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Abstract: Actual load identification is a most important task solved in the course of (1) engineering
inspections of steel structures, (2) the design of systems rising or restoring the bearing capacity of
damaged structural frames, and (3) structural health monitoring. Actual load values are used to
determine the stress–strain state (SSS) of a structure and accomplish various engineering objectives.
Load identification can involve some uncertainty and require soft computing techniques. Towards
this end, the article presents an integrated method combining basic provisions of structural mechanics,
machine learning, and artificial neural networks. This method involves decomposing structures into
primitives, using machine learning data to make projections, and assembling structures to make final
projections for steel frame structures subjected to elastic strain. Final projections serve to identify
parameters of point forces and loads distributed along the length of rods. The process of identification
means checking the difference between (1) weight coefficient matrices applied to unit loads and
(2) actual loads standardized using maximum load values. Cases of neural network training and
parameters identification are provided for simple beams. The aim of this research is to enhance the
reliability and durability of steel structures by predicting consequences of unfavorable load, including
emergency impacts. The novelty of this study lies in the co-use of artificial intelligence elements
and structural mechanics methods to predict load parameters using actual displacement curves of
structures. This novel approach will enable engineering inspection teams to predict unfavorable
load peaks, prevent emergency situations, and identify actual causes of emergencies triggered by
excessive loading.

Keywords: load identification; steel structures; machine learning; deflection; uniform length loads;
point forces; artificial neural network

1. Introduction

Load parameters are identified during engineering inspections of bearing elements,
and the reconstruction and renovation of buildings and structures. In some cases, using
structural monitoring systems and software packages is problematic, expensive, or tech-
nically challenging. Therefore, some researchers recommend artificial intelligence (AI)
models, including machine learning-powered techniques. Let us focus on these works.

In some restructuring projects, fiber concrete is used to repair damage in standard
concrete. Several experiments were conducted, and numerical modeling was performed to
study the bond between these types of concrete for various design parameters. A machine
learning regression model was developed to predict the bond strength and effectiveness of
this method [1]. Concrete and reinforced concrete structures, strengthened with carbon fiber-
reinforced plastic (CFRP), have complex strain and failure patterns that need simplified
predictive models rather than complicated finite-element analyses and experiments [1,2].
In [2], such models are (1) a neural network, (2) a heuristic search optimization algorithm
simulating the behavior pattern of a bee colony, and (3) Gaussian process regression.
Fiber-reinforced mortar can be used to repair and restore building structures. It can be
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injected into openings or used to fill concrete masonry joints. Uncertainty about bond
strength values and mechanical characteristics of materials make this type of masonry too
complex to analyze. To find the bond strength in a similar problem, authors of [3] used
several widespread machine learning models, of which Gaussian process regression was
the most effective. Publication [4] focuses on using carbon fiber lamellas to effectively
strengthen structures. Two ensemble learning models (a random forest and a gradient
decision tree) predict the strength of the bond between carbon fiber-reinforced polymer and
concrete. Machine learning is effectively used to identify cracks in concrete and reinforced
concrete structures. Photographs of cracks made in the course of experiments can serve as
a training set to ensure unambiguous identification. In the work [5], support vectors serve
as the basis for classification used to distinguish bending, shear and compression-triggered
cracks. Authors of work [6] offer a method to identify cracks, inclusions, pits, and scratches.
Modified deep learning approaches and a transformed ordinary convolutional network
can identify combinations of defects. The authors of the work [7] continued studying
different types of damage in flat single-story frames. Nodal connections in frame systems
and their damage under seismic load are considered there. The reaction of a structure with
an experimentally damaged beam–column joint serves as a reference.

The condition of bolted connections in steel frames is monitored in the work [8]. A
hybrid method of interacting models is used there. A machine learning model, composed
of support vectors, is trained to identify loose and tight bolted connections. Data on the
vibration of bolted connections for a certain period of time are collected there. These data
are further used to update stiffness values in a finite-element model and make a conclusion
about the degree of hazard from the stress state of a steel frame structure as a whole.

Work [9] focuses on co-using (1) a calibrated finite-element model, adjustable to
environmental conditions, and (2) a machine learning model to monitor and evaluate
bridge structures.

Machine learning is used in conjunction with a digital twin technology [10] to monitor
individual structures at the stage of operation. This approach can be employed to simulate
emergency impacts, including those affecting pre-stressed steel structures. The frequency
of vibrations in structural elements and its change in time determine the extent of damage
to steel structures identified in the course of structural health monitoring, which is needed
to check the technical condition of a structure [11]. Images of such graphs can be recognized
by means of (1) support vectors and (2) clustering the most relevant damage identifiers
using the algorithm of the K-nearest neighbors. Work [12] elaborates on analyzing damage
in steel structures. Cracks are identified by applying a stress intensity factor. Model training
is based on the finite-element method, while the prediction model itself is based on the
Gaussian process. An improved damage identification method is proposed in [13]. It is
noteworthy that the accuracy of damage type prediction, based on widespread machine
learning methods, relies on the quality and quantity of data. The task of evaluating the
technical condition of structures after emergency impacts is highly relevant. A support
vectors method, a naive Bayesian classifier of the Gaussian-type, and neural networks are
used in [14] for this purpose. Structural health monitoring is also conducted there. It ties
emergency damage to the system stiffness and strain values. Strain data were obtained
during supplementary load testing.

An algorithm designed for monitoring and evaluating the technical condition of high-
rise buildings is proposed in the work [15]. After the interrogation of sensors, recorded
signals undergo the Fourier transform. Further, wavelet transformation is applied to re-
move noise from signals directed into the neural network as input data. Particular features
are extracted from signals and classified using the neural network. This classification
includes several types of damage: minor damage, moderate damage, and collapse. Data
collected over the last ten years were analyzed to improve the efficiency of damage monitor-
ing in load-bearing structures and to make a hierarchical classification of damage types [16].
As a result, artificial and convolutional neural networks, as well as support vectors, proved
to be highly efficient and accurate. No detailed analysis of each work is needed to make
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the conclusion that loads and components of the stress–strain state are identified with the
help of artificial intelligence in works on seismic risk analysis [17–20] and in works on the
evaluation of building operation modes and information modeling [21–24].

The difference between predicted and observed values should be minimized in the
process of training models to predict complex processes. Here, heuristic optimization
methods are used, for example, in the works [25,26]. However, their use is limited by the
need to make numerical or analytical calculations to obtain complex process data. In this
case, some simplifications can be made, for example, by reducing the LOD (levels of detail)
in models [27,28].

Displacement identification is a truly relevant task today. Methods of predicting the
displacement of soil, slopes and structures are investigated in [29–32]; the displacement of
bearing structures is addressed in [33–35].

The task of displacement identification is part of structural health monitoring, which
is the focus of several studies. Steel frame structures are addressed in the article [36], which
compares different advanced machine learning models designed to evaluate the seismic
response of multi-story buildings. This approach is extended in [37] by the soil-structure
interaction. A prediction is also made for structural health monitoring purposes in cases of
seismic actions on reinforced concrete structures [18].

In addition, it is extremely important to consider both natural and human-induced
effects. For example, enhancing the reliability of steel structures is crucial in case of
explosions. Such impacts can be particularly dangerous for columns [38,39] and elements
of artificial intelligence are employed to derive analytical dependencies to evaluate their
load-bearing capacity.

This literature review demonstrates that machine learning is widely used to solve
various tasks in the construction industry, and the main areas of focus are as follows:
(1) structural health monitoring, digital twins for civil, industrial, and bridge structures;
(2) evaluating the seismic stability of buildings and built-up areas, minimizing risks of
socio-economic losses; (3) predicting strain and failure processes, including interaction
with soil; (4) identifying optimal solutions based on a combination of heuristic algorithms
with AI technologies, including ensemble learning methods.

This article proposes a new alternative approach to displacement identification. This
approach represents a complex structure as a set of substructures for which training
is performed.

The aim of this research is to enhance the reliability and durability of steel frame struc-
tures by predicting consequences of unfavorable loading, including emergency impacts.
The following tasks should be solved to achieve this goal: (1) formulating the general
concept for predicting load parameters based on the decomposition of a complex system
into simple rods; (2) adapting and implementing the proposed concept using standard
profile steel elements with uniform cross-sections; (3) developing a supervised learning
procedure for these simple rods with the nodal load transfer pattern taken into account,
and performing the training in respect of widespread types of unit loads; (4) performing a
practical verification of the ability to spot the load and to determine its value.

2. Problem Statement and Methods
2.1. The General Concept of the Computation Process

The strain state
→
δ of a 3D finite-element model of a structure can be described by a set

of displacement vectors
→
δ i in each of its nodes:

→
δ =

{→
δ 1,

→
δ 2, . . . ,

→
δ N

}T
;
→
δ i =

(
δx, δy, δz, φx, φy, φz

)
, i ∈ [1 . . . N];

→
δ i =

→
δ Di +

→
δ Li; ∀

→
δ i ∈

→
δ : δx ∨ δy ∨ δz ∨ φx ∨ φy ∨ φz ̸= 0

, (1)

δx, δy, δz are linear nodal displacements i in the global coordinate system;
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φx, φy, φz are angular displacements of this node;
→
δ Di ̸= 0 are displacements caused by the dead weight of a structure;
→
δ Li are displacements triggered by the payload.

Displacement components are nonzero to avoid mathematical uncertainty when
weight coefficients describing deflection curves are calculated. That is why support nodes
and nodes, having single support links, are disregarded. When 2D systems and systems
with displacement evaluation by one degree of freedom are considered, sets are made
using arrays of appropriate size. For example, the system has three nodes, and load
will only be identified by vertical displacements. Let the y-axis be directed vertically,
then, if conditions of Expression (1) are satisfied, the expression can be written as follows:
→
δ = {y1, y2, y3}T ; δ1 = y1; δ2 = y2; δ3 = y3.

A certain model of data associated with a node of a finite-element model is assumed
to be a network neuron. In the event of a mechanical action, a displacement vector,
associated with a finite-element node, will be understood as an input signal received by a
neuron. Hence, each neuron has indirect connections with other neurons that are similar
to connections between all nodes in case of deflections of structural elements. Similar to
displacements in a neuron, data on (1) internal forces in normal cross-sections passing
through nodes of finite-elements, and (2) stresses in characteristic points of these cross-
sections can be generated. Let us assume that a neural network generates an output
signal when a standardized input vector of deflections in model nodes corresponds to a
standardized vector of deflections generated at the training stage of model neurons.

The load to be identified can be described by the following parameters: load applica-
tion point (an array of application points), load value, load direction and load type (point
force, bending moment, etc.). A general AI-based scheme of the computation process
developed for load identification on the basis of the strain state is presented in Figure 1.

The prediction block is described in detail in Section 2.2. This principle can be
used to design more complex systems that have beams and columns, such as multi-
story frame structures of civil buildings. Other blocks of this scheme are described in
Sections 2.4 and 2.5.

2.2. General Provisions and Formulations for Steel Frame Systems

A steel bearing structure, subjected to 3D deformation, is considered in the article.
The finite-element method is used to make a computational model of this structure. In the
general case, the model may have spatial rod elements, plates, shells, and solid bodies. The
structure belongs to the first class of the stress–strain state, which means that no plastic
deformations are acceptable during its normal operation. Its structural behavior is assumed
to be linear in the elastic stage. Stiffness values of structural elements simulated using rods
or plates and shells are assumed to be constant.

The task is to identify the type of action (a mechanical force or pre-set displacement)
that the strained system is subjected to. For clarity, let us consider the frame structures
shown in Figure 2a,b.

Maximum deflections ∆ and f arise when the frame is subjected to point force P and
linear load q. These deflections predict the point of the force action. The curvature of
the longitudinal axis is another indicator of the load application point. Using maximum
deflection to identify the point of load without considering the curvature of the longitudinal
axis can be erroneous, as illustrated in Figure 2c. Here, deflection f is maximal at the point
shown in Figure 2d, but the force is applied at a different point (k), and the longitudinal
axis in the unloaded area remains undistorted (the rotation angle of cross-sections φ
remains constant).
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Types of actions that can be considered for identification purposes include a mechanical
point force, linear uniformly distributed load, a concentrated bending moment, pre-set
linear or angular displacement, etc. The type of action can be identified by considering
both linear and angular displacements of nodes in a finite-element model. The size of the
finite-element mesh also affects the accuracy of the action identification. Thus, Figure 3a–c
shows structures having the same horizontal deflection ∆, but also different loads that
triggered this deflection. The figure shows that such loads can be identified by evaluating
nodal displacements and rotation angles. Evidently, the accuracy of such an evaluation is
determined using the number of nodes in which linear displacements ∆i − ∆k and angular
displacements φi − φk are obtained.
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Hence, making a pool of stress–strain states is a necessary and sufficient condition for
the qualitative and quantitative identification of a type of mechanical action that a load-
bearing structure is subjected to. These stress–strain states can correspond to conditions of
normal operation and emergency actions. In the first case, for a steel structure of the first
class of the stress–strain state, strength and stiffness constraints must be satisfied as follows:(

σIV
eq ≤ Ry

)
∧ ( f ≤ [ f ]), (2)

where σIV
eq are equivalent stresses computed using the maximum strain energy theory

postulated by von Mises; Ry is the design resistance of structural steel, assigned using the
yield strength value; f is deflection of a structure triggered by an external load, [ f ] is the
deflection value (2) acceptable according to the aesthetic requirements and (3) depending
on the span.

In case of an emergency action no stress limits should apply, because the task is
to determine maximum deformations and deflections that help to identify the point of
structural failure.

(ε < 0.75εu) ∧ ( f < fult) (3)

where ε, f are the relative deformation and deflection of a structure as a result of an
emergency situation, respectively; εu is the relative deformation corresponding to the
temporary resistance (ultimate strength) of steel; fult is the deflection at which material
assets and humans can be safely evacuated from a building.

Conditions (2) and (3) can be applied to predict the emergency-triggered behavior of a
deformed structure subjected to displacements in the process of operation.
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2.3. Decomposition of Beam Structures under Normal Operating Conditions

Most beam structures can be represented as a set of simple beams, including can-
tilevered rods, hinged beams without cantilevers, and hinged beams with cantilevers.
Examples of complex systems, consisting of simple beams, are shown in Figure 4a.
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Let us focus on the background of the identification methodology. Parameters of load,
acting on a composite beam system, can be predicted using models trained on simple
beams (the main types of beams are shown in Figure 4b). Hence, identification of loads,
acting on an arbitrary system, requires a model that must be trained on the main types of
simple beams subjected to different types of loads and actions. The case of decomposition
with reaction transfer from one beam to another is shown in Figure 4c. The hinge reaction is
highlighted in red. Similarly, floor and roof beams of frame structures can also be described
using single-span beams with various kinematically constrained support nodes.

One of the main challenges accompanying the development of a neural network is the
method of its training. Proven methods of training linear regression equations [40,41] for
example, methods of stochastic gradient descent and many others, are not quite effective in
the general case of composite structural systems. The reason for their poor effectiveness is
a very large number of calculations must be made to ensure accurate deflection predictions
and identification of loads for a complex system. The time frame, needed for a structural
designer to make these calculations is unacceptable. Therefore, a procedure involving
deflection curves in a cross-section subjected to a moving unit load serves as the basis for
the training method to be used in the case under consideration. Deflections will serve as

the source of sets of weights to be generated for training purposes. Input weights W0,IN(
→
δ )

should be duly scaled to ensure their comparability with reference weights obtained during
training. Scaling can be performed by setting Be as the reference value of the rod stiffness

and using the following expression to adjust weights of the input signal W0,IN(
→
δ ):

WIN(
→
δ ) = W0,IN(

→
δ )Be/B, (4)

where WIN(
→
δ ) is the vector of scaled weights of the input signal, B is the actual stiffness of

the rod in tension–compression B = EA, in plane bending B = EI, [42,43], etc. Here, E is
the modulus of elasticity of the material; A is the cross-sectional area; and I is the moment
of inertia relative to the bending axis.

2.4. Patterns of Emergency Situations

A sudden failure of one of the columns is the most dangerous and characteristic
emergency situation for beam and frame structures. Such an emergency situation can
be simulated by (1) developing individual scenarios of progressive collapse escalation
prevention and (2) taking into account the nonlinear behavior of structural elements. The
level of elastic deflections must first be determined for a system with a removed link. The
elastic curve, conveying the stiffness of the system elements, must correspond to such
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elastic deflections. Further deformation of the system can be represented as a mechanism
with conventional plastic hinges; this mechanism is in motion until it reaches the stage of
ultimate deformations corresponding to initiation of material fracture.

2.5. Using Basic Cross-Sections of Simple Beams to Train the Neural Network

In the general case, each neuron, designated for storing the training information,
must have an array of 6 real numbers, where 6 is the number of degrees of freedom of a
finite-element model in a node. Therefore, the training matrix has size [ML] = 6 × n, where
n is the number of nodes used for training purposes. In a special case, [ML] = 3 × n for
a 2D system. It is noteworthy that not all nodes will be subjected to large displacements
triggered by the load application; support nodes will have zero displacements. That is why
it is necessary to exclude them from the training set.

Let the load-bearing structure be subjected to actions represented by vector
→
P ={→

P1, . . . ,
→
Pm

}
in the general case, where m is the number of load combinations in the

training set of load combinations that should not cause any disruption to normal operating
conditions. A unit action (an action of a force or load, whose value equals one) is considered

for neurons training purposes. Each action
→
P i, i = 1 . . . m forms vector

→
δ (2). A family of

reference curves, plotted according to the structure of vector
→
δ , can be described as a result

of structural analysis made using the finite-element method or the analytical method. Let
us represent this set of vectors as a training data array [δL]. Let us represent this array by
describing each point of the curve with the help of weight coefficient WSi:

WSi = δS/δi, i = 1 . . . n, (5)
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, can be de-
scribed as a result of structural analysis made using the finite-element method or the an-
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where Sδ  is a displacement vector component in some cross-section S; and iδ  are dis-

placement components in other cross-sections. SiW   coefficients are unique for each 
curve. They describe its shape. Therefore, it is important to use all cross-sections of a struc-
ture to obtain the most detailed information about the nature of its deflection. 

This family of curves can be used to make quadratic equations and higher-order pol-
ynomials in the general case. These polynomials are regression curves that make predic-
tions in terms of load identification. Due to the continuity of deflection curves, values of 
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Figure 5. It is noteworthy that in some cases the task of determining the stress state is 
difficult to accomplish. If a linearly deformed system is considered, then load identifica-
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can be measured; see Figure 5а. If refined identification is needed for items subjected to 

(6)

where δS is a displacement vector component in some cross-section S; and δi are displace-
ment components in other cross-sections. WSi coefficients are unique for each curve. They
describe its shape. Therefore, it is important to use all cross-sections of a structure to obtain
the most detailed information about the nature of its deflection.

This family of curves can be used to make quadratic equations and higher-order
polynomials in the general case. These polynomials are regression curves that make
predictions in terms of load identification. Due to the continuity of deflection curves, values
of yi components of displacement vectors determine mutual positions of nodes and can be
interpreted as connections between neurons (nodes of a structure in the training set). When
solid bodies are used to simulate structures, nodes must be located on the longitudinal axis
or the median surface of these bodies. Since linearly deformed systems are considered, a
deflection curve can be used to identify internal forces and stresses in a structure.

Cases of data generation using characteristic nodes of the training set are shown in
Figure 5. It is noteworthy that in some cases the task of determining the stress state is
difficult to accomplish. If a linearly deformed system is considered, then load identification
and stress determination can require one characteristic point ksi1 in cross-section Si, for
which the linear displacement and the rotation angle (the curvature of an element) can
be measured; see Figure 5a. If refined identification is needed for items subjected to
complex resistance, several points can be used for a cross-section, such as four corner points
ksi1 − ksi4; see Figure 5b.



Buildings 2024, 14, 1711 9 of 23

Buildings 2024, 14, x FOR PEER REVIEW 10 of 25 
 

complex resistance, several points can be used for a cross-section, such as four corner 

points 1 4i iks ks− ; see Figure 5b. 

 
Figure 5. Generation of data needed to train the neural network: a rod model (a); a model composed 

of plate or shell elements (b); a model composed of 3D and rod elements; , ,b s scσ σ σ  are normal 
stresses in concrete, tensile and compressed rebars, respectively; F is a rigidly restrained edge, a 3D 
model of a reinforced concrete rod (c). 

For these points, displacements in the cross-section plane and cross-sectional rotation 
angles can be measured to ensure a more accurate identification of load and the stress 
state. The features and complexity of this measurement method prevent it from being ad-
dressed in this article; the most widespread and simple examples are described in the Sec-
tion 3. Figure 5c can serve as an example of future-oriented research efforts that focus on 
identifying characteristic points needed for training purposes. This figure shows a frag-
ment of a 3D model of a reinforced concrete rod in a complex stress state. Four corner 
points are not sufficient in this case, because displacements of the cross-section, same as 
its size, depend on cracking and the crack opening width. However, 3D cracking may 
occur, and cracks can have different opening width and depth values, etc. 

2.6. Load Identification Based on Evaluation of the Threshold Function Values 
Let us consider load cases typical for steel building frames. They include (1) load 

uniformly distributed along the length of a rod and (2) a point force. The assumption is 

that distributed load is applied along the rod span. Hence, the load value eq  and the in-
dicator of the presence or absence of this load on the rod can serve as identification pa-
rameters, taking “0” and “1” values, respectively. The presence of load is associated with 

vector ( )qδ


, where 
11 q m−= , and its absence is associated with deflection vector δ


, 

corresponding to initial boundary conditions. As for the point force, its identification pa-

rameters can be represented as the following values: the force application point epos , 
which is a numerical identifier associated with the standardized shape of the deflection 

curve δ


 depending on the force applied to the rod cross-section considered here; eP  is 

Figure 5. Generation of data needed to train the neural network: a rod model (a); a model composed
of plate or shell elements (b); a model composed of 3D and rod elements; σb, σs, σsc are normal stresses
in concrete, tensile and compressed rebars, respectively; F is a rigidly restrained edge, a 3D model of
a reinforced concrete rod (c).

For these points, displacements in the cross-section plane and cross-sectional rotation
angles can be measured to ensure a more accurate identification of load and the stress
state. The features and complexity of this measurement method prevent it from being
addressed in this article; the most widespread and simple examples are described in the
Section 3. Figure 5c can serve as an example of future-oriented research efforts that focus
on identifying characteristic points needed for training purposes. This figure shows a
fragment of a 3D model of a reinforced concrete rod in a complex stress state. Four corner
points are not sufficient in this case, because displacements of the cross-section, same as its
size, depend on cracking and the crack opening width. However, 3D cracking may occur,
and cracks can have different opening width and depth values, etc.

2.6. Load Identification Based on Evaluation of the Threshold Function Values

Let us consider load cases typical for steel building frames. They include (1) load
uniformly distributed along the length of a rod and (2) a point force. The assumption is that
distributed load is applied along the rod span. Hence, the load value qe and the indicator
of the presence or absence of this load on the rod can serve as identification parameters,

taking “0” and “1” values, respectively. The presence of load is associated with vector
→
δ (q),

where q = 1 m−1, and its absence is associated with deflection vector
→
δ , corresponding

to initial boundary conditions. As for the point force, its identification parameters can be
represented as the following values: the force application point pose, which is a numerical

identifier associated with the standardized shape of the deflection curve
→
δ depending on

the force applied to the rod cross-section considered here; Pe is the actual value of this force.
The characteristic of identification parameters is shown in Figure 6.



Buildings 2024, 14, 1711 10 of 23

Buildings 2024, 14, x FOR PEER REVIEW 11 of 25 
 

the actual value of this force. The characteristic of identification parameters is shown in 
Figure 6. 

 
(a) (b) (c) (d) 

Figure 6. Load identification parameters: application point (a), direction and value (b), type of point 
load (c), type of distributed load (d). 

The following principles can be used to identify load parameters depending on the 
problem to be solved. 
₋ The absolute value of the difference between sums of weights of an input vector and 

a training vector for all cross-sections should not exceed the threshold (7). This de-
pendence can apply to rods shown in Figure 5a; their displacement is identified for 
one degree of freedom only, and cross-sectional deformations satisfy the Bernoulli 
hypothesis: 

( ) ( ) ( )
, ,

1 1
( ) ,

n n
t t

W i IN i E
i i

F W P W Wδ
= =

= − − 


 (7)

where ( )( )F W δ


 is the value of the threshold function that determines the extent of 

identity between weights of input signals ( )
,
t
i INW , and weights ( )

,
t

i EW , obtained at the train-

ing stage; WP  is the threshold that determines the maximum difference between sums of 
these weights; t is the number of loading, i is the number of the cross-section. 
₋ The sum of squared deviations for all cross-sections and displacements, involved in 

the identification process, should not exceed the threshold (8). In general, it is used 
for 3D systems and cross-sections for which the Bernoulli hypothesis is satisfied. 

( ) ( )2( ) ( )
, ,

1 1
( )

D n
t t

Si W i IN i E
d i

F W P W Wδ
= =

= − −


 (8)

where 1..6D =  is the number of displacements that participate in the identification pro-
cess. For example, for 2D systems 1 ..3D = , and identification can be performed sepa-
rately for each of the two linear and angular displacements, or for all three displacements 
on a plane, then 3D = . For a 3D system 1..6D = , if displacements are identified for all 
degrees of freedom, 6D = . 
₋ For the sum of squared deviations for the considered cross-sections and all displace-

ments involved in the identification process, for all characteristic points of cross-sec-

tions, sik  should not exceed the threshold (9). This dependence is applied to 3D sys-
tems subjected to complex resistance, and cross-sections of elements may be sub-
jected to warping, cracking, and other effects. 

Figure 6. Load identification parameters: application point (a), direction and value (b), type of point
load (c), type of distributed load (d).

The following principles can be used to identify load parameters depending on the
problem to be solved.

- The absolute value of the difference between sums of weights of an input vector and
a training vector for all cross-sections should not exceed the threshold (7). This
dependence can apply to rods shown in Figure 5a; their displacement is identi-
fied for one degree of freedom only, and cross-sectional deformations satisfy the
Bernoulli hypothesis:

F
(

W(
→
δ )

)
= PW −

∣∣∣∣∣ n

∑
i=1

W(t)
i,IN −

n

∑
i=1

W(t)
i,E

∣∣∣∣∣, (7)

where F
(

W(
→
δ )

)
is the value of the threshold function that determines the extent of

identity between weights of input signals W(t)
i,IN , and weights W(t)

i,E , obtained at the training
stage; PW is the threshold that determines the maximum difference between sums of these
weights; t is the number of loading, i is the number of the cross-section.

- The sum of squared deviations for all cross-sections and displacements, involved in
the identification process, should not exceed the threshold (8). In general, it is used
for 3D systems and cross-sections for which the Bernoulli hypothesis is satisfied.

F
(

W(
→
δ Si)

)
= PW −

D

∑
d=1

n

∑
i=1

(
W(t)

i,IN − W(t)
i,E

)2
(8)

where D = 1 . . . 6 is the number of displacements that participate in the identification
process. For example, for 2D systems D = 1 . . . 3, and identification can be performed sepa-
rately for each of the two linear and angular displacements, or for all three displacements
on a plane, then D = 3. For a 3D system D = 1 . . . 6, if displacements are identified for all
degrees of freedom, D = 6.

- For the sum of squared deviations for the considered cross-sections and all displace-
ments involved in the identification process, for all characteristic points of cross-
sections, ksi should not exceed the threshold (9). This dependence is applied to
3D systems subjected to complex resistance, and cross-sections of elements may be
subjected to warping, cracking, and other effects.

F
(

W(
→
δ )

)
= PW −

D

∑
d=1

n

∑
i=1

Nsi

∑
ksi=1

(
W(t)

i,IN − W(t)
i,E

)2
(9)

where Nsi is the number of characteristic points in the cross-section (see Figure 5).
The threshold is a positive value selected depending on the dimension of the problem

to be solved. In this case, a variable can be introduced:

id_P = sign(F(W(
→
δ ))), (10)
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The “+” sign of variable id_P means that the parameter of the action is identified, e.g.,
the force application point is found; the emergency failure of the column is identified, etc.

3. Results
3.1. Identification of Point Force Parameters

A 2D scheme is considered as a special case: linear displacements in the directions of
x, y axes and angular displacements r in the beam plane are possible for each of the cross-
sections S1, S2, S3. Let us make a data structure of neurons associated with cross-sections
S1, S2, S3. Each of them will have the following matrix:
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where ,11( )INW x , ,12 ( )INW x , ..., ,1 ( )IN nW x  are weights obtained from the input signal 
for the first neuron. These weights are associated with the linear displacement of the struc-
ture along the x axis; ,11( )INW y  ... ,1 ( )IN nW y  are the same along the y axis, and ,11( )INW r  

... ,1 ( )IN nW r   are weights associated with rotation angles of cross-sections; 

,1 ,1 ,1( ),  ( ),  ( )E i E i E iW x W y W r   are reference weights obtained at the network training 
stage. 

Given that x, y, r displacement curves have no discontinuities and are unique, one 
layer of neurons will be sufficient to identify one type of load, as shown in Figure 7. 
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where WIN,11(x), WIN,12(x), . . ., WIN,1n(x) are weights obtained from the input signal for
the first neuron. These weights are associated with the linear displacement of the structure
along the x axis; WIN,11(y) . . . WIN,1n(y) are the same along the y axis, and WIN,11(r) . . .
WIN,1n(r) are weights associated with rotation angles of cross-sections; WE,1i(x), WE,1i(y),
WE,1i(r) are reference weights obtained at the network training stage.

Given that x, y, r displacement curves have no discontinuities and are unique, one
layer of neurons will be sufficient to identify one type of load, as shown in Figure 7.

The point of application and the value of the point force can be identified using the
existing deformation scheme: network topology generation, as shown in Figure 7. In this
case, Expressions (3) and (6) are used to make arrays for neurons, and the summation unit
is generated. This summation unit makes a prediction about the presence or absence of a
point force in a cross-section on the basis of Expressions (7)–(10). At this stage, elements of
matrices, made for the cross-sections on the basis of Expression (11), are empty.

Network training results in filling the bottom block of matrices (11) through obtaining
the values of WE,1i(x), WE,1i(y), WE,1i(r). This procedure is shown in Figure 7b. The
total length of the beam and reference stiffness Be are set. Unit force p1 is applied to each
cross-section, and yij deflections are computed, where i is the number of the cross-section
to which the force is applied; j is the number of the cross-section for which displacement
is computed.

For the identification of the force application point and value, the vector of displacements
triggered by a point force is measured, and the values of WIN,1i(x), WIN,1i(y), WIN,1i(r) are
computed using Expression (5). The sums of reference and measured weights are computed
and directed to the summation unit. Further, Expression (10) is used to make a prediction.
If it is equal to one, then the value of the actual force is computed as follows:

P = y(P)/y(p), (12)

y(P) is the measured value of deflection in the cross-section in which the force applica-
tion point is identified; this value is directed to the network; y(p) is the value of deflection
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triggered by force p, acting in this cross-section. The values of limit state criteria can be
refined using Formulas (1) and (2), if the value of P is already computed.
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3.2. Case 1: A Cantilever Beam

Let us identify the load acting on a cantilever beam, which is (1) under the action of
some force and (2) in the strain state shown in Figure 8.
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Figure 8. Measured deflections and the result of the force identification.

The assumption is that it is impossible to (1) visually determine the force applica-
tion point and (2) measure its value. The assumption is that all displacements x = 0,
and rotation angles r will be disregarded in this case. Measured values of deflections,
interpreted as an input signal, are highlighted in black in Figure 8. To simplify the compu-
tations, let us assume that stiffness equals B = EI = 2000 kN · m2 and that this value also
equals the reference stiffness value used to train the neural network, then according to (4),

Be/B = 1 → WIN(
→
δ ) = W0,IN(

→
δ ) .

The model is trained using three cross-sections at the points where deflections were
measured. Displacements in the force application point will be found using a well-known
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formula obtained with the help of Moore’s integrals ymax,ed = pl3/3EI, assuming that
p = 1, and l is the distance from the fixed node to the force application point. In other
cross-sections, displacements can be found using geometric similarity. Let force p = 1 act
in the cross-section at the cantilever edge, then y11,ed = 1 · 33/(3 · 2000) = 0.0045 m,
y12,ed = 0.003 m, y13,ed = 0.0015 m. Then, weights of the resulting deflection curve are
computed as follows: WE,11(y) = 0.045/0.045 = 1, WE,12(y) = 0.0045/0.003 = 1, 5;
WE,13(y) = 3. This procedure is reproduced for the second and third cross-sections.
Training results can be presented as Expression (11):
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The assignment of the threshold value needs an independent research undertaking;
let us assume that the threshold value equals PW = 0.05 for this task, taking into account
some error in the computation of displacements. Measured data (Figure 8) are taken to
compute weights of the curve of measured deflections according to Formula (5) and to fill
the top block of matrices S1 − S3:

WIN,11(y) = 1,WIN,12(y) = 0.01572/0.008983 = 1.745; WIN,13(y) = 0.01572/0.004491 = 3.5,
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Cross-section S3: F(W(y)) = 0.05 − |1.7846 − 1.8333| = 0.0013, id_P = 1, yes. The

force application point is located in the neighborhood of cross-section S3. The deflection
triggered by the unit force in this cross-section y33 = 1/3 · 2000 = 1.666 · 10−4 m; according
to Formula (12), its value equals P = 0.004491/1.666 · 10−4 = 27 kN.

It is noteworthy that this solution is approximate, and it strongly depends on the value
of PW . If it were smaller by 0.0014 in this case (see the force application point search for
cross-section S3), then the force application point would not be identified in any of the
cross-sections, because for each cross-section F(W(y)) < 0. In this case, a larger number of
cross-sections would have to be considered for training purposes. Indeed, if a deflection
curve is plotted for the case of force P = 27 kN (see the value highlighted in red in
Figure 8), there is a difference between deflection values in one of the cross-sections. This
means that there is a need to introduce (1) an evaluation, based on rotation angles r, and
(2) supplementary cross-sections, and there is also no need to re-train the neural network.
Deviations in deflections may be caused by nonlinear effects, which are planned to be taken
into account in further research works.

3.3. Case 2: A Hinged Beam

Let us identify parameters of a load, which can be distributed over the entire rod or
applied to some node as a point load. In addition, let us demonstrate how load combina-
tions can be identified. An initial beam and unique curves, illustrating different load types
and application points, are shown in Figure 9.

The span of the beam is 6 m; cross-sections are spaced at intervals of 0.5 m. Cross-
sections S1, S11 will be interpreted as neurons. The rod is made of structural steel and has a
W10 × 60 I-beam section. For training purposes, the force value equals 10 kN. The network
topology is essentially the same as in Figure 7a.
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Figure 9. A hinged beam showing cross-sections used for training purposes: Y3(P0), Y6(P0) are
deflection curves triggered by a force located in cross-section S3, S6; Y(q0) is a deflection curve
triggered by the load uniformly distributed along the entire length of the rod.

3.4. Identification of the Point Force

Let us train the network. The finite-element method will be used to find deflections
and reference weights in this problem. The matrix of displacements and their graphical
interpretation are shown in Figure 10.
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Figure 10. Preparation for model training: deflection curves (a) and their matrix (b); S1–S11 are
beam cross-sections; P(S1) is the force application point in these cross-sections. Colors highlight the
elements of the main (green) and side (orange) diagonal in the matrix.
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Let us use Expressions (4) and (5) to make a weight matrix for Expression (6) in respect
of the vertical linear displacements.

WE i,j(y)

Neurons

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

1 0.56279 0.43368 0.3829 0.36777 0.37693 0.41016 0.47636 0.60196 0.87049 1.70417

1.86053 1 0.7533 0.6579 0.62795 0.64103 0.69565 0.80646 1.01782 1.47059 2.87778

2.61293 1.37289 1 0.85564 0.80731 0.81818 0.88364 1.02102 1.28572 1.85498 3.62686

3.24055 1.68422 1.20188 1 0.92586 0.92754 0.99417 1.14286 1.43418 2.06452 4.0315

1948265 1.92309 608496 1.1076 1 0.98393 1.04256 1.18932 1.48485 2.13044 4.15257

4.03739 2.07693 1.45454 1.17392 1.04096 1 1.04096 1.17392 1.45454 2.07693 4.03739

4.15257 2.13044 1.48485 1.18932 1.04256 0.98393 1 1.1076 608496 1.92309 1948265

4.0315 2.06452 1.43418 1.14286 0.99417 0.92754 0.92586 1 1.20188 1.68422 3.24055

3.62686 1.85498 1.28572 1.02102 0.88364 0.81818 0.80731 0.85564 1 1.37289 2.61293

2.87778 1.47059 1.01782 0.80646 0.69565 0.64103 0.62795 0.6579 0.7533 1 1.86053

1.70417 0.87049 0.60196 0.47636 0.41016 0.37693 0.36777 0.3829 0.43368 0.56279 1

Now, let us apply input signal Y(P) to the neural network. The input signal is applied
in the form of measured deflections triggered by some point force whose position and
value are unknown.

Y(P) =
{

−1.6499;−3.1733;−4.4434;−5.3338;−5.7542;−5.7397;−5.5325;−4.6547;
−3.7085;−2.5758;−1.319

}
Let us fill the matrix of input signal weights using (4), and (5) for each element of this

input vector. The resulting matrix is as follows:

WIN i,j(y)

Neurons

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

1 0.520623 0.372685 0.311702 0.289903 0.291225 0.312702 0.359901 0.452004 0.651008 1.271613

1.920776 1 0.715845 0.59871 0.556839 0.559379 0.60063 0.691289 0.868199 1.25044 2.442483

2.683228 1.39695 1 0.836367 0.777877 0.781424 0.83905 0.965696 1.21283 1.746802 3.412027

3.208193 1.670258 1.195647 1 0.930066 0.934307 1.003207 1.154632 1.450117 2.088557 4.079578

3.449426 1.79585 1.285551 1.075193 1 1.004561 1.078641 1.241452 1.559155 2.245602 4.386333

3.433765 1.787697 1.279714 1.070311 0.99546 1 1.073744 1.235815 1.552076 2.235407 4.366419

3.197936 1.664919 1.191824 0.996803 0.927092 0.931321 1 1.15094 1.445481 2.081881 4.066537

2.778542 1.446572 1.035522 0.866077 0.805509 0.809182 0.868855 1 1.255913 1.808852 3.533229

2.212369 1.15181 0.824518 0.6896 0.641373 0.644298 0.691811 0.796234 1 1.440269 2.813276

1.536081 0.799719 0.572475 0.478799 0.445315 0.447346 0.480335 0.552837 0.694315 1 1.953299

0.786403 0.409419 0.293081 0.245123 0.227981 0.229021 0.24591 0.283027 0.355457 0.511954 1

The threshold PW = 0.01 is set to compute deviations for each cross-section and

the threshold function value: F
(

W(
→
δ Si)

)
= PW − A, A =

Nsi
∑

i=1

(
W(t)

i,IN(Si) − W(t)
i,E(Si)

)2
;

computation results are shown in Table 1. A positive identification result for cross-section
Si means that the model predicts the point of application of some point force in this
cross-section. The table shows that it is cross-section S4.
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Table 1. Identification of the force application point.

The Value of A for the Cross-Section:

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

0.3048 0.3028 0.07632 0.0047 0.1752 0.6391 1.4197 2.3442 2.9682 2.7010 1.2923

F
(

W(
→
δ )

)
according to Formula (8)

−0.2948 −0.29289 −0.06633 0.005292 −0.16523 −0.62918 −1.40979 −2.33426 −2.95826 −2.69101 −1.28235

The value of id_P = sign
(

F
(

W(
→
δ Si)

))
for the cross-section

−1 −1 −1 1 −1 −1 −1 −1 −1 −1 −1

Since the force is located in cross-section S4, in the case of linear deformation, its
value can be predicted using the ratio of input and reference deflections (see the matrix in
Figure 10b and input vector Y(P)):

Pf or = Y(P)4/P(S4) = −5.3338/ − 1.19288 = 4.4713 kN. The input vector Y(P) was
obtained when the value of vertical force was P = 4.5 kN; the force was applied 10 cm to
the left of the cross-section S4. If the prediction is compared with the exact solution, it can
be argued that this discretization of a structure into cross-sections can be applied to achieve
high prediction accuracy.

3.5. Identification of the Distributed Load

Another layer of neurons is needed, because a new type of load is addressed here,
and the model is not trained in it. The structure of these neurons is the same as that
required for the point force identification. The distributed load q = 10 kN/m will be
applied to the system (Figure 9) to have a vector of training displacements generated. These
training displacements will be used to compute weights in cross-sections S1–S11. These
displacements can be accurately computed using Moore’s integrals, or the finite-element
method can be applied. In the latter case, each node of the model will be associated with
cross-sections Si. The result is shown in Figure 11.
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Figure 11. Using the finite-element method to obtain matrix coefficients
[
WE i,j

]
: numbers indicate

deflections used for training purposes.

The matrix of weight coefficients, stored in the memory of neurons, will be constructed
on the basis of the assumption that the load, uniformly distributed along the length, is
applied to each cross-section. If the force application point is in the cross-section, one
row vector can be sufficiently created by performing its normalization using the value of
displacement in the cross-section to which the force is applied. However, 11 vectors are
created in this case. Their normalization is performed using the value of displacement in
the cross-section. Given that the load is uniformly distributed in all beam cross-sections,
the result will be as follows:
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[WE]

Matrix

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11

1 0.519838 0.369295 0.302741 0.272156 0.263128 0.272156 0.302741 0.369295 0.519838 1

1.923676 1 0.710404 0.582376 0.52354 0.506173 0.52354 0.582376 0.710404 1 1.923676

2.707861 1.407649 1 0.819782 0.73696 0.712514 0.73696 0.819782 1 1.407649 2.707861

3.303148 1.717102 1.219837 1 0.898971 0.869151 0.898971 1 1.219837 1.717102 3.303148

3.674364 1.910074 1.356925 1.112382 1 0.966829 1 1.112382 1.356925 1.910074 3.674364

3.80043 1.975608 1.403481 1.150548 1.03431 1 1.03431 1.150548 1.403481 1.975608 3.80043

3.674364 1.910074 1.356925 1.112382 1 0.966829 1 1.112382 1.356925 1.910074 3.674364

3.303148 1.717102 1.219837 1 0.898971 0.869151 0.898971 1 1.219837 1.717102 3.303148

2.707861 1.407649 1 0.819782 0.73696 0.712514 0.73696 0.819782 1 1.407649 2.707861

1.923676 1 0.710404 0.582376 0.52354 0.506173 0.52354 0.582376 0.710404 1 1.923676

1 0.519838 0.369295 0.302741 0.272156 0.263128 0.272156 0.302741 0.369295 0.519838 1

Now let us set input vectors (for example, actual measured deflections) and focus on
the process of identifying a uniformly distributed load and its value. Let us set three vectors
V1 −V3 presented in Table 2. A finite-element model shown in Figure 11 is used to generate
these vectors. Load parameters will not be demonstrated to illustrate the correctness of
identification parameters.

Table 2. Input displacement vectors δsi.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11

V1 −2.991 −5.815 −8.303 −10.288 −11.602 −12.077 −11.602 −10.288 −8.303 −5.815 −2.991

V2 −4.839 −9.202 −12.724 −15.161 −16.393 −16.418 −15.354 −13.378 −10.672 −7.418 −3.800

V3 −4.468 −8.597 −12.101 −14.761 −16.421 −16.984 −16.421 −14.761 −12.101 −8.597 −4.468

Formula (5) is used, since the load application point is already known and the main
task is to determine its type. Let us make matrices

[
WIN i,j

]
for actions V1 − V3.

[WIN ](V1)

Matrix

1 0.51442 0.36027 0.29076 0.25783 0.24769 0.25783 0.29076 0.36027 0.51442 1

1.94393 1 0.70034 0.56522 0.50121 0.48148 0.50121 0.56522 0.70034 1 1.94393

2139259 1.42789 1 0.80707 0.71567 0.6875 0.71567 0.80707 1 1.42789 2.7757

3.43924 1.76923 1.23905 1 0.88675 0.85185 0.88675 1 1.23905 1.76923 3.43924

3.87848 1.99518 757150 1.12771 1 0.96065 1 1.12771 757150 1.99518 3.87848

4.03737 2.07691 1.45454 1.17391 1.04096 1 1.04096 1.17391 1.45454 2.07691 4.03737

3.87848 1.99518 757150 1.12771 1 0.96065 1 1.12771 757150 1.99518 3.87848

3.43924 1.76923 1.23905 1 0.88675 0.85185 0.88675 1 1.23905 1.76923 3.43924

2139259 1.42789 1 0.80707 0.71567 0.6875 0.71567 0.80707 1 1.42789 2.7757

1.94393 1 0.70034 0.56522 0.50121 0.48148 0.50121 0.56522 0.70034 1 1.94393

1 0.51442 0.36027 0.29076 0.25783 0.24769 0.25783 0.29076 0.36027 0.51442 1
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[WIN ](V2)

Matrix

1 0.52588 0.38033 0.31919 0.29521 0.29475 0.31518 0.36174 0.45347 0.65232 1.27334

1.90157 1 0.72322 0.60695 0.56136 0.5605 0.59934 0.68788 0.8623 1.24044 2.42134

2.62931 1.38271 1 0.83924 0.7762 0.775 0.82871 0.95114 1.19231 1.71516 3.348

3.13297 1.64757 1.19155 1 0.92488 0.92346 0.98746 1.13333 842616 2.04371 3.98932

3.38742 1.78138 1.28833 1.08122 1 0.99846 1.06766 1.22538 1.53609 2.20969 4.31333

3.39265 1.78413 1.29032 1.08289 1.00154 1 1.0693 1.22727 1.53846 84404 4.31998

3.17277 1.74768 1.20669 1.0127 0.93663 0.93519 1 1.14773 1.43875 2.06967 4.5386

2.76439 1.45374 1.05137 0.88235 0.81608 0.81482 0.87129 1 1.25356 1.80328 1.9054

2.20523 1.15969 0.83871 0.70388 0.65101 0.65 0.69505 0.79773 1 1.43852 2.808

1.53298 0.80617 0.58304 0.48931 0.45255 0.45185 0.48317 0.55455 0.69516 1 1.952

0.78534 0.413 0.29869 0.25067 0.23184 0.23148 0.24752 0.28409 0.35613 0.51229 1

[WIN ](V3)

Matrix

1 0.51982 0.36929 0.30274 0.27215 0.26312 0.27215 0.30274 0.36929 0.51982 1

1.92375 1 0.71042 0.58239 0.52354 0.50617 0.52354 0.58239 0.71042 1 1.92375

2.70791 1.40762 1 0.81978 0.73695 0.7125 0.73695 0.81978 1 1.40762 2.70791

3.30321 1.71707 1.21984 1 0.89896 0.86913 0.89896 1 1.21984 1.71707 3.30321

3.67449 1.91006 1.35695 1.1124 1 0.96682 1 1.1124 1.35695 1.91006 3.67449

3.80058 1.97561 1.40351 1.15057 1.03432 1 1.03432 1.15057 1.40351 1.97561 3.80058

3.67449 1.91006 1.35695 1.1124 1 0.96682 1 1.1124 1.35695 1.91006 3.67449

3.30321 1.71707 1.21984 1 0.89896 0.86913 0.89896 1 1.21984 1.71707 3.30321

2.70791 1.40762 1 0.81978 0.73695 0.7125 0.73695 0.81978 1 1.40762 2.70791

1.92375 1 0.71042 0.58239 0.52354 0.50617 0.52354 0.58239 0.71042 1 1.92375

1 0.51982 0.36929 0.30274 0.27215 0.26312 0.27215 0.30274 0.36929 0.51982 1

The appearance of primary and secondary diagonals of matrix [WIN ]
(V2) proves that

action V2 does not correspond to the symmetrical shape of the deflection curve, so it can
be excluded from any detailed consideration. If the rod is subjected to a symmetrical
distributed load, the deviation of action weights and the reference curve will tend to
zero within the rounding accuracy; that is why we set a sufficiently small threshold of
PW = 0.0001. Then, computations are made using Formula (9), Table 3.

Table 3. Identification of actions V1 and V3.

A =
11
∑

j=1

(
[WIN ]

(V1) − [WE]
)2 ∑

j
Aj F

(
W(

→
V1)

)
B =

11
∑

j=1

(
[WIN ]

(V3) − [WE]
)2 ∑

j
Bj F

(
W(

→
V1)

)
i = 1 0.001157

0.4625 −0.4624

i = 1 1.3156 × 10−9

1.8 × 10−7 +9.98 × 10−5

... 0.003219 ... 1.3037 × 10−8

0.01188 7.0103 × 10−9

0.043814 1.1836 × 10−8

0.101584 3.2268 × 10−8

0.139197 4.8026 × 10−8

0.101584 3.2268 × 10−8

0.043814 1.1836 × 10−8
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Table 3. Cont.

A =
11
∑

j=1

(
[WIN ]

(V1) − [WE]
)2 ∑

j
Aj F

(
W(

→
V1)

)
B =

11
∑

j=1

(
[WIN ]

(V3) − [WE]
)2 ∑

j
Bj F

(
W(

→
V1)

)
0.01188 7.0103 × 10−9

... 0.003219 ... 1.3037 × 10−8

i = 11 0.001157 i = 11 1.3156 × 10−9

According to Table 3, action V3 is unambiguously identified as a uniform load acting
on the rod. Its value will be as follows for a linear system (see Table 2 and Figure 11):

δ6(V3)/δ6(q) = −16.984/(−5.6615) = 2.9999 t/m =29.999 kN/m
Figure 12 shows actions that caused the deflections V1 − V3 are provided to illustrate

the accuracy of identification.
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4. Discussion and Areas of Further Research

The proposed identification method can be applied to other types of steel structures,
such as frames, by adapting training procedures to convey the characteristic properties
of these structures (geometry, types of nodal connections, and the nature of loads acting
on them). The algorithm presented in the article allows the prediction of load parameters
only for those types of loads and primitives that were considered in the course of train-
ing. If a structure can be composed of primitives as shown in Figure 4, the identification
of parameters for loads of the same type does not cause any difficulties. However, if
a combination of loads is considered, the proposed algorithm cannot generate any ad-
equate prediction results without a prior adaptation. If it is necessary to identify load
parameters or a combination of loads for complex 3D systems, the following adaptation
should be performed:

− reproduce the boundary conditions for each primitive within a complex system;
− develop a load superposition algorithm;
− decompose the input displacement vector and search for further loads or load combina-
tions, assuming that one of the loads is identified correctly.
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Furthermore, an important area of research is the consideration of the physically and
geometrically nonlinear behavior of a structure. However, this process may require a
complex topology of a neural network with multiple hidden layers.

Further research can be made into the number of cross-sections needed for training
purposes, the mathematical substantiation of the threshold value, the examination of
prediction effectiveness using models with different levels of detail (LOD), etc.

The evaluation of performance metrics, such as the accuracy, precision, and recall of
machine learning models, is a vital issue [44]. This evaluation and further adjustment of
these metrics can strongly affect the prediction result. In the general case, a comprehensive
set of metrics is needed if no analytic expressions can be made to find the weight coeffi-
cients. In this case, heuristic optimization methods are used. No advanced analysis of
prediction accuracy is needed in this work due to the small spread and range of data in the
training dataset.

However, many tasks require solving important issues such as preparing and selecting
data for the training dataset, choosing the model validation method, evaluating the data
spread [45], making model ensembles and tuning their interaction, etc.

The need for a specific task of identifying loads acting on steel structures stems from
tasks (1) about additional displacements detected in the course of monitoring the stress–
strain state of power line supports, and (2) about causes of roof truss emergencies to be
identified. Examples of these structures are shown in Figure 13.
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after an accident (b), f is the deviation of displacements caused by the uncertain load; f -upper
point deflection.

It should be noted that solving these tasks without the use of machine learning is
possible but quite difficult. Machine learning elements are a highly effective way to address
these problems. Moreover, a database of beam and column structures can be created to
make predictions for various frame systems. This database can be applied to evaluate loads
by deflection curves plotted for steel, concrete, reinforced concrete, and other composite
structures. This approach can have a great future if applied to predict the effectiveness of
strengthening damaged structures.

5. Conclusions

The research presented in this article achieved two main goals. The first is the ability to
identify load parameters that cannot be directly determined, which enhances the reliability
of steel structures and allows for forecasting the degree of hazard these loads pose to the
structure. The second goal is the ability to determine the actual causes of deformations,
including emergency impacts, if they are caused by loads that are no longer acting or whose
intensity is difficult to measure.

The main results are as follows:
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(1) The concept of load identification is proposed for linear steel frame systems. This
concept is based on decomposition of a system into primitives (simple rods). Primitives are
used for machine learning purposes within the framework of this concept. The purpose of
machine learning is to identify the type, the point of application, and the value of loads;

(2) Analogies of neural network technologies are applied to develop a procedure for
identifying the type of load, including point forces and longitudinal loads acting along the
beam length;

(3) Primitives, such as cantilever beams and hinged single-span beams, are used to
develop a procedure for identifying the force value and point of application, the presence,
the absence and the value of a longitudinal load distributed along the entire length of a rod;

(4) Analytic expressions, developed to evaluate the identification accuracy using
formulas proposed for evaluating the model quality, show that approaches to the prediction
of loads and their parameters are efficient and quite accurate.

These findings can be contributed to computer-aided engineering systems used to
inspect load-bearing structures, to evaluate their stress–strain properties and loading level,
and to identify loads if their direct identification is impossible or points of application
cannot be accurately determined.
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