affecting the overall
performance of the structure. In practical applications, optimization of interface bonding
conditions is the key to improving the performance of composite components. For example,
the bond quality between steel tubes and concrete can be significantly improved by increas-
ing the roughness of the steel tubes’ surface or using bonding promoters. Improvements
in interfacial properties, such as through surface treatments or material modifications,
can further enhance this bonding, thereby playing an important role in reducing slip and
increasing interfacial load-bearing capacity. It can be seen from the contact stress curve in
Figure 28 that the difference in stress response at different measuring points indicates the
non-uniformity of the bonding conditions. This phenomenon requires special attention
during the design and construction process to ensure that the composite components meet
the expected performance standards.
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8. The Whole Process Analysis of Full-Scale EUFDST Composite Columns under
Eccentric Compression
8.1. Failure Modes

To investigate the failure mode of EUFDST composite columns under eccentric load,
a group of typical specimens was selected. Take the EUFDST-20 as an example, and its
failure mode is depicted in Figure 29. It is evident that the outer steel tube at the end of the
compression zone and the ECC at the end of the compression zone bulge outward, and
the inner and outer steel tubes at the mid-span are subjected to yield failure. The concrete
in the mid-span of the compression zone is crushed, and the concrete in the tension zone
is cracked. Due to the special cross-section form of double steel tubes, the concrete in the
tensile zone is mainly interlayer ECC, while the core UHPC mainly bears the axial pressure,
and the tensile part is less. Therefore, it can be seen in Figure 30 that the full-scale EUFDST
composite column shows excellent eccentric bearing capacity, and both ECC and UHPC
play their own characteristics. With the increase in eccentricity, the area of concrete in the
tension zone gradually increases. However, most of the tension zone is still concentrated
at the edge of the outer steel tube to the inner 100 mm of the tension zone. Therefore, it is
suggested that for the full-scale EUFDST composite column subjected to eccentric load, it is
reasonable to keep the radius of the inner steel tube at 190 mm to 210 mm. This diameter
ratio can not only improve the overall bearing capacity of the composite column but also
gradually improve the ductility of the composite column.
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inner steel tube, UHPC).

Failure modes of EUFDST columns typically involve localized bulging of the ex-ternal
steel tube and failure of the engineered cementitious composite (ECC) and ultra-high-
performance concrete (UHPC). As shown in Figure 29, the outer steel tube shows an obvious
local bulging phenomenon under the influence of eccentric loading. This bulge usually
occurs on the compression side of the steel tube and is caused by the radial expansion
force of the internal concrete exceeding the local buckling strength of the steel tube. At the
maximum load point, the maximum radial displacement of the local bulge was measured
to be 15 mm. This quantitative description helps to accurately understand the degree of
deformation of the structure at its load-bearing limit. For the middle ECC layer and the
inner layer of the UHPC, the failure is manifested by crushing and crack development. The
ECC layer is designed to provide high ductility and crack resistance, but under extreme
loading conditions, micro-cracks and crushing may still occur. Experimental data show that
when the ECC layer reaches its ultimate state, the surface crack width can reach 0.5 mm,
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and the depth of the compression zone can reach 20 mm. Similarly, although the inner
UHPC has high compressive strength, it will also experience crushing after exceeding its
compressive capacity. The crushing depth of the UHPC was measured in experiments to be
25 mm, and these data are critical for evaluating the material’s behavior under high stress
and its impact on the overall structural safety.

Through an in-depth analysis of the EUFDST column failure modes, it can be seen
that the local bulge of the external steel tube, the crack development of the ECC, and the
crushing of the UHPC jointly led to the overall failure of the structure. These quantitative
measurements not only provide an in-depth understanding of material behavior but also
help in the design process to consider how to prevent such failures by improving material
formulations, adjusting structural details, or enhancing the design of local stress-bearing
areas.

8.2. Force Mechanism and Force Analysis of the Whole Process

The components of the EUFDST composite column will produce longitudinal strain
(ε1) with a gradual increase in eccentric load, and the components will produce radial
strain (εs) with the longitudinal strain. The relationship between ε1 and εs is depicted in
Equation (6) [33]. 

ε′Os = µsεOs
1

ε′ECCs = µECCεECC
1

ε′Is = µsεIs
1

ε′UHPCs = µUHPCεUHPC
1

(6)

In the equation, ε‘Os is the radial strain of the outer steel tube, ε‘Is is the radial strain
of the inner steel tube, ε‘ECCs is the radial strain of the ECC, ε‘UHPCs is the radial strain of
the UHPC, µs is the Poisson’s ratio of steel, µUHPC is the Poisson’s ratio of the UHPC, and
µECC is the Poisson’s ratio of the ECC.

According to the finite element analysis, the stress progression of the EUFDST com-
posite column under eccentric load can be categorized into four distinct phases: elastic
stage OA, elastic-plastic stage AB, load stability stage BC, and failure stage CD. The load-
mid-span deflection curve of typical specimens is depicted in Figure 31. The longitudinal
stress distribution of each component at different stages is depicted in Figure 32, and the
micro-stress diagram of each component unit is depicted in Figure 33. The whole process
and mechanism of the ECUFDST composite column under eccentric load are analyzed by
combining Equation (6) and Figures 31–33.

The composite column is in the elastic stage in the initial OA loading stage. At this
time, the Poisson’s ratio of concrete is less than that of steel, the contact between the steel
tubes and concrete is less, the internal and external concrete and the internal and external
steel tubes are in an independent working state, and the longitudinal stress is vertically
evenly distributed. The stress on the compression side of the external steel tube is higher
than that on the tension side. The composite column is in a state of compression as a whole.
The internal and external steel tubes do not exert a restraining effect on the concrete.
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As the load gradually increases, the outer steel tube and the steel tube in the com-
pression zone reach the proportional limit. The Poisson’s ratio of steel and concrete is
approximately equal to the radial strain. At this time, the specimen enters the elastoplastic
stage, µECC > µs, µUHPC > µs. The radial strain of the interlayer ECC and the core UHPC
is greater than that of the outer steel tube in the compression zone. As the concrete in the
tension zone gradually expands outward, the steel tube in the compression zone buckles
inward, and the inner and outer steel tubes begin to come into contact with the concrete.
At this time, the steel tube begins to constrain the core concrete. The stress distribution of
the individual micro-units within each component is illustrated in Figure 33. The inner
and outer steel tubes and concrete are in a three-dimensional stress state. In this stage, the
load gradually decreases with the increased rate of deflection. The outer steel tube in the
compression zone reaches the yield strength before the inner steel tube, and then both the
compression zone reaches the yield strength and some concrete in the compression zone
reaches the strength limit. With the load increase, the composite column’s bearing capacity
reaches the limit value.

From then, it enters the BC section of the load-holding stage. The longitudinal stress
distribution of each component in this stage is similar to that in the elastic-plastic stage.
The main reason for the load–displacement curve to maintain a certain stability is that the
ECC in the compression zone does not reach its compressive strength limit value, and due
to the special tensile characteristics of ECC, its tensile stress is still in the rising section.
Therefore, the load in this stage maintains a certain stable value. With the gradual increase
in displacement load, the ECC in the compression zone reaches its compressive strength
limit value, and the ECC in the tension zone reaches its secondary rise limit value.

At this time, the specimen enters the final stage, and the plastic stage fails. At this
time, all parts of the inner steel tube reach the ultimate strength. The ECC in the tension
zone is cracked, the tensile stress gradually decreases, and the ECC and UHPC in the
compression zone are crushed. At this stage, the deformation of the composite column



Buildings 2024, 14, 1487 28 of 32

increases significantly, the maximum load-bearing capacity decreases rapidly, and it finally
tends to be stable. At this time, the composite column has been completely destroyed.

9. Maximum Load-Bearing Capacity Equation of Eccentrically Loaded Composite
Long Columns

Based on the maximum load-bearing capacity equation of axial compression of double
concrete-filled steel tubular composite columns [0], referring to the “Technical Code for
Concrete Filled Steel Tubular Structures” GB-50936-2014 [34], the eccentricity correction
coefficient ρe and the slenderness ratio correction coefficient ρλ are introduced, and the
maximum load-bearing capacity formula of EUFDST composite columns under eccentric
load is statistically regressed:

NEU = ρλ × ρe

[
Aco fcko(1 − 0.46ξ0) + Aci fcki

(
0.63ξ0 + 1.008ξ−0.014

i

)
+ AS1 fy1 + AS2 fy2

]
(7)

ξ0 =
AS1 fy1

AC fce
(8)

ξi =
AC
A

(
AS1 fy1

AC1 fce
+

AS2 fy2

AC2 fuc

)
(9)

ρλ =
(
−0.137θ2 + 0.08θ + 1.02

)
× 1.13λ−0.1 (10)

θ = λ/3 (11)

ρe = e−0.23 − 0.001e + 0.45 (12)

In the equation, ρλ is the slenderness ratio correction coefficient, ρe is the eccentricity
correction coefficient, λ is the slenderness ratio, and e is the eccentricity distance. The maxi-
mum load-bearing capacity of eccentric compression calculated according to Equation (7)
is depicted in Table 6. Other coefficients are illustrated in Equations (8)–(12). The scatter
plot of the calculated value and the simulated value of the maximum load-bearing capacity
of eccentric compression is depicted in Figure 34. Table 6 and Figure 34 indicate that the
maximum discrepancy between the calculated and simulated results is 8.92%, which meets
the requirements of engineering accuracy.

Table 6. Comparison of simulation and calculated bearing capacity for 35 specimens.

Specimens fy1
/MPa

fy2
/MPa

e
/mm

NEU
/kN

NT
/kN

∣∣∣NT−NEU
NT

∣∣∣
×100%

EUFDST-1 235 335 100 17,870.43 17,078.11 4.64
EUFDST-2 335 335 100 19,270.09 18,713.53 2.97
EUFDST-3 435 335 100 20,672.60 20,455.98 1.06
EUFDST-4 535 335 100 22,077.29 22,051.87 0.12
EUFDST-5 335 235 100 18,894.23 18,290.56 3.30
EUFDST-6 335 435 100 19,649.02 19,262.17 2.01
EUFDST-7 335 535 100 20,030.26 19,774.35 1.29
EUFDST-8 335 335 100 17,170.26 16,322.86 5.19
EUFDST-9 335 335 100 21,389.21 21,077.85 1.48

EUFDST-10 335 335 100 23,528.87 23,295.45 1.00
EUFDST-11 335 335 100 18,054.02 17,663.71 2.21
EUFDST-12 335 335 100 18,941.38 19,230.63 1.50
EUFDST-13 335 335 100 19,818.21 20,329.92 2.52
EUFDST-14 335 335 50 23,408.91 23,298.6 0.47
EUFDST-15 335 335 75 21,302.25 20,995.93 1.46
EUFDST-16 335 335 125 17,338.43 16,918.25 2.48
EUFDST-17 335 335 150 15,533.50 15,261.86 1.78
EUFDST-18 335 335 175 13,881.71 13,722.65 1.16
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Table 6. Cont.

Specimens fy1
/MPa

fy2
/MPa

e
/mm

NEU
/kN

NT
/kN

∣∣∣NT−NEU
NT

∣∣∣
×100%

EUFDST-19 335 335 200 12,409.65 12,455.19 0.36
EUFDST-20 335 335 230 10,918.08 11,063.38 1.31
EUFDST-21 335 335 260 9770.28 9899.51 1.31
EUFDST-22 335 335 290 9012.95 8901.11 1.26
EUFDST-23 335 335 100 18,577.42 18,617.77 0.22
EUFDST-24 335 335 100 18,997.61 18,588.72 2.20
EUFDST-25 335 335 100 17,677.61 18,723.93 5.59
EUFDST-26 335 335 100 21,934.83 20,138.27 8.92
EUFDST-27 335 335 100 18,941.67 18,928.32 0.07
EUFDST-28 335 335 100 18,812.10 18,568.11 1.31
EUFDST-29 335 335 100 18,571.36 18,416.26 0.84
EUFDST-30 335 335 100 18,329.79 18,265.75 0.35
EUFDST-31 335 335 100 18,088.16 18,271.53 1.00
EUFDST-32 335 335 100 17,641.76 18,217.82 3.16
EUFDST-33 335 335 100 20,879.27 19,657.82 6.21
EUFDST-34 335 335 100 19,441.81 19,274.91 0.87
EUFDST-35 335 335 100 19,613.33 20,584.23 4.72
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10. Conclusions

Based on the strength of the inner and outer steel tubes (f y1, f y2), the thickness of the
inner and outer steel tubes (t1, t2), the compressive strength of the UHPC cylinder (f cu), the
content of PVA (γ), the diameter ratio of inner and outer steel tubes (Ω), and the slenderness
ratio (λ) as the main parameters, 35 full-scale EUFDST eccentric compression long column
models were established. The mechanical properties of the EUFDST composite columns
under eccentric load were analyzed, and the following conclusions were drawn:

(1) The maximum load-bearing capacity of the EUFDST composite columns under eccen-
tric compression increases with the increase in the strength of inner and outer steel
tubes (f y1, f y2), the thickness of inner and outer steel tubes (t1, t2), the compressive
strength of the UHPC cylinder (f cu), the content of PVA (γ), and the diameter ratio of
inner and outer steel tubes (Ω). With the slenderness ratio’s (λ) increase, the maximum
load-bearing capacity of the EUFDST composite columns under eccentric compression
decreases gradually. The initial stiffness of the EUFDST composite column gradually
increases with the increase in the thickness of the inner and outer steel tubes (t1, t2),
the compressive strength of the UHPC cylinder (f cu), the PVA content (γ), and the
diameter ratio of the inner and outer steel tubes (Ω). However, as the slenderness ratio
(λ) increases, the initial stiffness of the EUFDST composite column gradually decreases.
When the strength of the inner and outer steel tubes varies from 235 MPa to 535 MPa,
the initial stiffness of the EUFDST composite column remains unchanged. The ductility
coefficient of the EUFDST composite column under eccentric load increases with the
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increase in the strength of the inner and outer steel tubes (f y1, f y2), the thickness of
inner and outer steel tubes (t1, t2), and the content of PVA (γ). At the same time, with
the increase in the compressive strength (f cu) and slenderness ratio (λ) of the UHPC
cylinder, the ductility coefficient of the composite column decreases gradually. When
the diameter ratio of the inner and outer steel tubes (Ω) changes in the range of 1.3–2,
the ductility of the composite column increases with the increase in the diameter ratio.
When the diameter ratio changes in the range of 2–2.5, the ductility of the composite
column decreases.

(2) The failure modes of all full-scale ECUFDST composite column specimens under
eccentric load are similar, manifested as the outward buckling of the outer steel tube
at the end of the compression zone and the ECC at the end of the compression zone.
The inner and outer steel tubes in the mid-span are all subjected to yield failure. The
concrete in the mid-span of the compression zone is crushed, and the concrete in the
tension zone is cracked. Due to the special cross-section form of double steel tubes,
the concrete in the tensile zone is mainly interlayer ECC, while the core UHPC mainly
bears axial pressure, and the tensile part is less.

(3) The EUFDST composite column is mainly divided into four stages under eccentric load:
the elastic stage, elastic-plastic stage, stable stage, and failure stage. By introducing the
slenderness ratio correction coefficient and the eccentricity correction coefficient, the
calculation equation of the axial compression maximum load-bearing capacity of the
full-scale EUFDST composite column is statistically regressed, and the finite element
results are compared. The maximum error is 8.92%, which meets the engineering
accuracy requirements.

(4) For the EUFDST composite column, it is recommended to control the UHPC strength
at 120 Mpa, which can maintain good ductility; the PVA fiber content is recommended
to be controlled at 2%, which can effectively improve the bearing capacity and ductility.
The thickness of the outer steel tube is recommended to be controlled at 15 mm,
and the thickness of the inner steel tube is controlled at 20 mm. When the strength
of the outer steel tube increases to 435 Mpa, the ductility increases significantly. It
is recommended to control it at 435 Mpa. When the inner steel tube increases, the
ductility coefficient increases linearly and can be controlled according to the actual
situation. When the diameter ratio is about 1.5, the bearing capacity and ductility of
the composite column can be improved with less material cost. For the composite
column with large eccentricity, the diameter of the inner steel tube can be appropriately
reduced. Taking the specimen in this paper as an example, the variation range can be
controlled within 20 mm. For the composite column with a large slenderness ratio,
there is no need to change the diameter ratio.

(5) Compared to traditional steel tubular concrete columns, the bending resistance of
EUFDST composite columns has been greatly improved. UHPC provides high load-
bearing capacity, while the outer steel tube and ECC provide strong constraints. At
the same time, the presence of ECC improves the ductility of the structure. In practical
applications, combining the two reduces the impact of the high brittleness of UHPC
and the low compressive strength of ECC. Inevitably, due to the high production costs
of UHPC and ECC, the economic benefits of the EUFDST combination are relatively
low, making it difficult to utilize widely.

Author Contributions: Conceptualization, L.J.; Software, L.J., Y.H., J.J., Y.L., X.C. and G.M.; Formal
analysis, Y.H.; Validation, J.J.; Investigation, Y.H. and Z.Z.; writing—original draft, L.J. and Y.H.;
writing—review and editing, Y.H., J.J., Y.L., Z.Z., X.C. and G.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the General Project of the National Natural Science Foun-
dation of China (52178143), Joint Guidance Project of Natural Science Foundation of Heilongjiang
Province (No. LH2020E018), Scientific Research Fund of Institute of Engineering Mechanics of China



Buildings 2024, 14, 1487 31 of 32

Earthquake Administration (No. 2020D07), and the China-Pakistan Belt and Road Joint Laboratory
on Smart Disaster Prevention of Major Infrastructures (No. 2022CPBRJL-05).

Data Availability Statement: The data supporting this study’s findings are included in the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ahmad, J.; Majdi, A.; Babeker Elhag, A.; Deifalla, A.F.; Soomro, M.; Isleem, H.F.; Qaidi, S. A Step towards Sustainable Concrete

with Substitution of Plastic Waste in Concrete: Overview on Mechanical, Durability and Microstructure Analysis. Crystals 2022,
12, 944. [CrossRef]

2. Ji, J.; Wang, W.; Jiang, L.; Ren, H.; Wang, Q.; Xuan, W.; Liu, Y. Bearing capacity of uhpc-filled high-strength elliptical steel tube
composite columns with encased high-strength h-shape steel subjected to eccentrical load. Buildings 2022, 12, 1272. [CrossRef]

3. Li, V.C. A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites. Cement.
Concrete Comp. 1992, 14, 131–141. [CrossRef]

4. Fischer, G.; Li, V.C. Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed
cyclic loading conditions. Aci Struct. J. 2002, 99, 781–790.

5. Maalej, M.; Li, V.C. Flexural strength of fiber cementitious composites. J. Mater. Civil Eng. 1994, 6, 390–406. [CrossRef]
6. Ji, J.; He, L.J.; Jiang, L.Q.; Zhang, Y.F.; Liu, Y.C.; Li, Y.H.; Zhang, Z.B. Numerical study on the axial compression behavior of

composite columns with steel tube SHCC flanges and honeycombed steel web. Eng. Struct. 2023, 283, 115883. [CrossRef]
7. Xu, S.L.; Li, H.D. Research progress and engineering application of ultra-high toughness cementitious composites. China Civil

Eng. J. 2008, 6, 45–60.
8. Jaf, D.K.I.; Abdulrahman, P.I.; Mohammed, A.S.; Kurda, R.; Qaidi, S.M.A.; Asteris, P.G. Machine learning techniques and

multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength
of green concrete. Constr. Build. Mater. 2023, 400, 132604.

9. Ji, J.; Zhang, Z.; Lin, M.; Li, L.; Jiang, L.; Ding, Y.; Yu, K. Structural Application of Engineered Cementitious Composites (ECC): A
State-of-the-Art Review. Constr. Build. Mater. 2023, 406, 133289. [CrossRef]

10. Ahmed, M.; Liang, Q.Q.; Patel, V.I.; Hadi, M.N. Numerical analysis of axially loaded circular high strength concrete-filled double
steel tubular short columns. Thin Walled Struct. 2019, 138, 105–116. [CrossRef]

11. Ahmed, M.; Liang, Q.Q.; Patel, V.I.; Hadi, M.N. Experimental and numerical studies of square concrete-filled double steel tubular
short columns under eccentric loading. Eng. Struct. 2019, 197, 109419. [CrossRef]

12. Ci, J.; Mizan, M.A.; Tran, V.-L.; Jia, H.; Chen, S. Axial compressive behavior of circular concrete-filled double steel tubular short
columns. Adv. Struct. Eng. 2022, 25, 259–276. [CrossRef]

13. Hu, J.; Huang, Y.; Li, W.; Zhang, S.; Rao, S. Compressive behavior of UHPC-filled square high-strength steel tube stub columns
under eccentric loading. J. Constr. Steel Res. 2022, 198, 107558. [CrossRef]

14. Cai, J.; Pan, J.; Tan, J.; Vandevyvere, B.; Li, X. Behavior of ECC-encased CFST columns under eccentric loading. J. Build. Eng. 2020,
30, 101188. [CrossRef]

15. Chai, X.W.; Xie, Q.; Wang, X. Experimental study on tensile properties of hybrid fiber high toughness cementitious composites. J.
Build. Struct. 2022, 43, 353–361.

16. Ci, J.C.; Mizan, A.; Liang, Q.Q.; Chen, S.C.; Chen, W.S.; Sennah, K.; Hamoda, A. Experimental and numerical investigations into
the behavior of circular concrete-filled double steel tubular slender columns. Eng. Struct. 2022, 267, 114644. [CrossRef]

17. Liu, W.; Han, L.H. Study on the working mechanism of concrete filled steel tube under axial local compression load. China Civil
Eng. J. 2006, 39, 19–27.

18. Tao, Z.; Wang, Z.B.; Yu, Q. Finite element modeling of concrete-filled steel stub columns under axial compression. J. Constr. Steel
Res. 2013, 89, 121–131. [CrossRef]

19. Lam, L.; Teng, J.G. Design-Oriented Stress-Strain Model for FRP-Confined Concrete. Constr. Build. Mater. 2003, 17, 471–489.
[CrossRef]

20. Mander, J.B.; Priestley, M.J.N.; Park, R. Theoretical Stress-strain Model for Confined Concrete. J. Struct. Eng. 1988, 114, 1804–1826.
[CrossRef]

21. Pagoulatou, M.; Sheehan, T.; Dai, X.H. Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular
(CFDST) stub columns. Eng. Struct. 2014, 72, 102–112. [CrossRef]

22. Montuori, R.; Piluso, V.; Tisi, A. Comparative analysis and critical issues of the main constitutive laws for concrete elements
confined with FRP. Compos. Part B-Eng. 2012, 43, 3219–3230. [CrossRef]

23. Montuori, R.; Piluso, V.; Tisi, A. Ultimate behaviour of FRP wrapped sections under axial force and bending: Influence of
stress-strain confinement model. Compos. Part B-Eng. 2013, 54, 85–96. [CrossRef]

24. Li, Y.; Liang, X.W.; Deng, M.K. Constitutive Model of High-Performance PVA Fiber Reinforced Cementitious Composites under
Conventional Triaxial Compression. Eng. Mech. 2012, 29, 106–113.

25. Wang, Y.K. Research on Seismic Performance of ECC Bridge Piers. Master’s Thesis, Shandong University, Jinan, China, 2021.
26. Xiong, M.X.; Xiong, D.X.; Liew, J.Y.R. Axial performance of short concrete filled steel tubes with high- and ultra-high-strength

materials. Eng. Struct. 2017, 136, 494–510. [CrossRef]

https://doi.org/10.3390/cryst12070944
https://doi.org/10.3390/buildings12081272
https://doi.org/10.1016/0958-9465(92)90006-H
https://doi.org/10.1061/(ASCE)0899-1561(1994)6:3(390)
https://doi.org/10.1016/j.engstruct.2023.115883
https://doi.org/10.1016/j.conbuildmat.2023.133289
https://doi.org/10.1016/j.tws.2019.02.001
https://doi.org/10.1016/j.engstruct.2019.109419
https://doi.org/10.1177/13694332211046345
https://doi.org/10.1016/j.jcsr.2022.107558
https://doi.org/10.1016/j.jobe.2020.101188
https://doi.org/10.1016/j.engstruct.2022.114644
https://doi.org/10.1016/j.jcsr.2013.07.001
https://doi.org/10.1016/S0950-0618(03)00045-X
https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804)
https://doi.org/10.1016/j.engstruct.2014.04.039
https://doi.org/10.1016/j.compositesb.2012.04.001
https://doi.org/10.1016/j.compositesb.2013.04.059
https://doi.org/10.1016/j.engstruct.2017.01.037


Buildings 2024, 14, 1487 32 of 32

27. Luo, X.; Wei, J.G. Experimental study on eccentric compression performance of ultra-high strength concrete filled high strength
steel tube. J. Build. Struct. 2021, 42, 271–277.

28. Wei, J.G.; Luo, X.; Ou, Z.J.; Chen, B.C. Experimental study on axial compression behavior of ultra-high performance concrete
filled circular high strength steel tube short columns. J. Build. Struct. 2020, 41, 16–28.

29. Zhang, Y.X.; Deng, M.; Li, R.Z. Axial behavior of engineered cementitious composites confined by circular steel tubes. Eng. Struct.
2020, 224, 112216. [CrossRef]

30. Zhang, Z.; Wu, X.; Hu, G.; Sun, Q. Numerical study on triaxial compressive behavior of engineered cementitious composites
confined by circular steel tubes. Constr. Build. Mater. 2022, 345, 128285. [CrossRef]

31. Mao, M.; Tong, K.T.; Zhang, J.L.; Liu, T.; Li, Y. Experimental study on the mechanical performance of steel-bamboo composite
I-section columns under eccentric loading. J. Build. Struct. 2021, 42, 126–135.

32. Jiang, L.; Wang, W.; Ji, J.; Ren, H.; Wang, Q.; Sun, R.; Yu, C.; Zhang, H.; Luo, G. Bearing behavior of high-performance
concrete-filled high-strength steel tube composite columns subjected to eccentrical load. Front. Mater. 2022, 9, 972811. [CrossRef]

33. Ji, J.; Yu, D.Y.; Jiang, L.Q. Study on axial compression bearing capacity of solid-web double steel tube reinforced concrete
composite short column. Build. Struct. 2020, 50, 120–129.

34. GB 50936-2014; Technical Code for Concrete-Filled Steel Tubular Structures. China Architecture & Building Press: Beijing, China,
2014.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.engstruct.2020.111216
https://doi.org/10.1016/j.conbuildmat.2022.128285
https://doi.org/10.3389/fmats.2022.972811

	Introduction 
	Analysis Process of the Paper 
	Specimen Design 
	Finite Element Model (FEM) 
	Constitutive Model of Materials 
	Concrete and Steel Tubes 
	Constrained ECC Constitutive Model 

	Establishment of the Finite Element Model 
	Boundary Conditions and Contact Definitions 
	Mesh Subdivision 

	Experimental Verification of Finite Element Model 
	Verification of Nonlinear Constitutive Model Test of Constrained UHPC 
	Verification of FEM of Concrete-Filled Double Steel Tubular Composite Columns 
	Verification of Finite Element Model of Constrained ECC Composite Columns 


	Parameter Analysis 
	Load–Mid-Span Deflection (N-m) Curve and Ductility Coefficient Curve 
	Strength of the Outer and Inner Steel Tubes (fy1, fy2) 
	Thickness of Outer and Inner Steel Tubes (t1, t2) 
	Eccentricity (e) 
	Diameter Ratio of Outer and Inner Steel Tubes () 
	Slenderness Ratio () 
	Compressive Strength of UHPC Cylinder (fcu) 
	PVA Fiber Content () 

	Analysis of Deformation Law of Full-Scale EUFDST Composite Columns under Eccentric Load 
	Lateral Deflection Curves 
	Longitudinal Strain Distribution Law of Mid-Span Section 
	Load–Strain Curve Analysis of Steel Tubes 


	Bending Stiffness Analysis 
	Contact Stress Analysis 
	The Whole Process Analysis of Full-Scale EUFDST Composite Columns under Eccentric Compression 
	Failure Modes 
	Force Mechanism and Force Analysis of the Whole Process 

	Maximum Load-Bearing Capacity Equation of Eccentrically Loaded Composite Long Columns 
	Conclusions 
	References

