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Abstract: A considerable penetration of rooftop PV generation and increasing demand for heating
loads will enlarge the peak-to-valley difference, imposing a great challenge to the reliable operation of
distribution systems under cold climates. The objective of this paper is to establish a distributionally
robust demand response (DR) model for building energy systems for suppressing peak-to-valley
load ratios by exploiting cooperative complementarity and flexible transformation characteris-tics
of various household appliances. The thermodynamic effect of buildings is modeled for harvesting
intermittent renewable energy sources (RESs) on the building roof in the form of thermal energy
storages to reduce RES curtailments and eliminate thermal comfort violations in cold weather.
Furthermore, the Wasserstein metric is adopted to develop the ambiguity set of the uncertainty
probability distributions (PDs) of RESs, and thus, only historical data of RES output is needed rather
than prior knowledge about the actual PDs. Finally, a computationally tractable mixed-integer linear
programming reformulation is derived for the original distributionally robust optimization (DRO)
model. The proposed DRO-based DR strategy was performed on multiple buildings over a 24 h
scheduling horizon, and comparative studies have validated the effectiveness of the proposed strategy
for building energy systems in reducing the peak/valley ratio and decreasing operation costs.

Keywords: building energy system; demand response; distributionally robust optimization; cold
climate; rooftop solar photovoltaic

1. Introduction
1.1. Motivation

Building energy systems with various household appliances and distributed renew-
ables have emerged as the predominant energy consumer and contributor to carbon emis-
sions [1,2]. It is reported by the International Energy Agency (IEA) that the operations of
building energy systems contributed to one-third of global electricity consumption and 26%
of global CO2 emissions, with an average growth rate of 1% per year in the past decade [3].
During cold weather conditions, the demand for electricity surges due to energy-intensive
appliances like air conditioning units, electric heaters, and heat pumps in buildings [4]. The
synchronization of energy-consuming activities among multiple buildings, such as simul-
taneously increasing their heating load, can result in an instantaneous surge in electricity
demand, leading to a rapid escalation in peak loads in urban distribution systems [5]. In
general, multiple buildings are supplied by a transformer with a rated capacity.

However, the frequent occurrence of transformer overloading under cold climates,
caused by the rapid growth in electricity demand for heating, accelerates the insulation
aging of the transformer and may even lead to power outages and disrupt the power supply
to buildings [6]. The transformer overloading poses a significant threat to the reliability of
power supply to building energy systems under cold climates [7]. Recent advancements in
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smart meters, electric vehicles, air conditioners, heat pumps, and other smart appliances
offer substantial load flexibility for building energy management. Therefore, demand-side
response measures can help mitigate the peak load on distribution systems. Demand
response (DR) is regarded as a primary approach for flattening the peak load curve of
distributed systems by coordinating load shifting and shedding [8].

Furthermore, the integration of renewable energy sources, such as wind turbines
and solar panels, within buildings offers a complementary approach to reduce reliance
on urban distributed systems during peak demand periods [9]. Building rooftops have
consistently been identified as desirable locations for photovoltaic (PV) system installations.
Presently, approximately half of the total solar PV capacity additions are attributed to solar
PV installations on buildings, including rooftops, and this proportion is projected to more
than double by 2030 [10]. Large-scale decentralized PV electricity generation on building
rooftops presents a promising alternative for supplying electricity to heating loads during
cold weather, effectively reducing the net load of urban distributed systems. Nevertheless,
solar generation on the building rooftops directly depends on sunlight availability, which
fluctuates throughout the day due to varying weather conditions [11]. The intermittent
nature of solar generation can lead to sudden changes in power output, posing challenges in
maintaining a reliable electricity supply to buildings [12]. In this regard, the uncoordinated
operation of heating appliances and the uncertainty in renewable energy resources represent
critical concerns for ensuring a reliable and resilient power supply to buildings, particularly
during peak hours under cold climates. Therefore, it is imperative to develop capable
modeling and analysis methods for the synergistic energy management of building energy
systems in cold climates, considering the uncertainty in the generation of rooftop solar PVs.

1.2. Literature Review

Existing DR programs for buildings are categorized into incentive-based DR and
price-based DR [8,13,14]. The incentive-based DR, alternatively referred to as “system-
led” or “emergency-based” DR programs, aims to incentivize customers to reduce and
shift the energy consumption of electrical appliances for buildings by providing incentive
payments during periods of stress [13]. Incentive-based DR programs include direct-
load controls, interruptible tariffs, demand-bidding programs, and emergency programs.
The price-based DR, also identified as “market-led” or “economic-based” DR programs,
encourages customers to individually adjust their energy consumption from peak hours
to less congested hours via time-varying power price signals [15]. In typical price-based
DR programs, the electricity price can vary either at pre-set times or dynamically based
on the time, and the types of electricity prices consist of time-of-use pricing, critical-peak
price, and real-time price [8]. Due to the requirement for customers to commit to load
reduction during the execution time of incentive-based DR programs, the incentive-based
DR is more favorable than the price-based DR to effectively mitigate emergency peak loads
during cold days [4,6]. Over 90% of DR load reduction schemes in the DR market have
been implemented in recent years by diverse incentive-based DR programs, which have
brought significant benefits for electric utilities and customers [16].

Numerous researchers have been engaged in modeling and simulating building flexi-
bility resource systems from the demand and supply sides in power systems. Demand-side
flexibility resources are commonly categorized into non-thermostatic loads, such as lights
and thermostatic loads, including air-conditioning units [4]. In references [1,8] and [17],
smart appliances like washing machines, dishwashers, and tumble dryers have been mod-
eled to operate automatically at the optimal time set by consumers. The charging of smart
electric vehicles (EVs) can be dynamically curtailed or delayed from times of high network
load to nighttime with sophisticated technology, which can autonomously monitor and
react to urban low-voltage distribution networks [18]. These features facilitate the adoption
of more dynamic forms to the DR of buildings, ensuring enhanced support for the secure
operation of electricity networks. To ensure energy efficiency and implement DR programs,
building energy models have been consistently valuable tools in aiding the prediction and



Buildings 2024, 14, 1530 3 of 20

management of building energy [4]. Statistically based machine learning models, such as
artificial neural network models, have been used to forecast buildings’ energy consump-
tion [19]. However, the major limitation of the machine learning models is that the models
need vast amounts of actual statistical data to train and cannot provide a detailed physical
understanding. To overcome this drawback, a simplified thermal dynamics model was
developed in [20] to simulate potential flexibility in residential and small commercial build-
ings. A more complicated resistance–capacitance model is proposed in [21] to calculate
the thermostatic loads in a one-zone building. Nonetheless, these works failed to account
for modeling and utilizing buildings’ thermodynamic effects for harvesting intermittent
renewable energy sources.

Optimal building DR strategies with different electric appliances and EVs have been
extensively studied and reported in [22–25]. The DR strategies have been proposed in [22]
to adjust temperature setpoints of HVAC systems for the peak load reduction of urban
distribution networks. Two aggregate community-level DR strategies were developed
in [23] to utilize the potential flexibility of the battery-switching EVs for peak shaving.
In [24], a three-layer game theoretic-based strategy was proposed for coordinating smart
buildings, EV fleets, and microgrids. In addition, different climate zones and building
types can affect the building’s physical and office workers’ behavior in buildings. Both are
considered in the DR strategies to balance electricity supply and demand in buildings. A
real-time DR strategy based on deep reinforcement learning is proposed in [25] to jointly
optimize home appliance schedules. Although many building DR strategies have been
conducted in previous studies, earlier works merely focused on the different amounts of
energy flexibility derived from heterogeneous building energy systems for supporting the
operation of power distribution networks under cold climates. Additionally, the uncertainty
in rooftop renewable generations has yet to be considered.

Various methods, such as robust optimization, stochastic programming, and distri-
butionally robust optimization (DRO), have been proposed in the literature to handle the
uncertainties effectively [26]. In Ref. [27], bi-level stochastic programming was applied
to coordinate uncertain renewable generations and DR, where the generation uncertainty
of wind turbine and photovoltaic was represented by a group of scenarios. In [28], a
chance-constrained two-stage stochastic program was developed to minimize building
energy costs where the uncertainties of the electricity prices, solar power generation, and
weather conditions were represented by a versatile probability distribution. In [29], an
effective chance-constrained cooperative operation strategy was proposed to enhance the
profits of the multi-agent energy system and participating agents under uncertainties of
the outdoor environment. Nevertheless, the accurate probability distribution of random
variables is typically unknown, and the available historical data are scant [30]. On the
contrary, in [31], the robust optimization method was adopted for the economic operation
of the integrated energy system, considering thermal comfort and DR. A novel bilayer
coordinated operation method was developed in [32] for the economic operations of the
multi-energy building microgrid based on robust optimization. Nevertheless, since the
robust optimization method only optimizes the objective for the worst-case scenarios, the
method inevitably yields an excessively conservative outcome. The recently emerged
DRO methods offer a superior alternative to stochastic and robust optimization methods,
effectively addressing the susceptibility of stochastic programming and the insensitivity of
robust optimization to probabilistic information [33,34].

1.3. Contribution

This paper proposes a data-driven DRO model that accounts for the uncertainty in
the generation of rooftop solar PV to address the optimal DR problem of building energy
systems under cold climate conditions. Considering buildings’ thermal energy storage
ability, an optimal DR strategy for heterogeneous households’ appliances is proposed
to reduce the peak/valley ratio, accommodate rooftop PV, and decrease operation costs.
A comprehensive description of the thermal energy transfer process and its relationship
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with temperature variations is provided. A data-driven Wasserstein-metric-based DRO
is formulated to minimize operation costs considering the uncertainty in rooftop PVs,
and then a mixed-integer linear programming reformulation of the original DRO mode is
derived for computational tractability. The main contributions of this paper are threefold:

(1) An optimal DR strategy of schedulable household appliance loads, including HVACs,
curtailable loads, and transferable loads, is proposed to ensure the consumers’ com-
fortable temperature needs. By leveraging the complementarity and flexibility of loads
in building energy systems and taking advantage of the thermal inertia of buildings,
the proposed strategy can effectively reduce the curtailment of uncertain rooftop
PV generation, decrease the peak-to-valley load ratio, and improve the economic
performance of building energy systems.

(2) A detailed thermal resistor–capacitor model is established to accurately describe
buildings’ thermal dynamic characteristics, and the building thermodynamic effect
is used in the renewable utilization process for harvesting intermittent rooftop PV
generations in the form of thermal storage. The solar radiation and thermal energy
interaction between indoor space and cold external environment through envelope
structures are considered. This model provides a foundation for the efficient operation
of building energy systems.

(3) The optimal DR problem of heterogeneous building energy systems is formulated
as a data-driven DRO-based DR mode to handle the inherent uncertainty in the
generation of rooftop solar PV. The Wasserstein metric is employed to construct the
ambiguity, which only requires historical data of rooftop PV generations rather than
actual probability distributions. Furthermore, an equivalent mixed-integer linear
programming reformulation of the original DRO model is derived for computational
tractability.

2. Optimization-Based Demand Response of Heterogeneous Building Energy Systems
2.1. Optimal Demand Response Framework of Buildings

This study aims to investigate the optimal DR problem of building energy systems
under cold climates, and an aggregator is incorporated to coordinate and manage the
energy usage of different electrical loads within these building energy systems. Figure 1
depicts the aggregation of energy systems equipped with rooftop solar PVs and different
types of electrical loads of household appliances. Here, the appliances of buildings can be
divided into four load categories: curtailable loads, transferrable loads, HVACs, and base
loads [10,16]. The communication and control for flexible loads are performed with the
aggregator via the energy management system [1]. Given that the electrical energy fed back
to the power grid needs to meet the quality requirements, this study does not consider the
sale of electricity from building energy systems to the power grid. Under cold climates,
the increased thermal demand from consumers and the volatility of rooftop PV generation
pose challenges to the efficient energy management of buildings. Uncertainty in rooftop
PV generation can lead to difficulties in designing operational strategies, resulting in rapid
load rate changes and potential overloading of transformers. This can negatively impact
the stability of power grids and the economic performance of buildings. The thermal
storage characteristics of buildings offer an effective means to fulfill consumers’ thermal
comfort requirements and mitigate PV fluctuations under cold climates. By fully utilizing
the thermal energy storage capability of buildings and coordinating with flexible load
scheduling such as HVAC, curtailable loads, and transferable loads, the curtailment of
renewable energy, the peak/valley ratio, and the violation of consumers’ thermal comfort
can all be reduced. Therefore, an optimal DR strategy considering uncertain rooftop PV is
proposed to coordinate and optimize the load transfer amount and curtailment along with
HVAC operations to coordinate the usage of the flexible loads and reduce economic costs.
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Figure 1. Framework of demand response in heterogeneous building energy systems.

To realize the optimal operation of the building energy system, the method adopted
in this paper is the scheduling of flexible resources, including curtailable loads, transfer-
able loads, HVACs, and the ESS. And the basic principle of scheduling is to shift power
purchases from the grid as far as possible to the low-price periods, which can improve the
economy of the building energy system. However, the uncertainty of rooftop PV makes
scheduling more difficult. Therefore, DRO is introduced to handle the challenge. Then, by
solving the DRO model, the optimal strategy of the building energy system is obtained.

2.2. Building Energy System Modeling
2.2.1. Curtailable Loads and Transferable Loads

To fully tap into the responsiveness potential of buildings, it is necessary to construct
models for curtailable loads and transferable loads [35]. Curtailable loads mean the loads
whose electrical power can be curtailed to a certain extent. Transferable loads mean the
loads that can transfer part of the power to the other time slots, but the total power during
the scheduling periods must remain unchanged. Obviously, the adjustment of curtailable
loads and transferable loads will bring discomfort to consumers [17]. Therefore, reasonable
subsidies should be paid to the consumers to compensate for their sacrifices. According to
the above characteristics, the DR loads, including curtailable loads and transferable loads,
are modeled as follows:

LDR
t = Lori

t − Ltran,out
t + Ltran,in

t − Lcut
t (1)

∑
t∈T

Ltran,out
t = ∑

t∈T
Ltran,in

t (2)

Ltran,out
t Ltran,in

t = 0 (3)

0 ≤ Lcut
t ≤ Lcut

max (4)

0 ≤ Ltran,out
t , Ltran,in

t ≤ Ltran
max (5)

where the subscript t means time slot t; LDR
t and Lori

t are original electrical loads and actual
loads after DR; Ltran,in

t is the electrical loads that transferred into time slot t; Lcut
t and Ltran,out

t
are the loads reduced and transferred out of the time slot t, respectively; Lcut

max and Ltran
max are

maximum values of reduced load and transferred load, respectively. Equation (1) shows
the electrical loads after adjusting reduced loads and transferable loads. Equation (2) makes
sure the total value of transferred loads remains unchanged during the whole scheduling
period. Equation (3) means loads cannot be transferred out of and into the same time
slot. Equations (4) and (5) constrain the upper and lower limits of reduced loads and
transferred loads.
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2.2.2. HVAC

As a temperature control load, HVACs can convert electrical energy into thermal
energy, and this is one of the main ways to provide heat sources for indoor consumers
in cold climates [22]. Due to the low sensitivity of the human body to temperature and
the thermal inertia of buildings, HVAC can be used to participate in DR while ensuring a
comfortable temperature range for consumers. The change in its operating power affects
the electric load and thermal load [28]. The electrical power of HVAC can be divided into
two parts, which are shown below:

PHVAC
t = Pthermal

t + Pfan
t (6)

where Pthermal
t and Pfan

t are the heating power and fan power of HVAC, respectively; PHVAC
t

is the total power of HVAC equipment in a certain indoor room.
The thermal power and fan power of HVAC can be calculated by the following

equations:
Pthermal

t = [mroom
k,t Cair(T

supply
k,t − Troom

k,t )]/Ccop (7)

Pfan
t = [mroom

k,t (Pstatic − ρ
v2

2
)]/(ηmotorηfan) (8)

where mroom
k,t is the air mass flow into or out to the room k; Cair and Ccop are the specific heat

capacity of air and the performance coefficient of HVAC; Tsupply
k,t and Troom

k,t are the supply
of air temperature and indoor temperature in the room k; Pstatic, ρ, v are static pressure
difference of HVAC, air density and wind speed, respectively; ηmotor and ηfan are motor
coefficient and fan coefficient of air supply equipment.

The constraints required for HVAC operations are as follows:

Troom
min ≤ Troom

k,t ≤ Troom
max (9)

Tsupply
min ≤ Tsupply

k,t ≤ Tsupply
max (10)

ηTsupply
min ≤ Tsupply

k,t+1 − Tsupply
k,t ≤ ηTsupply

max (11)

where Troom
max and Troom

min are the upper and lower limit of consumers’ comfortable tempera-

ture interval; Tsupply
max and Tsupply

min are the maximum and minimum values of HVAC’s supply
air temperature; η is the change rate coefficient for supply air temperature. Equation (9)
considers the temperature demand of consumers and ensures the room temperature is
within a comfortable range. Equations (10) and (11) limit the magnitude and change rate of
HVAC’s supply air temperature.

2.2.3. Thermal Dynamic Model of Buildings

The indoor space of buildings can be modeled by the resister–capacity network con-
sidering the thermodynamics of the buildings. In this model, an indoor room has five
nodes, i.e., one room node and four wall nodes. Moreover, there is a window on one of the
walls for each indoor room [2]. The heat can be transferred between nodes through thermal
resistance and stored in nodes through thermal capacity [19].

According to the theory of thermodynamics, the heat energy will transfer from the
indoor space of the building to the cold external environment through each side of the
building envelope structures. Moreover, rooms can transfer heat with each other through
walls. At the same time, solar radiation also has a great influence on the temperature of
the building [4]. It can be assumed that all rooms in the building have the same envelope
structures with the same parameters. Therefore, the HVAC loads of the whole building can
be calculated by summing the HVAC power of all indoor rooms.
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The mathematical model of the indoor room equipped with HVAC can be established
as follows:

Cwall
ij

dTwall
ij

dt
= ∑

j∈Nwall

Tj − Twall
ij

Rwall
ij

+ qijvij Awall
ij Qrad

ij (12)

Croom
k

dTroom
k
dt = ∑

j∈Nroom

Twall
ij −Troom

k

Rwall
ij

+ πij ∑
j∈Nroom

Tj−Troom
k

Rwin
ij

+Qint
k + mroom

k Cair(T
supply
k − Troom

k ) + πijwij Awall
ij Qrad

ij

(13)

where Cwall
ij and Croom

ij are thermal capacities of the walls and indoor rooms; Twall
ij and Tj

are wall temperatures and jth node’s temperature; Rwall
ij and Rwin

ij are thermal resistances
of walls and windows; Nwall and Nroom are the numbers of wall nodes and room nodes;
qij and vij are sunlit wall identifiers and absorption coefficient of the walls; Awall

ij and Qrad
ij

are the area of the wall and radiative heat flux density on the wall; πij and Qint
k are sunlit

window identifiers and internal heat gain; wij is transmittance coefficient of the window. If
the wall ij is exposed to external solar radiation, qij equals 1; otherwise, it is taken as 0. If
the wall ij has a window, πij equals 1; otherwise, it is taken as 0. Equation (12) describes the
temperature variation pattern of wall nodes, and Equation (13) describes the temperature
variation pattern of room nodes.

Considering an indoor area whose structure is shown in Figure 2, the above thermal
balance model can be specifically converted into the following form:

Cwall
12,k (T

wall
12,k,t+1 − Twall

12,k,t) = ∆t(
Troom

k,t − Twall
12,k,t

Rwall
12,k

+
Tadj

12,k,t − Twall
12,k,t

Rwall
12,k

) (14)

Cwall
13,k (T

wall
13,k,t+1 − Twall

13,k,t) = ∆t(
Troom

k,t − Twall
13,k,t

Rwall
13,k

+
Tadj

13,k,t − Twall
13,k,t

Rwall
13,k

) (15)

Cwall
14,k (T

wall
14,k,t+1 − Twall

14,k,t) = ∆t(
Troom

k,t − Twall
14,k,t

Rwall
14,k

+
Tout

14,k,t − Twall
14,k,t

Rwall
14,k

+ q14,kv14,k Awall
14,k Qrad

14,k,t) (16)

Cwall
15,k (T

wall
15,k,t+1 − Twall

15,k,t) = ∆t(
Troom

k,t − Twall
15,k,t

Rwall
15,k

+
Tout

15,k,t − Twall
15,k,t

Rwall
15,k

+ q15,kv15,k Awall
15,k Qrad

15,k,t) (17)

Croom
k (Troom

k,t+1 − Troom
k,t ) = ∆t[

4
∑

j=1

Twall
1j,k,t−Troom

k,t

Rwall
1j,k

+
Tout

k,t −Troom
k,t

Rwin
15,k

+ Qint
k

+mroom
k,t Cair(T

supply
k,t − Troom

k,t ) + w15,k Awall
15,k Qrad

k,t ]

(18)

where Tout
ij,k,t and Tadj

ij,k,t are the outdoor temperature and adjacent node temperature; ∆t is the
scheduling interval. The above equations show the relationship between wall temperatures
and room temperatures between two time slots. Based on the comfort demand of building
consumers and electrical power demand, this model can flexibly schedule the HVAC power
to realize the optimal operation with the help of building thermal inertia. Accumulating all
HVAC powers in the entire building can obtain the total power which can be intelligently
regulated as a flexible load aggregation.
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2.2.4. Energy Storage System

ESS is helpful in dealing with the uncertainty of PV and the changes in power price [13].
Therefore, the following ESS model is established.

SESS
t+1 = SESS

t + (PESS
C,t ηESS

C − PESS
D,t /ηESS

D )/EESS (19)

SESS
1 = SESS

T (20)

PESS
C,t PESS

D,t = 0 (21)

0 ≤ PESS
C,t ≤ PESS

C,max (22)

0 ≤ PESS
D,t ≤ PESS

D,max (23)

SESS
min ≤ SESS

t ≤ SESS
max (24)

where SESS
t and EESS are the SOC and energy capacity of ESS; PESS

C,t and PESS
D,t are charging

and discharging power of ESS; ηESS
C and ηESS

D are charging and discharging efficiency;
PESS

C,max and PESS
D,max are the maximum values of charging and discharging power; SESS

max

and SESS
min are the maximum and minimum values of ESS’s SOC. Equation (19) shows the

SOC change due to charging and discharging behaviors. Equation (20) maintains the
periodic operation of ESS. Equation (21) ensures charging and discharging do not occur
simultaneously. Equations (22) and (23) restrict the upper and lower limits of charging
power and discharging power. Equation (24) limits the energy stored in the ESS within a
reasonable capacity range at all times.

2.2.5. Power Balance

Therefore, considering the electrical power balance of the whole building [20], the
following equation is put forward:

PHVAC
t + LDR

t + PESS
C,t = PPV

t + Pbuy
t + PESS

D,t (25)

0 ≤ Pbuy
t ≤ Pbuy

max (26)

where Pbuy
t is the purchased power from the grid and PPV

t is the output of PV installed on
the roof of the buildings; Pbuy

max is the maximum value of purchased power from the grid.
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Equation (25) is the balanced relationship among various powers in the building energy
systems. Equation (26) restricts the amount of purchased power from the grid.

2.3. Data-Driven Distributionally Robust Demand Response Optimization Model Formulation

For a building energy system, the operation economy is usually the primary focus.
Thus, the objective function of the optimization schedule is shown as Equation (27), which
can be divided into two terms. The first term CDR

t refers to the economic subsidies for
consumers to participate in DR, which can compensate for the negative impact of curtailing
and transferring loads on the power supply satisfaction. It is associated with the decisions
that are independent of the uncertainty. The second term Cgrid

t refers to the expected
fees that need to be paid for purchasing power from the grid affected by the imposed
uncertainty considering the worst-case realization of the probability distributions.

minC = ∑
t∈T

{
CDR

t + sup
P∈P̂

EP
[
infCgrid

t

]}
(27)

where C is the total cost of building energy system, and T is the set of time slots; P̂ is the
ambiguity set that contains the possible distributions of PPV

t .

CDR
t = φtranLtran,out

t + φcutLcut
t (28)

Cgrid
t = λ

buy
t Pbuy

t (29)

where λ
buy
t is the price for purchasing power from the grid; φtran and φcut are the subside

price for transferable loads and reduced loads.
In summary, the data-driven DRO-based DR model of building energy systems can be

compactly formulated as follows:

minC = ∑
t∈T

{
CDR

t (xt) + sup
P∈P̂

EP
[
infCgrid

t (yt)
]}

over x :=
{

Ltran,out
t , Ltran,in

t , Lcut
t , Tsupply

k,t , PESS
C,t , PESS

D,t

}
t∈T

y :=
{

Pbuy
t

}
t∈T

s.t. x ∈ X
T(x)P̂PV

+ h(x) ≤ Wy

(30)

where X is the feasible region of x; T(x), h, and W are parameter matrices or vectors
obtained from constraints (1)–(11) and (14)–(26); and P̂PV is a random matrix comprising
the uncertain parameters of rooftop PV generation.

3. Solution Methodology of Distributionally Robust Demand Response Problem
3.1. Linearization of Bi-Linear Terms

In the constructed models, Equations (3) and (21) are nonlinear constraints. The
following method can be leveraged to transform such constraints [33]. After processing,
Equations (3) and (5) could be merged and converted into Equations (31) and (32). Equations
(21)–(23) could be merged and converted into Equations (33) and (34).

0 ≤ Ltran,out
t ≤ γtran

t Ltran
max (31)

0 ≤ Ltran,in
t ≤ (1 − γtran

t )Ltran
max (32)

0 ≤ PESS
C,t ≤ γESS

t PESS
C,max (33)

0 ≤ PESS
D,t ≤ (1 − γESS

t )PESS
D,max (34)
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where γtran
t and γESS

t are introduced binary variables.

3.2. Construction of Wasserstein Metric-Based Ambiguity Set

It is necessary to obtain the probability to calculate the expectation value of random
PPV

t . However, it is difficult to obtain the actual probability distribution, and only a set of

historical samples P̂PV
=

{
P̂PV

1 , P̂PV
2 , . . . , P̂PV

N

}
is available, where N is the sample number.

The Wasserstein metric is leveraged to construct the ambiguity set P̂N . According to the
historical data, an empirical probability distribution P̂N = 1

N ∑N
i=1 δ

P̂PV
i

can be derived to
estimate the actual probability distribution, and δδ

P̂PV
i

is the Dirac measure of the historical

sample P̂PV
i [36]. As shown in Equation (35), the distance between the actual probability

distribution and estimated probability distribution can be calculated as follows:

W(P̂N ,P) = inf
Π

{∫
Ξ2

∥ω − ω̂∥Π(dω, dω̂)

}
(35)

where Ξ is the compactor support of the random variable; Π is a joint distribution of ω and
ω̂ with marginal probability distribution P̂N and P. Then, we can construct the ambiguity
set as Equation (36):

P̂ := {W(P̂N ,P) ≤ ε(N)} (36)

where ε(N) is the radius of the ambiguity set P̂ and the center is P̂N , which is a function of
the confidence level β and the sample number N, as follows:

ε(N) = D

√
2
N

ln(
1

1 − β
) (37)

where D is the diameter of the support of random variable [36].

3.3. Reformulation of Data-Driven DRO Model

In general, a two-stage distributionally robust linear programming model can be
compactly formulated as

min c⊤x +Z(x)
s.t. x ∈ X (38)

where
Z(x) = sup

P∈P̂
EP[Z(x, ξ̃)]. (39)

Here, X ∈ RN1 is the feasible set of the here-and-now decisions x, c is the coefficient
vector of x, Z(x) is the worst-case expected wait-and-see cost, ξ̃ ⊆ RK is a random vector,
whose distribution P is supported on Ξ,P̂ is an ambiguity set that contains the possible
distributions of ξ̃, and Z(x, ξ) is a recourse function that constitutes the optimal value of
the parametric linear recourse problem, that is

Z(x, ξ) = inf (Qξ + q⊤)y
s.t. y ∈ RN2

A(x)ξ + b(x) ≤ Wy.
(40)

where y is the wait-and-see decisions; A(x) and b(x) are matrix- and vector-valued affine
functions, respectively; Q, W, and q are parameter matrices or vectors with appropriate
dimensionality.

In general, the true distribution of ξ̃ is unknown, and I samples of ξ̃, i.e., ξ̂1, . . ., ξ̂ I , can
be obtained from history data. Define [•] as the index set {1, 2, . . . , •}. Let R+ denote the
set of non-negative reals and ϵ denote the Wasserstein ball of radius. According to Ref. [37],
when Q = 0 and the ambiguity set is constructed using the 1-Wasserstein metric with
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reference distance d(ξ1, ξ2) = ∥ξ1 − ξ2∥1, problem (38) can be equivalently transformed
into the following tractable linear model:

min ϵλ + 1
I ∑

i∈[I]
q⊤yi

s.t. x ∈ X , λ ∈ R+, yi ∈ RN2 ∀i ∈ [I]
ϕk ∈ RN2 , φk ∈ RN2 ∀k ∈ [K]
A(x)ξ̂i + b(x) ≤ Wyi ∀i ∈ [I]
q⊤ϕk ≤ λ, q⊤φk ≤ λ ∀k ∈ [K]
A(x)ek ≤ Wϕk,−A(x)ek ≤ Wφk ∀k ∈ [K]

(41)

where ek is the vector of all ones, and ϕk and φk are auxiliary variables.
Based on the above transformation, the proposed DRO-based DR model based on the

Wasserstein metric can be recast into the following computationally tractable form:

min ε(N)λ + 1
|N|

N
∑

i=1
qTyi

s.t. x ∈ X , λ ∈ R+, yi ∈ RT ∀i ∈ [N]
ϕk ∈ RT , φk ∈ RT ∀k ∈ [Kpv]

T(x)P̂PV
i + h(x) ≤ Wyi ∀i ∈ [N]

qTϕk ≤ λ, qT φk ≤ λ ∀k ∈ [Kpv]
T(x)ek ≤ Wϕk,−T(x)ek ≤ Wφk ∀k ∈ [Kpv]

(42)

where Kpv is the dimensionality of P̂PV
i and q is a parameter vector obtained from (29).

Off-the-shelf commercial solvers can be used to readily solve (42) with reliable accuracy.
In summary, the modeling and transforming procedure of the paper is shown in

Figure 3.
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4. Results

This section verifies the effectiveness of the proposed strategy through the case study.
Based on the heating application circumstances in cold weather, operation effects under
different operating modes are compared. The optimization problem is solved in the Matlab
R2023a platform. The hardware environment of the PC is Intel (R) Core (TM) i7-10700K
CPU @ 3.80 GHz with 32 GB RAM.

4.1. Case Setting

The optimization period is 24 h and ∆t is 15 min. The indoor HVACs are continuously
in operation. When heating or cooling the indoor area of a building, it takes some time to
raise or lower the indoor temperature of the building, and the slow thermal behavior of the
building promotes its thermal inertia. The comfortable temperature range for consumers
depends on various environmental factors, such as temperature, metabolic rate, and airflow
rate. Therefore, the comfortable temperature range that consumers can accept may vary
depending on the situation. The preferred thermal neutral range for ordinary people is
between 17 ◦C and 33 ◦C. In this paper, the comfortable temperature range for smart
building consumers is set to 20 ◦C~24 ◦C. However, the proposed optimization strategy is
not limited to the above range. By changing the control scheme of the HVACs, the strategy
can be further applied to other hotter or colder climate areas. The building parameters
and HVAC parameters are shown in Table 1. The solar radiation and outdoor temperature
are shown in Figure 4. There are 8 smart buildings in this section and each building has
100 rooms. A total of 1000 PV original output curves are obtained according to historical
data and then are reduced into 5 scenarios, which are shown in Figure 5. The curves of
electrical loads and power prices are shown in Figure 6. The reduced load cannot exceed
10% of the load and the transferred load cannot exceed 30% of the load at each time slot.
The maximum charging and discharging power of the ESS are 200 kW, and the energy
capacity is 2000 kWh. The charging and discharging efficiency are both 0.95.

Table 1. Parameters of buildings and HVACs.

Building Parameters Value HVAC Parameters Value

Rwall 0.06 K/W ρ 1.29 kg/m3

Rwall with a window 0.08 K/W Cair 1005 J/kg·◦C
Rwin 0.02 K/W v 4 m/s
Cwall 7.9 × 105 J/K Ccop 3.0

Cwall with a window 2.6 × 107 J/K Pstatic 135 Pa
Croom 2.5 × 105 J/K ηmotor · ηfan 0.15
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4.2. Results Analysis

To highlight the superiority of the proposed strategy, four cases are set to compare,
whose differences are clarified in Table 2. In Case 1, the room temperature is set as a
constant value rather than a range, and flexible loads are non-schedulable. In Case 2, the
room temperature is still set as a constant value, but flexible loads are schedulable. In
Case 3, the room temperature is considered a comfortable range for consumers, and flexible
loads are non-schedulable. Case 4 is the proposed strategy with a comfortable temperature
range and schedulable flexible loads.

Table 2. Differences among the four cases.

Case Room Temperature Flexible Load

1 Constant value Non-schedulable
2 Constant value Schedulable
3 Comfortable range Non-schedulable
4 Comfortable range Schedulable

The economy of different cases is shown in Table 3. Case 4 has the best economy, while
Case 1 has the worst. Case 1 does not schedule flexible loads and utilize the thermal inertia
of buildings to respond to the power price, so the payment to the grid for purchasing power
is the highest. Case 2 gives full play to the flexible loads. The loads in peak periods of power
price are curtailed or transferred to the valley periods, which can reduce the payment for
purchasing power compared to Case 1. Case 3 utilizes the thermal storage characteristics of
the buildings to flexibly adjust the HVAC power while meeting consumers’ comfort needs.
Therefore, the HVAC power in the peak period is reduced, which decreases the payment to
the grid compared to Case 1. Case 4 combines the advantages of Case 2 and Case 3 while
leveraging the regulation potential of curtailable loads, transferrable loads, and HVACs,
maximizing the economy of smart buildings. In terms of numerical comparisons, the total
payments of Case 1, 2, and 3 are 10.4%, 5.7%, and 4.6% higher, respectively, compared to
Case 4.
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Table 3. Economic comparison of different cases.

Case Payment to the Consumers Payment to the Grid Total Payment

1 0 USD 1703.3 USD 1703.3 USD
2 92.3 USD 1537.4 USD 1629.7 USD
3 0 USD 1613.2 USD 1613.2 USD
4 89.3 USD 1453.1 USD 1542.4 USD

The curves of HVAC power under different operation modes are shown in Figure 7. In
Case 2, the HVAC needs to maintain the room temperature at a fixed value, which is 22 ◦C
in this section. Thus, the flexibility of HVACs and the thermal inertia of buildings have
not been fully explored. The weak sensitivity of humans to small changes in temperature
has not been fully utilized. Case 4 allows the room temperature to fluctuate within an
acceptable range for consumers, bringing considerable adjustable margin to HVAC power.
It can be seen from Figure 7 that the HVAC power of Case 4 is lower than Case 2 at peak
periods of power price and higher than Case 2 at valley periods of power price. This is
because the proposed strategy utilizes the thermal inertia of buildings to store heat in
advance during periods of low power prices, thereby reducing HVAC power during peak
periods of power price and then decreasing power purchase costs. The temperature curves
are shown in Figure 8. In Case 2, the room temperature curve is a horizontal line, which
means the indoor temperature remains at a stable level, evidencing that the supply air
temperature fluctuates with the outdoor temperature. The lower the ambient temperature,
the higher the supply air temperature. In Case 4, as mentioned above, smart buildings
store heat by increasing indoor temperature to save on power payments, resulting in an
additional increase in supplied air temperature on the basis of fluctuations with outdoor
temperature.

Buildings 2024, 14, x FOR PEER REVIEW 15 of 21 
 

air temperature fluctuates with the outdoor temperature. The lower the ambient temper-

ature, the higher the supply air temperature. In Case 4, as mentioned above, smart build-

ings store heat by increasing indoor temperature to save on power payments, resulting in 

an additional increase in supplied air temperature on the basis of fluctuations with out-

door temperature. 

 

Figure 7. Power consumption of HVACs. 

 

 

Figure 8. Room temperature and supply air temperature of HVACs. 

Ambient temperature is a crucial factor influencing the HVAC system operation that 

can significantly affect the energy consumption of smart buildings. Figure 9 illustrates the 

change in HVAC power caused by decreasing different temperatures from the original 

outdoor temperature (shown in Figure 4). As we can see, the trends of the curves are sim-

ilar, but lower outdoor temperatures result in higher HVAC power. This is because lower 

outdoor temperatures cause more heat to be lost from the buildings, requiring higher 

heating power of HVACs to maintain users’ needs. 

Figure 7. Power consumption of HVACs.

Buildings 2024, 14, x FOR PEER REVIEW 15 of 21 
 

air temperature fluctuates with the outdoor temperature. The lower the ambient temper-

ature, the higher the supply air temperature. In Case 4, as mentioned above, smart build-

ings store heat by increasing indoor temperature to save on power payments, resulting in 

an additional increase in supplied air temperature on the basis of fluctuations with out-

door temperature. 

 

Figure 7. Power consumption of HVACs. 

 

 

Figure 8. Room temperature and supply air temperature of HVACs. 

Ambient temperature is a crucial factor influencing the HVAC system operation that 

can significantly affect the energy consumption of smart buildings. Figure 9 illustrates the 

change in HVAC power caused by decreasing different temperatures from the original 

outdoor temperature (shown in Figure 4). As we can see, the trends of the curves are sim-

ilar, but lower outdoor temperatures result in higher HVAC power. This is because lower 

outdoor temperatures cause more heat to be lost from the buildings, requiring higher 

heating power of HVACs to maintain users’ needs. 

Figure 8. Room temperature and supply air temperature of HVACs.



Buildings 2024, 14, 1530 15 of 20

Ambient temperature is a crucial factor influencing the HVAC system operation that
can significantly affect the energy consumption of smart buildings. Figure 9 illustrates the
change in HVAC power caused by decreasing different temperatures from the original
outdoor temperature (shown in Figure 4). As we can see, the trends of the curves are
similar, but lower outdoor temperatures result in higher HVAC power. This is because
lower outdoor temperatures cause more heat to be lost from the buildings, requiring higher
heating power of HVACs to maintain users’ needs.
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Moreover, the differences between fixed and time-variant power prices are compared
in Table 4, ensuring the mean values of power prices in these two cases are the same. As we
can see, the total payment for the building energy system with time-variant power prices is
lower. Since the advantage of smart buildings is they can adjust the strategies according to
the fluctuations in power prices, they reduce operating costs. If the power prices are fixed,
the flexibility of smart buildings is not fully utilized, leading to a lower payment to the
consumers and a higher payment to the grid.

Table 4. Economic comparison between the cases with fixed prices and time-variant prices.

Power Price Payment to the Consumers Payment to the Grid Total Payment

Fixed 33.1 USD 1793.0 USD 1826.1 USD
Time-variant 89.3 USD 1453.1 USD 1542.4 USD

In addition to HVACs, reducing and transferring loads can also flexibly respond to
changes in power prices. The effects comparison is shown in Figure 10. As we can see,
Case 4 curtails part of the loads and transfers some loads out of the peak periods of power
price. Therefore, compared to Case 3, loads in Case 4 are more distributed in periods of
low power price rather than periods of high power price, which can further decrease the
economic cost of smart buildings.
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The ESS can reduce the impact of PV uncertainty to a certain extent. The ESS power is
shown in Figure 11, where positive values mean charging power and negative values mean
discharging power. As shown in the figure, ESS experiences three charging behaviors. The
first time is to replenish energy to ESS in advance during the low power price periods. The
second time occurs when there is excess power caused by high PV output. The last time is
to supplement the SOC of ESS to the initial value. The ESS in other time periods operates
on discharging mode to support the loads of smart buildings. In Case 4, the total payments
with and without ESS are USD 1542.4 and USD 1649.9, respectively, which also confirms
the importance of ESS for the economic operation of smart buildings.
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For different parameters of the energy storage system, we carried out the correspond-
ing comparative validation, which is shown in Table 5. It can be concluded that the decrease
in maximum power of charging and discharging, charging and discharging efficiency, and
energy capacity will increase the total payment, which means less economy.

Table 5. Economic comparison among the cases with different parameters of the ESS.

Maximum Power of
Charging and Discharging

Charging and
Discharging Efficiency Energy Capacity Total Payment

200 kW 0.95 2000 kWh 1542.4 USD
160 kW 0.95 2000 kWh 1558.4 USD
200 kW 0.90 2000 kWh 1558.7 USD
200 kW 0.95 1500 kWh 1547.3 USD

The purchased power from the grid is shown in Figure 12. Case 4 requires the least
amount of power to be purchased during peak power price periods, while Case 1 requires
the most. This is also one of the reasons that Case 4 has the best economy. Moreover, the
peak–valley differences of transformer load are shown in Table 6. It can be seen that Cases
3 and 4 have a smaller peak–valley difference than Cases 1 and 2, indicating the time-lag
characteristics of the adjustable indoor temperature give a larger margin to HVAC to reduce
the peak–valley difference.

To explore the influence of consumers’ comfort ranges on the operation of smart
buildings, the impact of different range sizes on the economy is compared, and the results
are shown in Table 7. As the consumers’ comfort range gradually expands, the economic
cost of smart buildings gradually decreases. This is because the larger the temperature
comfort range, the more it can fully utilize the thermal inertia of the building and the
flexible regulation ability of HVACs, thereby improving the operational status of smart
buildings.
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Table 6. Comparison of peak–valley differences.

Case Peak–Valley Difference

1 395.20 kW
2 395.20 kW
3 389.66 kW
4 390.47 kW

Table 7. Comparison of different consumers’ comfort ranges.

Consumers’ Comfort Range Total Payment

24–26 ◦C 1712.6 USD
22–28 ◦C 1626.8 USD
20–30 ◦C 1542.4 USD

To verify the scalability and effectiveness of the proposed strategy, a comparative
analysis is conducted on smart building aggregation of different scales. The results are
shown in Table 8. Among smart building aggregations of different scales, Case 4 still has
the best economy, and its advantages become more significant as the scale increases.

Table 8. Comparison of different scales of smart building aggregations.

The Number of Buildings Case Total Payment

10

Case 1 2288.2 USD
Case 2 2232.6 USD
Case 3 2172.6 USD
Case 4 2114.2 USD

20

Case 1 5803.3 USD
Case 2 5647.9 USD
Case 3 5528.3 USD
Case 4 5374.7 USD

30

Case 1 9431.7 USD
Case 2 9198.1 USD
Case 3 9019.2 USD
Case 4 8785.6 USD

To verify the superiority of the DRO-based operation model of the building energy
system, the comparison between stochastic programming, robust optimization, and DRO
is conducted. Figure 13 shows the economy of the building energy system with different
sample sizes. From the figure, we can see that the cost of DRO falls between the costs of
stochastic programming and robust optimization, which means the adopted method is
neither overly conservative like robust optimization, nor overly optimistic like stochastic
programming. Table 9 shows the in-sample cost and out-of-sample costs of DRO and
stochastic programming. As we can see, the larger the sample size, the lower the in-sample
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and expected out-of-sample costs of DRO. For stochastic programming, the larger the
sample size, the higher the in-sample cost, but the lower the expected out-of-sample cost.
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Table 9. Numerical comparison between DRO and stochastic programming.

Method DRO Stochastic Programming

Sample Size In-Sample Cost
(USD)

Out-of-Sample
Mean (USD)

In-Sample Cost
(USD)

Out-of-Sample
Mean (USD)

10 1523.2 1510.3 1268.3 1275.6
20 1508.5 1492.9 1273.1 1284.2
30 1496.7 1483.6 1278.0 1292.9

5. Conclusions

This paper proposes a data-driven distributionally robust optimization-based DR
in heterogeneous building energy systems with rooftop renewables under cold climates.
Considering consumers’ comfortable temperature range and the uncertainty of PV out-
put, the proposed strategy flexibly schedules curtailable loads, transferrable loads, and
HVAC power based on cooperative complementarity and flexible transformation charac-
teristics. The ambiguity set of rooftop PV’s probability distribution is constructed by the
Wasserstein metric, and then the original DRO model is reformulated into a computational
tractable mixed-integer linear programming. Through comparative analysis under different
strategies and operating conditions, the following conclusions can be drawn:

(1) By fully utilizing the thermal inertia of buildings, heat can be pre-stored within
the indoor space, enabling the flexible adjustment of HVAC power while meeting
consumers’ temperature comfort requirements. This leads to reduced operating
costs for smart buildings. Compared to Case 2, the economic cost in Case 4, which
incorporates adjustable indoor temperature, is reduced by 87.3 USD.

(2) Curtailable and transferrable loads play a crucial role in responding to changes in
power prices. By reducing load power during periods of high electricity prices, the
operational economy of smart buildings can be further improved. Compared to
Case 3, the economic cost in Case 4 with curtailable loads and transferrable loads is
reduced by 70.8 USD.

(3) The flexibility and economy of smart buildings increase as the acceptable temperature
range for consumers expands. When the temperature range expands from 24–26 ◦C
to 20–30 ◦C, the economic cost decreases by 170.2 USD. Furthermore, the proposed
strategy is applicable to smart building aggregations of various scales, and its superi-
ority becomes increasingly significant as the scale expands. When the building scale
increases from 10 to 30, the cost difference between Case 1 and Case 4 grows from
174 USD to 646.1 USD.



Buildings 2024, 14, 1530 19 of 20

Author Contributions: Conceptualization, X.S. and X.W.; methodology, X.S.; software, X.W.; val-
idation, X.S., X.W. and Y.J.; formal analysis, X.W. and Y.J.; investigation, X.W. and Y.J.; resources,
X.S., X.W. and Y.J.; data curation, Z.L. and W.H.; writing—original draft preparation, X.S. and X.W.;
writing—review and editing, X.S., X.W., Z.L. and W.H.; visualization, Z.L. and W.H.; supervision, Y.J.,
Z.L. and W.H.; project administration, Y.J.; funding acquisition, Y.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of State Grid Shanxi
Electric Power Company Limited, grant number 5205E0230001.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors upon request.

Conflicts of Interest: Authors Xincong Shi, Zhiliang Liu and Weiheng Han were employed by the
State Grid Shanxi Electric Power Company Limited. Authors Xinrui Wang and Yuze Ji were employed
by the State Grid Jincheng Power Supply Company. Authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed as a potential
conflict of interest.

References
1. Harish, V.; Kumar, A. A Review on Modeling and Simulation of Building Energy Systems. Renew. Sustain. Energy Rev. 2016, 56,

1272–1292. [CrossRef]
2. Gehbauer, C.; Lee, E.S.; Wang, T. An Evaluation of the Demand Response Potential of Integrated Dynamic Window and HVAC

Systems. Energy Build. 2023, 298, 113481. [CrossRef]
3. IEA. World Energy Outlook 2023; International Energy Agency: Paris, France, 2023; pp. 1–355.
4. Jurjevic, R.; Zakula, T. Demand Response in Buildings: A Comprehensive Overview of Current Trends, Approaches, and

Strategies. Buildings 2023, 13, 2663. [CrossRef]
5. Hou, Q.; Zhang, N.; Du, E.; Miao, M.; Peng, F.; Kang, C. Probabilistic Duck Curve in High PV Penetration Power System: Concept,

Modeling, and Empirical Analysis in China. Appl. Energy 2019, 242, 205–215. [CrossRef]
6. Humayun, M.; Safdarian, A.; Degefa, M.Z.; Lehtonen, M. Demand Response for Operational Life Extension and Efficient Capacity

Utilization of Power Transformers during Contingencies. IEEE Trans. Power Syst. 2014, 30, 2160–2169. [CrossRef]
7. Olsen, D.J.; Sarker, M.R.; Ortega-Vazquez, M.A. Optimal Penetration of Home Energy Management Systems in Distribution

Networks Considering Transformer Aging. IEEE Trans. Smart Grid 2016, 9, 3330–3340. [CrossRef]
8. Chen, Y.; Chen, Z.; Yuan, X.; Su, L.; Li, K. Optimal Control Strategies for Demand Response in Buildings Under Penetration of

Renewable Energy. Buildings 2022, 12, 371. [CrossRef]
9. Kharrazi, A.; Sreeram, V.; Mishra, Y. Assessment Techniques of the Impact of Grid-Tied Rooftop Photovoltaic Generation on the

Power Quality of Low Voltage Distribution Network—A Review. Renew. Sustain. Energy Rev. 2020, 120, 109643. [CrossRef]
10. Ghaleb, B.; Asif, M. Assessment of Solar PV Potential in Commercial Buildings. Renew. Energy 2022, 187, 618–630. [CrossRef]
11. Kapsalis, V.; Maduta, C.; Skandalos, N.; Wang, M.; Bhuvad, S.S.; D’Agostino, D.; Ma, T.; Raj, U.; Parker, D.; Peng, J.; et al. Critical

Assessment of Large-Scale Rooftop Photovoltaics Deployment in yhe Global Urban Environment. Renew. Sustain. Energy Rev.
2024, 189, 114005. [CrossRef]

12. Kiss, V.M.; Hetesi, Z.; Kiss, T. The Effect of Time Resolution on Energy System Simulation in Case of Intermittent Energies. Renew.
Sustain. Energy Rev. 2024, 191, 114099. [CrossRef]

13. Oh, S.; Kong, J.; Yang, Y.; Jung, J.; Lee, C.H. A Multi-Use Framework of Energy Storage Systems Using Reinforcement Learning
for Both Price-Based and Incentive-Based Demand Response Programs. Int. J. Electr. Power 2023, 144, 108519. [CrossRef]

14. Kansal, G.; Tiwari, R. A PEM-Based Augmented IBDR Framework and Its Evaluation in Contemporary Distribution Systems.
Energy 2024, 296, 131102. [CrossRef]

15. Roy, N.B.; Das, D. Stochastic Power Allocation of Distributed Tri-Generation Plants and Energy Storage Units in a Zero Bus
Microgrid with Electric Vehicles and Demand Response. Renew. Sustain. Energy Rev. 2024, 191, 114170. [CrossRef]

16. Deng, R.; Yang, Z.; Chow, M.Y.; Chen, J. A Survey on Demand Response in Smart Grids: Mathematical Models and Approaches.
IEEE Trans. Ind. Inform. 2015, 11, 570–582. [CrossRef]

17. Cruz, C.; Tostado-Véliz, M.; Palomar, E.; Bravo, I. Pattern-Driven Behaviour for Demand-Side Management: An Analysis of
Appliance Use. Energy Build. 2024, 308, 113988. [CrossRef]

18. Strezoski, L.; Stefani, I. Enabling Mass Integration of Electric Vehicles through Distributed Energy Resource Management Systems.
Int. J. Electr. Power 2024, 157, 109798. [CrossRef]

19. Khajavi, H.; Rastgoo, A. Improving the Prediction of Heating Energy Consumed at Residential Buildings Using a Combination of
Support Vector Regression and Meta-Heuristic Algorithms. Energy 2023, 272, 127069. [CrossRef]

20. Lu, N. An Evaluation of the HVAC Load Potential for Providing Load Balancing Service. IEEE Trans. Smart Grid 2012, 3, 1263–1270.
[CrossRef]

https://doi.org/10.1016/j.rser.2015.12.040
https://doi.org/10.1016/j.enbuild.2023.113481
https://doi.org/10.3390/buildings13102663
https://doi.org/10.1016/j.apenergy.2019.03.067
https://doi.org/10.1109/TPWRS.2014.2358687
https://doi.org/10.1109/TSG.2016.2630714
https://doi.org/10.3390/buildings12030371
https://doi.org/10.1016/j.rser.2019.109643
https://doi.org/10.1016/j.renene.2022.01.013
https://doi.org/10.1016/j.rser.2023.114005
https://doi.org/10.1016/j.rser.2023.114099
https://doi.org/10.1016/j.ijepes.2022.108519
https://doi.org/10.1016/j.energy.2024.131102
https://doi.org/10.1016/j.rser.2023.114170
https://doi.org/10.1109/TII.2015.2414719
https://doi.org/10.1016/j.enbuild.2024.113988
https://doi.org/10.1016/j.ijepes.2024.109798
https://doi.org/10.1016/j.energy.2023.127069
https://doi.org/10.1109/TSG.2012.2183649


Buildings 2024, 14, 1530 20 of 20

21. Lü, X.; Lu, T.; Kibert, C.J.; Viljanen, M. Modeling and Forecasting Energy Consumption for Heterogeneous Buildings Using a
Physical–Statistical Approach. Appl. Energy 2015, 144, 261–275. [CrossRef]
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