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Abstract: In nature, rock masses often exhibit fissures, and varying external forces lead to different
rates of loading on fissured rock masses. By studying the influence of the loading rate on the
mechanical properties of fractured rock mass and AE characteristic parameters, it can provide a
theoretical basis for the safety and stability prediction of engineering rock mass. To investigate
the influence of loading rates on fissured rock masses, this study utilizes surrogate rock specimens
resembling actual rock bodies and prefabricates two fissures. By conducting uniaxial compression
acoustic emission tests at different loading rates, the study explores changes in their mechanical
properties and acoustic emission characteristic parameters. Research findings indicate the following:
(1) Prefabricated fissures adversely affect the stability of specimens, resulting in lower strength
compared to intact specimens. Under the same fissure inclination angle, peak strength, elastic
modulus, and loading rate exhibit a positive correlation. When the fissure inclination angle varies
from 0◦ to 60◦ under the same loading rate, the peak strength of specimens generally follows a
“V”-shaped trend, decreasing initially and then increasing, with the minimum peak strength observed
at α = 30◦. (2) Prefabricated fissure specimens primarily develop tensile cracks during loading,
gradually transitioning to shear cracks, ultimately leading to shear failure. (3) The variation patterns
of AE (acoustic emission) characteristic parameters under the influence of loading rate differ: AE event
count, AE energy, and cumulative AE energy show a positive correlation with loading rate, while
cumulative AE event count gradually decreases with increasing loading rate. (4) AE characteristic
parameters exhibit good correlation with the stress–strain curve and can be divided into four stages.
The changes in AE characteristic parameters correspond to the changes in the stress–strain curve.
With increasing loading rate, AE signals in the first three stages gradually stabilize, focusing more on
the fourth stage, namely the post-peak stage, where the specimens typically experience maximum
AE signals accompanying final failure.

Keywords: loading rate; prefabricated fissures; mechanical damage; crack propagation; AE
characteristic parameters

1. Introduction

As the emphasis on engineering safety continues to increase, there is growing attention
on the safety and stability of engineering rock masses [1]. However, in nature, rock
formations commonly exhibit micro- or macroscopic fissures, which can lead to a reduction
in the load-bearing capacity of rock masses [2]. The destruction of engineering rock
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masses is influenced by the presence of pre-existing fissures [3]; under the combined effects
of natural stresses and external loads from engineering construction, original fissures
and newly formed fissures gradually develop and propagate, eventually evolving into
macroscopic damage, thereby resulting in instability and failure of the rock mass [4].
Moreover, the environment in which engineering rock masses are situated is often complex,
influenced by construction methods, structural constraints, and other factors such as
structural squeezing. This can lead to variations in the external load rate experienced by the
rock mass, further complicating the development of fissures [5]. Therefore, the utilization
of AE monitoring systems can effectively monitor the internal fissure development within
rock masses, thus facilitating preventive measures.

In recent years, numerous researchers have conducted extensive studies on fissured
rock masses, for instance, Chen W et al. [6] investigated the mechanical properties, crack
evolution, failure modes, and microscopic damage mechanisms of fissured rock masses
in high-moisture environments. They found that the degree of rock mass looseness in-
creased with immersion time, and the initiation and propagation stresses of cracks were
negatively correlated with immersion time, utilizing uniaxial compression tests combined
with Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Energy
Dispersive Spectroscopy (EDS), and X-ray Diffraction (XRD). H Hu et al. [7] developed the
Barton–Bandis model (BB model) and combined it with the Continuous–Discontinuous
Element Method (CDEM) to study the P-wave in fissured rock masses. KM Sun et al. [8]
numerically simulated fissured rock mass models and proposed criteria for determining
crack instability. They systematically investigated the crack propagation patterns at differ-
ent orientations. M Ye et al. [9] revealed the mechanism of crack propagation induced by
the combined action of triaxial stress and pre-existing fissures through triaxial compression
tests. H Zhou et al. [10] conducted static three-point bending tests on sandstone specimens
with prefabricated fissures. They combined Digital Image Correlation (DIC) and Finite
Element Software ANSYS to study the distribution curve of stress intensity factors and
their temporal variations, exploring the distribution patterns of stress intensity factors and
fracture characteristics over time. B Li et al. [11] studied the damage evolution characteris-
tics of fissured rock masses at different angles based on similarity simulation theory. They
proposed that with increasing fissure inclination angle, the infrared radiation temperature
of the specimen surface initially decreased and then increased, with a significant mutation
near the peak stress. The damage evolution process of the rock mass was divided into
three stages: initial, stable, and accelerated damage. X Sun et al. [12] conducted numerical
simulation experiments on sandstone specimens with prefabricated fissures at different
angles using PFC2D for uniaxial compression. They concluded that the peak stress, elastic
modulus, and initiation stress of the specimens were controlled by the fissure angle and
pointed out a significant correlation between AE activity level and fissure angle variation.
Yujing Guo et al. [13] conducted similar simulation experiments and numerical simula-
tion studies on specimens with prefabricated fissures, explaining the damage process of
deep-seated fissured rock masses under dynamic disturbances. Yu C et al. [14] utilized AE
monitoring counts and Scanning Electron Microscopy (SEM) to investigate the fracture
failure process of sandstone under uniaxial compression cyclic loading–unloading tests in
freeze–thaw conditions. They explored the influence of freeze–thaw conditions on internal
microcracks in sandstone through analysis of AE ring-down counts. Zhang W et al. [15]
pointed out that the localization results of AE events could effectively reflect the location
and mode of fracture within rocks. They indicated that during initial failure, the events
were small and dispersed, whereas during later failure, they were large and concentrated.

Most of the above scholars’ research studies are focused on the influence of fissure
angle on the mechanical properties of prefabricated fissure specimens; however, in the
actual engineering, the engineering rock body is affected by a variety of external factors,
such as construction methods, geostress, and other external factors, which lead to changes
in the rate of the external load it is subjected to, and there are fewer research studies on the
influence of loading rate on the mechanical properties of rocks in the past studies. Against
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this background, the present paper is based on the study of the mechanical properties of
prefabricated fissures. In this context, this paper takes prefabricated fissures as the research
object, through the use of a prefabricated fissure inclination angle in the range of 0◦~60◦,
and uses an RYL-600 shear rheometer and AMSY-6 32-channel equipment monitoring
system on the prefabricated fissure specimen for uniaxial compression acoustic emission
tests at different loading rates to explore the effect of the different loading rates and fissure
inclination angle on the class of the mechanical properties of the rock specimen changes.
We investigate the mechanical property changes of rock specimens and the evolution of AE
parameters under the influence of different loading rates and different fracture inclination
angles, in order to provide corresponding parameters and theoretical support for the
improvement of safety and stability prediction of engineering rock bodies in actual projects.

2. Test Program
2.1. Test Material and Specimen Preparation

To make the experiment more representative of the actual engineering scenarios of
fissured rock mass failure, surrogate rock specimens are prepared according to a cement–
sand–water ratio of 3.9:3.7:1.5 by mass. In order to better observe the crack propagation,
the specimen size is set to 150 mm·150 mm·50 mm [16]. To create the desired prefabricated
fissure specimens, the model material is thoroughly mixed and then placed in a steel mold
with internal dimensions of 150 mm·150 mm·50 mm. The material is uniformly compacted
using a vibrating table. Subsequently, the specimens are horizontally left to settle at room
temperature for 3 h. Afterward, 0.1 mm thick mica sheets are inserted into designated
positions, and the specimens are left to settle horizontally for approximately 3 h. Once the
specimens are confirmed to have partially solidified, the mica sheets are removed along the
insertion direction, and the specimens are left to settle horizontally for about 6 h. Upon
complete solidification confirmation, the molds are removed. To mitigate the influence of
surface irregularities on the test results, any uneven portions of the specimen surface are
polished and inspected to ensure the prefabricated fissures are fully formed. Subsequently,
the specimens undergo a curing stage for 24 days to ensure strength, as depicted in Figure 1.
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Figure 1. Sample openings.

The two prefabricated fissures are characterized by parameters including the fissure-
to-boundary angle α, fissure length a, and fissure width b. In past studies, it can be seen
that the fracture dip angle will have a significant impact on the mechanical properties of
the rock, and the effects of different fracture dip angles are not consistent. At the same time,
the scale of the fracture will also affect the reliability and accuracy of the test results. In
order to ensure that the test can effectively reflect the mechanical behavior of fractured rock
masses with different fracture dip angles, the fracture dip angles α = 0◦, 30◦, 45◦, and 60◦
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were selected in this experiment. The fissure length is a = 30.0 mm, and the fissure width
is b = 1.0 mm. Additionally, a reference group is established comprising intact surrogate
rock specimens without fissures. The prepared specimens are numbered according to the
following format: D-Fissure Angle-Loading Rate. The table of specimen numbering is
provided as Table 1.

Table 1. Specimen number table.

α/◦ Specimen
Number v/mm·min−1 α/◦ Specimen

Number v/mm·min−1

-

D-0.5 0.5

0

D-0-0.5 0.5
D-1.0 1.0 D-0-1.0 1.0
D-3.0 3.0 D-0-3.0 3.0
D-5.0 5.0 D-0-5.0 5.0

30

D-30-0.5 0.5

45

D-45-0.5 0.5
D-30-1.0 1.0 D-45-1.0 1.0
D-30-3.0 3.0 D-45-3.0 3.0
D-30-5.0 5.0 D-45-5.0 5.0

60

D-60-0.5 0.5
D-60-1.0 1.0
D-60-3.0 3.0
D-60-5.0 5.0

2.2. Test Program

The experiment was conducted at the Key Laboratory of Mine Safety and Efficient
Mining Technology in Hunan Province, Hunan University of Science and Technology.
A shear rheometer (RYL-600) produced by Changchun Chaoyang Instrument Co., Ltd.
(Changchun, China) was used to conduct uniaxial compression tests on the specimens with
displacement control loading. The loading mode selected was displacement-controlled
loading, with loading rates set at 0.5 mm/min, 1.0 mm/min, 3.0 mm/min, and 5.0 mm/min.
To mitigate the effects of end effects, lubricating oil was applied to the end faces of the
specimens in contact with the platens before loading. Additionally, a Vallen AMSY-6
type 32-channel monitoring system for acoustic emission was installed to monitor the
acoustic emission signals during the specimen failure process. A schematic diagram of the
experimental setup is shown in Figure 2.
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Figure 2. Diagram of test equipment.

3. The Effect of Loading Rate Changes in Rock-like Materials
3.1. Effect of Different Loading Rates on the Deformation Strength Characteristics of
Rock-like Rocks

After subjecting the intact specimens to uniaxial compression at different loading
rates, the stress–strain curves obtained are depicted in Figure 3. Analysis reveals a positive
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correlation between the slope of the stress–strain curve and the loading rate. When the
loading rate v = 0.5 mm/min, during the post-peak failure stage, the stress–strain curve
exhibits a gradual decrease, indicating a certain degree of plastic failure. However, with
the increase in the loading rate, during the post-peak failure stage, the stress–strain curve
sharply decreases, indicating brittle failure.
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Similarly, uniaxial compression tests at four different loading rates were conducted
on surrogate rock specimens with different prefabricated fissure angles. Based on the
results, stress–strain curves were plotted for each prefabricated fissure angle, as depicted in
Figure 4.

From Figure 4, it is evident that the stress–strain curve distribution pattern of the
prefabricated fissure specimens is similar to that of the intact specimens. Both exhibit four
distinct stages: (I) initial crack closure stage, (II) elastic deformation to micro-elastic crack
stability development stage, (III) unstable crack propagation stage, and (IV) post-peak
failure stage [1,17].
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In Figure 4a, when the loading rates are 0.5 mm/min and 1.0 mm/min, the stress–
strain curves exhibit a relatively gradual decrease during the post-peak failure stage (Stage
IV), indicating plastic failure characteristics. However, as the loading rates increase to
3.0 mm/min and 5.0 mm/min, the specimens display brittle failure characteristics. In
Figure 4b, after reaching the peak stress, the downward trend of the stress–strain curve is
relatively gradual, and with an increase in the loading rate, the failure mode transitions
noticeably from plastic to brittle. In Figure 4c, for specimens loaded at 0.5 mm/min,
the stress–strain curve is relatively gentle compared to the other specimens, showing
an overall plastic failure pattern. After reaching peak strength, the stress–strain curve
decreases gradually. For specimens loaded at 1.0 mm/min and 5.0 mm/min, there are
significant fluctuations during the stage of elastic deformation to micro-elastic crack stability
development, caused by the compression of pre-existing fissures within the specimen
during loading, resulting in apparent stress drops in the stress–strain curve. In Figure 4d,
after reaching peak strength, the stress–strain curve sharply decreases, indicating overall
elastic failure. The fluctuations observed during loading are due to the compression of
inherent fissures within the rock sample.

Based on the stress–strain curves of prefabricated fissure specimens under different
loading rates as depicted above, we record the peak strength qc and the corresponding strain
Σc in Table 2. A comparison reveals that the peak strength of prefabricated fissure specimens
is consistently lower than that of intact specimens, albeit with inconsistent differences. This
indicates that prefabricated fissures lead to varying degrees of strength degradation in the
specimens [18]. Analysis reveals that when the fissure angle α is constant, the variations
in peak strength and corresponding strain between prefabricated fissure specimens and
intact specimens are similar: the peak strength of specimens increases proportionally
with the increase in the loading rate, while the corresponding strain decreases inversely.
However, when the loading rate v is constant, the peak strength of prefabricated fissure
specimens shows a trend of initially decreasing and then increasing with the increase in the
fissure angle, whereas the corresponding strain shows a trend of initially increasing and
then decreasing.

Under the same fissure angle conditions, taking α = 45◦ as an example, the peak
strength increases from 7.05 MPa (0.5 mm/min) to 12.37 MPa (5.0 mm/min), representing a
75.5% increase. Meanwhile, the corresponding strain decreases from 11.68·10−3 to 7.94·10−3,
indicating a reduction of 32.0%.
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Table 2. Peak strength and strain of rock-like materials with different fracture angles under uniaxial
conditions.

α/◦ v/mm·min−1 Peak Strength
qc/MPa

Peak Intensity
Corresponds

Σc/10−3
α/◦ v/mm·min−1 Peak Strength

qc/MPa

Peak Intensity
Corresponds

Σc/10−3

-

0.5 11.88 13.56

0

0.5 6.37 9.53
1.0 12.64 13.12 1.0 6.76 8.90
3.0 14.91 12.05 3.0 7.61 7.87
5.0 18.08 9.85 5.0 9.03 7.32

30

0.5 5.07 10.84

45

0.5 7.05 11.68
1.0 6.09 9.58 1.0 8.08 10.08
3.0 7.10 8.02 3.0 11.24 9.17
5.0 8.33 7.65 5.0 12.37 7.94

60

0.5 10.55 10.53
1.0 11.46 8.02
3.0 12.87 7.11
5.0 16.25 5.93

Under the same loading rate conditions, taking v = 3.0 mm/min as an example, as the
fissure angle α increases, the peak strength decreases from 7.61 MPa (α = 0◦) to 7.10 MPa
(α = 30◦), representing a decrease of 6.70%. Then, it increases to 12.87 MPa (α = 60◦),
indicating an increase of 69.1%, The corresponding strain of peak strength also varies: It
first increases from 7.87·10−3 (α = 0◦) to 9.17·10−3 (α = 45◦), showing an increase of 16.5%.
Then, it decreases to 7.11·10−3 (α = 60◦), decreasing by 22.5%.

3.2. Deterioration Analysis of Class Rock Specimens

To quantitatively analyze the degradation pattern of the mechanical properties of the
rock-like specimens with different fissure angles α under various loading rates, let us define
the degradation index of uniaxial compressive strength as Q(1) and Q(2). These indices will
be used to quantitatively compare the degradation levels of uniaxial compressive strength
for specimens with different α angles under the same loading rate and for specimens with
the same α angle under different loading rates. Taking v = 3.0 mm/min and α = 45◦ as an
example, the expressions for Q(1) and Q(2) are Equations (1) and (2), respectively [19]:

Q(1) =
σ1 − σ1(α)

σ1
× 100% (1)

Q(2) =
σ1 − σ1(ν)

σ1
× 100% (2)

In the experiment, σ1 represents the uniaxial compressive strength of the intact specimen,
measured in MPa; σ1(α) denotes the uniaxial compressive strength of specimens with differ-
ent fissure angles α, also measured in MPa; and σ1(v) represents the uniaxial compressive
strength of specimens under different loading rates, measured in MPa.

As shown in Figure 5, the degradation indices of uniaxial compressive strength for
specimens with different loading rates and fissure angles are presented. When the loading
rate remains constant, the overall degradation exhibits an “N”-shaped trend, with the
degradation reaching its maximum at α = 30◦. As shown in Figure 5, the degradation indices
of uniaxial compressive strength for specimens with different loading rates and fissure
angles are presented. When the loading rate remains constant, the overall degradation
exhibits an “N”-shaped trend, with the degradation reaching its maximum at α = 30◦,
experiencing the most significant degradation, indicating the most severe mechanical
property damage. Conversely, when the pre-fissure angle remains constant, a loading
rate of v = 3.0 mm/min results in the least degradation, indicating minimal mechanical
property damage.
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Figure 5. Deterioration degree of uniaxial compressive strength of specimens with different loading
rates and different slit angles.

3.3. Effect of Loading Rate on Strain as Well as Modulus of Elasticity of Fractured Rock Bodies

The peak stress corresponding to strain values for specimens under different loading
rates are plotted in Figure 6. Analysis reveals that compared to intact specimens, those with
pre-existing fissures exhibit lower peak stress corresponding to strain values. Furthermore,
it is observed that these values vary with the fissure angle α, although there is some
degree of dispersion in the results. Overall, there is a decreasing trend in the peak stress
corresponding to strain values with the gradual increase in the loading rate [20].
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Figure 6. The influence of loading rate on the strain corresponding to the peak stress of rock-
like materials.

To explore the influence of loading rate on the elastic modulus of the specimens, the
elastic modulus E of the specimens can be determined using Equation (3):

E =
σ2 − σ1

ε2 − ε1
(3)
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In the experiment, σ1 and σ2 correspond to the stress values at the approximate linear
segments’ start and end points on the stress–strain curve of the specimen, measured in
MPa; and ε1 and ε2 represent the strain values at the beginning and end points of the nearly
linear segments on the stress–strain curve of the specimen.

The relationship between the elastic modulus of the specimen and the loading rate is
plotted in Figure 7. Analysis reveals that the elastic modulus of the specimen is positively
correlated with the loading rate, and the growth pattern of the elastic modulus approx-
imates linearity. The fitted curve is represented by Equation (4). The slope of the fitted
curve for the elastic modulus of the intact specimen is 2.054. However, in the case of the
specimens with pre-existing fissures, as the fissure angle α increases from 0◦ to 60◦, and
the slopes of the fitted curves for the elastic modulus are 1.357, 1.063, 1.721, and 3.136.
This indicates that with the gradual increase in the fissure angle α, the acceleration of the
specimen’s elastic modulus exhibits a “V”-shaped feature, being lowest at α = 30◦ and
highest at α = 60◦. Compared with the slope of the fitted curve for the elastic modulus of
the intact specimen, it is evident that pre-existing fissures also have an impact on the elastic
modulus of the specimen.

Ev =


2.054v − 0.965 R2 = 0.8690 Unslotted
1.357v − 0.432 R2 = 0.9785 α = 0◦

1.063v − 0.358 R2 = 0.9637 α = 30◦

1.721v − 0.747 R2 = 0.9983 α = 45◦

3.136v − 1.973 R2 = 0.9800 α = 60◦

(4)
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3.4. Effects of Loading Rate and Fissure Inclination Angle on Specimen Initiation Stress and
Penetration Stress

In order to investigate the loading rate and the crack inclination angle on the specimen
crack initiation stress and penetration stress, the initiation stress is defined as the stress
corresponding to the appearance of the first crack in the specimen, and the penetration stress
is the stress corresponding to the penetration between the two prefabricated cracks [17],
which is located in the distribution of the stress–strain curve shown in Figure 8.
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Figure 9a shows the effect of loading rate v on the peak stress σC, crack initiation
stress σCi, and penetration stress σCC of the prefabricated slit specimen (α = 45◦). The
corresponding values are listed in Table 3 and it can be analyzed in Table 3 and Figure 9a
that the peak stress, crack initiation stress, and penetration stress of the specimen show a
gradual increasing trend with the increase in the loading rate. The peak stress increased
from 7.05 MPa (0.5 mm/min) to 12.37 MPa (5.0 mm/min) by 75.5%, the crack initiation
stress increased from 1.17 MPa (0.5 mm/min) to 2.87 MPa (5.0 mm/min) by 145.3%, and
the penetration stress increased from 6.38 MPa (0.5 mm/min to 5.0 mm/min) to 11.64 MPa
(5.0 mm/min) by 82.4%, and the penetration stress increased from 6.38 MPa (0.5 mm/min)
to 2.87 MPa (5.0 mm/min) by 145.3%. It is evident that the higher the loading rate, the
greater the impact on the peak stress, initiation stress, and breakthrough stress of the
rock samples.

Table 3. Peak stress, crack initiation stress, and penetration stress at α = 45◦.

α/◦ v/mm·min−1 Peak Stress
σC/MPa

Crack Initiation
Stress σCi/MPa

Penetration Stress
σCC/MPa

45

0.5 7.05 1.17 6.38
1.0 8.08 1.69 7.22
3.0 11.24 2.05 9.97
5.0 12.37 2.87 11.64

Figure 9b shows the effect of crack inclination angle α on the peak stress σC, crack initiation
stress σCi, and penetration stress σCC of the prefabricated crack specimen (v = 3.0 mm/min).
The corresponding values are listed in Table 4. Analysis from Table 4 and Figure 9b
indicates that at the same loading rate, there exists a “V”-shaped pattern in the peak
stress, initiation stress, and breakthrough stress of the fissured specimens with increasing
fissure angle. When α = 0◦, the peak stress, initiation stress, and breakthrough stress are
7.61 MPa, 1.13 MPa, and 7.07 MPa respectively. However, when α = 30◦, they decrease to
7.10 MPa, 0.87 MPa, and 6.66 MPa respectively, representing reductions of 6.64%, 23.0%,
and 5.93% respectively. When α = 60◦, they increase to 12.87 MPa, 2.60 MPa, and 12.16 MPa
respectively, showing increments of 81.2%, 199.7%, and 82.7% respectively. This indicates
that different fissure angles have varying degrees of influence on the peak stress, initiation
stress, and breakthrough stress of the specimens, but overall, they follow a pattern of
decrease followed by increase.
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Table 4. Peak stress, crack initiation stress, and penetration stress at v = 3.0 mm/min.

v/mm·min−1 α/◦ Peak Stress
σC/MPa

Crack Initiation
Stress σCi/MPa

Penetration Stress
σCC/MPa

3.0

0 7.61 1.13 7.07
30 7.10 0.87 6.66
45 11.24 2.05 9.97
60 12.87 2.60 12.16

4. Analysis of Fracture Modes and Crack Expansion Mechanisms
4.1. Crack Damage Mode

Under external loading conditions, as energy accumulates, cracks within the rock are
eventually released. Essentially, the final crack pattern determines the ultimate failure
mode of the specimen [21–23]. The main crack patterns include tensile or wing cracks and
shear or secondary cracks. According to the different properties of cracks, they can be
classified into three types: Mode I (T), Mode II (S), and Mode III (M). In this experiment,



Buildings 2024, 14, 1579 12 of 20

observations of specimens with a fissure angle of α = 45◦ revealed four types of cracks:
wing cracks (T), anti-wing cracks (M), coplanar secondary cracks (S), and non-coplanar
cracks (S). The schematic diagram for crack discrimination is shown in Figure 10.
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Figure 10. The diagram of crack discrimination.

The specimen damage pattern is shown in Figure 11.
An analysis of Figure 11 reveals that there are multiple types of cracks in the rock

specimens. For instance, in the D-45-0.5 specimen, after failure, the crack types include
primary cracks, wing cracks, and secondary cracks, among others, with the final failure
mode being shear failure. Based on the experimental results, it can be inferred that among
all rock specimens with different fissure angles, tensile cracks generally appear first, with
wing cracks being their main macroscopic manifestation. However, the ultimate failure of
the rock specimen is not determined by the appearance of the initial cracks. For example,
in the D-45-0.5 specimen, during loading, wing cracks appear first, followed by the devel-
opment of secondary cracks, ultimately resulting in shear failure of the specimen. There is
a special type of crack among the crack types, known as anti-wing cracks, which generally
appear alongside wing cracks in rock specimens undergoing tensile failure, such as D-45-1
and D-45-5. Coplanar secondary cracks are the main manifestation of rock specimens
undergoing shear failure, especially evident in the purely shear failure specimen D-45-3.
Non-coplanar secondary cracks are more prevalent in D-45-0.5.
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Figure 11. The failure mode of the specimen and its macroscopic crack.

4.2. Crack Expansion Mechanism

The correspondence between the crack expansion and the stress–strain curve of the
prefabricated crack specimen (with α = 45◦ as an example) is shown in Figure 12. When the
stress–strain curve of the specimen produces the first slope change (point A), it is generally
the edge of the specimen that produces the primary crack as shown in Figure 12b, with
EA = 1.69 GPa being the first slope change, and at this time, the edge of the specimen
produces the primary crack. When the specimen stress–strain curve produces the second
slope change (point B), for the crack from the prefabricated crack end of the crack as in
Figure 12c, with EB = 3.52 GPa, the specimen prefabricated crack end produces coplanar
secondary cracks as well as reverse wing cracks, and when the crack produced at the end
of the crack is gradually expanded to the connection of primary cracks as in Figure 12a,
with EC = 7.05 GPa, it produces the third slope change (point C). When the prefabricated
wing cracks are generated between them and connected through ED = 12.37 GPa (point
D), it produces the fourth change as in Figure 12d, and at this time, the stress–strain curve
ushers in a steep decline. However, as shown in Figure 12b, there are several times where
the steep decrease appearing before the stress–strain curve reaches the peak value, which
is due to the coplanar secondary cracks generated by the prefabricated cracks connecting
through the primary cracks.
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5. Characterization of Rock-like Acoustic Emission Parameters
5.1. Characterization of the Evolution of AE Ringer Counts

Under external loading, rocks develop microcracks internally, which gradually prop-
agate into macroscopic fractures. The energy accumulated in these fractures is partially
released in the form of elastic waves, resulting in acoustic emissions. Therefore, acoustic
emission signals can intuitively reflect the microcracking characteristics inside the rock.
Hence, acoustic emission is widely used in the detection and research of rock fracture
states [24–26]. In this study, the Vallen AMSY-6 type 32-channel monitoring system is
employed for acoustic emission testing. The relevant parameter settings of AE monitoring
equipment are shown in Table 5. The monitoring principle and probe layout schematic are
illustrated in Figure 13.

Table 5. AE monitoring equipment parameters.

Threshold/dB Pre-Amplifier
gain/dB

Upper Limit of Analog
Filtering/kHz

Analog Filter
Lower Limit/kHz

Sampling
Frequency/MHz

Sampling
Length/k

40 40 400 20 1 2
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In this section, taking the specimen with a fissure angle of α = 45◦ as an example,
the acoustic emission (AE) signal monitoring equipment is used to collect the AE ring
count and cumulative ring count of the specimen under different loading rates during the
compression process. This aims to explore the evolution characteristics of the AE ring count
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of the specimen under the influence of loading rates. The features of the specimen’s AE
ring count and cumulative ring count are illustrated in Figure 14.
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Analysis of Figure 14 reveals that during the uniaxial compression process of the
specimen, there is a certain correlation between its AE ring count and the different stages
of the stress–strain curve. When the stress–strain curve exhibits stress drops, the AE ring
count tends to show a noticeable increase. Similarly, the variation in acoustic emission
counts over time during the deformation process of the specimen can be roughly divided
into four stages [27,28]:

(1) Initial compaction stage (Stage I): In the early stages of loading, the original fissures
inside the specimen gradually close as the loading process progresses. During this stage,
there are relatively few AE signals generated. However, as shown in Figure 14a, there is
a sudden increase in AE counts during Stage I, which is caused by the development of
original fissures in the specimen during loading. Moreover, it is observed that with an
increase in the loading rate, the AE signals tend to become calm during this stage.

(2) Elastic deformation stage (Stage II): After the compaction of the original fissures
inside the specimen, external loads are not sufficient to generate new cracks in the specimen.
During this stage, the internal damage behavior of the specimen mainly involves sliding
along the original cracks, with internal pore pressure resisting external pressure, resulting
in slight deformation of the matrix. Therefore, there is a slight increase in AE ringing counts
during this stage, as shown in Figure 14b. The peak magnitude and ringing counts are rela-
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tively stable, with occasional higher responses, mainly due to the development of localized
cracks inside the specimen after the compaction of microfissures gradually expanding.

(3) Non-stable fracture development stage (Stage III): During this stage, AE ringing
counts are more active. This is because when external loads reach 80% to 90% of the
peak stress, the specimen enters the plastic deformation stage. At this stage, internal
cracks rapidly expand and develop, resulting in the irreversible plastic deformation of
the specimen. The passage of cracks leads to the appearance of macroscopic damage,
further increasing the AE ringing counts in this stage. As shown in Figure 14c, the AE
ringing counts during this stage are higher than the first two stages and show a significant
increasing trend with the increase in strain.

(4) Post-peak failure stage (Stage IV): After reaching the peak strength, the specimen
gradually fails. As macroscopic failure of the specimen occurs, the rate of change in AE
counts during this stage is very high, accompanied by a sudden drop in the stress–strain
curve as shown in Figure 14d. There is a significant sudden increase in AE ringing counts
during this stage, and the maximum AE ringing count often occurs during this stage.

To further explore the effect of loading rate on the AE ringing counts of the prefab-
ricated crack specimens, the AE ringing counts and cumulative ringing counts of the
specimens are recorded as shown in Table 6.

Table 6. AE ringing count and cumulative ringing count of α = 45◦ prefabricated crack specimens.

α/◦ v/mm·min−1 AE Ring Count/10−2 AE Cumulative Ringer Count/10−3

45

0.5 98.66 152.99
1.0 118.67 124.69
3.0 140.53 101.00
5.0 165.83 72.04

Analysis reveals that with the gradual increase in the loading rate, the AE ringing
count of the specimen shows a tendency to increase gradually, rising from 98.66·10−2

to 165.83·10−2, an increase of 68.08%. Meanwhile, the cumulative ringing count shows
a gradual decrease from 152.99·10−3 to 72.04·10−3, representing a decrease of 52.91%.
This is because with the increasing loading rate, the peak compressive strength of the
specimen gradually increases. Hence, the AE ringing count increases gradually upon
failure. However, at the same time, due to the insufficient friction and sliding of microcracks
inside the specimen for rupture behavior, as also depicted in Figure 14, the AE signals of
the specimen gradually tend towards a stable state with the increase in the loading rate.
Consequently, the cumulative ringing count exhibits a downward trend over time.

5.2. Characterization of AE Energy Evolution

The energy change of the pre-cracked specimen during the loading process is plotted
in Figure 15, illustrating the AE energy and cumulative energy variation.

Analysis reveals that the pattern of acoustic emission (AE) energy during the loading
process of the specimen follows a similar trend to the four stages observed in the ringing
count: during the initial densification stage, there is minimal energy, and while transitioning
into the linear elastic deformation stage, energy shows gradual and stable growth. As the
plastic deformation stage is entered, irreversible deformation and failure occur, leading
to a noticeable increase in AE energy. This energy peaks during the final failure stage, or
post-peak failure stage. Moreover, throughout the loading process, a sudden rise in energy
often accompanies stress drops observed in the stress–strain curve [29].

The AE energy and cumulative energy of the specimens are shown in Table 7.
Analysis reveals that with the increase in the loading rate, the AE energy and cumula-

tive AE energy of the prefabricated fissure specimens exhibit a gradual increase during the
loading process. The AE energy increases from 71.03·10−3 to 139.63·10−3, marking a rise of
96.58%, while the cumulative AE energy rises from 59.24·10−4 to 109.41·10−4, reflecting an
increase of 84.69%.
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Table 7. AE energy and cumulative energy of prefabricated crack specimens with α = 45◦.

α/◦ v/mm·min−1 AE Energy/10−3 AE Accumulated Energy/10−4

45

0.5 71.03 59.24
1.0 89.45 84.51
3.0 107.49 86.19
5.0 139.63 109.41

It is evident that the variation trend of AE energy aligns with that of AE ring count,
both showing a proportional relationship with loading rate. However, the trend of cu-
mulative AE energy does not correspond with that of cumulative AE ring count. This
discrepancy arises because as the loading rate escalates, the time required for micro-cracks
within the specimen to absorb a unit of energy decreases. Consequently, a significant
amount of energy is absorbed in a shorter time, accelerating the expansion of cracks,
thereby leading to an increase in cumulative AE energy.

5.3. Characterization of AE Spatio-Temporal Evolution

To further explore the progressive damage and failure characteristics within the spec-
imen as loading rate varies, acoustic emission (AE) localization techniques can provide
effective characterization [30]. As an example with α = 45◦, the acoustic emission (AE)
event localization maps for the pre-cracked specimens at different stress stages are depicted
in Figure 16.
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Analysis reveals that during the compaction stage, the number of acoustic emission
(AE) events generated within the specimen is minimal and can be disregarded. However, as
the specimen enters the stage of linear deformation, the formation of internal microcracks
within the specimen leads to a slight increase in AE events. During the stage of non-stable
fracture development, or the elastoplastic stage, internal cracks, predominantly within the
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coal body, rapidly propagate and intersect, resulting in a significant increase in AE events.
Subsequently, as the stress on the specimen reaches its peak stress, or during the post-peak
fracture stage, macroscopic failure of the specimen occurs, with connectivity established
between the two pre-existing fissures, leading to a substantial generation of AE signals,
often peaking at this moment.

6. Conclusions

(1) The pre-existing fissures deteriorate the strength of the specimen itself, and by
analyzing the test results, it can be seen that the loading rate has obvious influence on
the mechanical properties of fractured rock mass, which can provide a reliable coefficient
for engineering design. The specific influence is as follows: as the loading rate increases,
the peak strength of the specimen gradually increases, while the strain corresponding
to the peak strength exhibits a negative correlation with the loading rate. Additionally,
different fissure angles have varying effects on the mechanical properties of the specimen.
Specifically, as the fissure angle increases, the peak strength and elastic modulus of the
specimen show a pattern of initial decrease followed by an increase, with the minimum
values observed at α = 30◦. On the other hand, the strain corresponding to peak strength
follows a pattern of initial increase followed by a decrease, reaching its maximum at α = 45◦.

(2) The failure of the specimen is primarily due to the expansion of cracks, leading
to the overall instability of the specimen. However, the initial appearance of cracks often
does not ultimately lead to the instability of the specimen. Cracks typically first appear
in a tensile nature before transitioning to shear cracks, and the ultimate failure mode is
predominantly shear failure.

(3) The research on the evolution law of AE characteristic parameters can provide an
important basis for engineering monitoring and can predict the stability of engineering
rock mass. The variation patterns of AE characteristic parameters under the influence of
loading rate differ slightly. The AE ring-down count, AE energy, and AE cumulative energy
all gradually increase with the increase in the loading rate. However, the AE cumulative
ring-down count decreases gradually with the increase in the loading rate.

(4) The characteristic parameters of AE signals of the specimen correspond quite
consistently with the stress–strain curve and can similarly be divided into four stages. With
the increase in the loading rate, the AE signals in the first three stages gradually stabilize.
However, accompanying the appearance of stress drop, the AE signals exhibit a sudden
increase. In the fourth stage, namely the post-peak failure stage, the AE signals of the
specimen significantly increase, and the final failure of the specimen often coincides with
the occurrence of the maximum AE signal.
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