Implementing All-Weather Photocatalysis of Exhaust Fumes Based on the g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ Ternary Composite Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of g-C3N4/TiO2 Composite Photocatalyst
2.3. Preparation of Long-Afterglow Vehicle Exhaust Degradation Coatings
2.4. Evaluation of Basic Properties of Coatings
2.4.1. Anti-Slip Properties
2.4.2. Adhesion
2.4.3. Water Resistance
2.4.4. Abrasion Resistance
2.5. Evaluation of Exhaust Degradation Effect
μ2 = (B1 − B2)/B1 × 100%
μ3 = (C1 − C2)/C1 × 100%
2.6. Characterization and Analysis of Microscopic Experimental Materials
3. Results and Discussion
3.1. Evaluation of Basic Performance of Coating
3.2. Evaluation and Comparative Analysis of Exhaust Degradation Performance
3.3. Microscopic Experimental Results
3.3.1. XRD
3.3.2. FT-IR
3.3.3. XPS
3.3.4. TG-DSC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
NOx | nitrogen oxides |
CO | carbon monoxide |
CH | hydrocarbons |
TiO2 | titanium dioxide |
g-C3N4 | graphite carbon nitride |
CO2 | carbon dioxide |
SrAl2O4: Eu2+, Dy3+ | a kind of long-afterglow material |
XRD | X-ray diffraction |
FT-IR | Fourier transform infrared spectroscopy |
XPS | X-ray photoelectron spectroscopy |
TG-DSC | thermogravimetric and differential scanning calorimetry |
C3H6N6 | melamine |
μ | degradation efficiency |
A | CO concentration value |
B | NO concentration value |
C | CH concentration value |
References
- Twigg, M.V. Progress and future challenges in controlling automotive exhaust gas emissions. Appl. Catal. B Environ. 2007, 70, 2–15. [Google Scholar] [CrossRef]
- Li, X.; Wan, F.; You, L.; Wu, S.; Yang, C.; Zhang, L.; Barbieri, D.M. A review on photocatalytic asphalt pavement designed for degradation of vehicle exhausts. Transp. Res. Part D Transp. Environ. 2023, 115, 103605. [Google Scholar] [CrossRef]
- Wu, J.; Luo, Y.; Qin, Z. Composite-modified nano-TiO2 for the degradation of automobile exhaust in tunnels. Constr. Build. Mater. 2023, 408, 133805. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, J.; Meng, X.; Li, Z. Recent advances in vehicle exhaust treatment with photocatalytic technology. Catalysts 2022, 12, 1051. [Google Scholar] [CrossRef]
- Song, X.; Hu, Y.; Zheng, M.; Wei, C. Solvent-free in situ synthesis of g-C3N4/{0 0 1} TiO2 composite with enhanced UV-and visible-light photocatalytic activity for NO oxidation. Appl. Catal. B Environ. 2016, 182, 587–597. [Google Scholar] [CrossRef]
- Zhang, M.; Jiang, W.; Liu, D.; Wang, J.; Liu, Y.; Zhu, Y.; Zhu, Y. Photodegradation of phenol via C3N4-agar hybrid hydrogel 3D photocatalysts with free separation. Appl. Catal. B Environ. 2016, 183, 263–268. [Google Scholar]
- Hou, Z.; Chu, J.; Liu, C.; Wang, J.; Li, A.; Lin, T.; François-Xavier, C.P. High efficient photocatalytic reduction of nitrate to N2 by Core-shell Ag/SiO2@ cTiO2 with synergistic effect of light scattering and surface plasmon resonance. Chem. Eng. J. 2021, 415, 128863. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Mahmoud, Z.H.; Abdullaev, S.; Ali, F.K.; Naeem, Y.A.; Mizher, R.M.; Karim, M.M.; Abdulwahid, A.S.; Ahmadi, Z.; Habibzadeh, S.; et al. Nano titanium oxide (nano-TiO2): A review of synthesis methods, properties, and applications. Case Stud. Chem. Environ. Eng. 2024, 9, 100626. [Google Scholar] [CrossRef]
- Ng, K.H.; Yuan, L.S.; Cheng, C.K.; Chen, K.; Fang, C. TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. J. Clean. Prod. 2019, 233, 209–225. [Google Scholar] [CrossRef]
- Bindhu, M.R.; Willington, T.D.; Hatshan, M.R.; Chen, S.-M.; Chen, T.-W. Environmental photochemistry with Sn/F simultaneously doped TiO2 nanoparticles: UV and visible light induced degradation of thiazine dye. Environ. Res. 2022, 207, 112108. [Google Scholar] [CrossRef]
- Bibi, S.; Shah, S.S.; Muhammad, F.; Siddiq, M.; Kiran, L.; Aldossari, S.A.; Mushab, M.S.S.; Sarwar, S. Cu-doped mesoporous TiO2 photocatalyst for efficient degradation of organic dye via visible light photocatalysis. Chemosphere 2023, 339, 139583. [Google Scholar] [CrossRef] [PubMed]
- Esrafili, A.; Salimi, M.; Sobhi, H.R.; Gholami, M.; Kalantary, R.R. Pt-based TiO2 photocatalytic systems: A systematic review. J. Mol. Liq. 2022, 352, 118685. [Google Scholar] [CrossRef]
- Ferreira VR, A.; Pereira, C.M.; Silva, A.F.; Azenha, M.A. Ag-doped hollow TiO2 microspheres for the selective photo-degradation of bilirubin. Appl. Surf. Sci. 2023, 641, 158457. [Google Scholar] [CrossRef]
- Karuppasamy, P.; Nisha NR, N.; Pugazhendhi, A.; Kandasamy, S.; Pitchaimuthu, S. An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. J. Environ. Chem. Eng. 2021, 9, 105254. [Google Scholar] [CrossRef]
- Veziroglu, S.; Ullrich, M.; Hussain, M.; Drewes, J.; Shondo, J.; Strunskus, T.; Adam, J.; Faupel, F.; Aktas, O.C. Plasmonic and non-plasmonic contributions on photocatalytic activity of Au-TiO2 thin film under mixed UV–visible light. Surf. Coat. Technol. 2020, 389, 125613. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Mamba, B.B. TiO2-based photocatalysis: Toward visible light-responsive photocatalysts through doping and fabrication of carbon-based nanocomposites. Crit. Rev. Solid State Mater. Sci. 2017, 42, 295–346. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Q.; Shan, R.; Zhang, F.; Muhammad, Y.; Huang, K. Photocatalytic degradation of vehicular exhaust by nitrogen-doped titanium dioxide modified pavement material. Transp. Res. Part D Transp. Environ. 2021, 91, 102690. [Google Scholar] [CrossRef]
- Heffner, H.; Faccio, R.; López–Corral, I. C–doped TiO2 (B): A density functional theory characterization. Appl. Surf. Sci. 2021, 551, 149479. [Google Scholar] [CrossRef]
- Khan, H.; Shah, M.U.H. Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: A review. J. Environ. Chem. Eng. 2023, 11, 111532. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, Y.L.; Chen, H.J.; Liu, J.; Shi, X.L.; Suo, G.; Hou, X.; Ye, X.; Zhang, L.; Lu, S.; et al. Flexible, recoverable, and efficient photocatalysts: MoS2/TiO2 heterojunctions grown on amorphous carbon-coated carbon textiles. J. Colloid Interface Sci. 2023, 651, 284–295. [Google Scholar] [CrossRef]
- Acharya, R.; Parida, K. A review on TiO2/g-C3N4 visible-light-responsive photocatalysts for sustainable energy generation and environmental remediation. J. Environ. Chem. Eng. 2020, 8, 103896. [Google Scholar] [CrossRef]
- Patnaik, S.; Sahoo, D.P.; Parida, K. Recent advances in anion doped g-C3N4 photocatalysts: A review. Carbon 2021, 172, 682–711. [Google Scholar] [CrossRef]
- Li, D.; Li, R.; Zeng, F.; Yan, W.; Deng, M.; Cai, S. The photoexcited electron transfer and photocatalytic mechanism of g-C3N4/TiO2 heterojunctions: Time-domain ab initio analysis. Appl. Surf. Sci. 2023, 614, 156104. [Google Scholar] [CrossRef]
- Ma, X.; Yang, H.; Wang, B.; Wu, L.; Ma, X.; Li, Y.; Deng, H. Mechano-synthesized TiO2/g-C3N4 composites for rapid photocatalytic removal of perrhenate. J. Environ. Chem. Eng. 2023, 11, 109423. [Google Scholar] [CrossRef]
- Tan, Y.; Shu, R.; Xu, H.; Song, L.; Zhang, R.; Ouyang, C.; Xia, M.; Hou, J.; Zhang, X.; Yuan, Y.; et al. Supercritical carbon dioxide-assisted TiO2/g-C3N4 heterostructures tuning for efficient interfacial charge transfer and formaldehyde photo-degradation. J. Environ. Chem. Eng. 2023, 11, 110992. [Google Scholar] [CrossRef]
- Wang, H.; LHi Chen, Z.; Li, J.; Li, X.; Huo, P.; Wang, Q. TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance. Solid State Sci. 2020, 100, 106099. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Pan, Y.; Chen, B. Physical and mechanical properties of sustainable vegetal concrete exposed to extreme weather conditions. Constr. Build. Mater. 2021, 287, 123024. [Google Scholar] [CrossRef]
- Hai, O.; Pei, M.; Yang, E.; Ren, Q.; Wu, X.; Zhu, J.; Zhao, Y.; Du, L. Exploration of long afterglow luminescence materials work as round-the-clock photocatalysts. J. Alloys Compd. 2021, 866, 158752. [Google Scholar] [CrossRef]
- Rojas-Hernandez, R.E.; Rubio-Marcos, F.; Rodriguez, M.Á.; Fernandez, J.F. Long lasting phosphors: SrAl2O4: Eu, Dy as the most studied material. Renew. Sustain. Energy Rev. 2018, 81, 2759–2770. [Google Scholar] [CrossRef]
- Wu, Y.; Gan, J.; Wu, X. Study on the silica-polymer hybrid coated SrAl2O4: Eu2+, Dy3+ phosphor as a photoluminescence pigment in a waterborne UV acrylic coating. J. Mater. Res. Technol. 2021, 13, 1230–1242. [Google Scholar] [CrossRef]
- Chen, M.L.; Li, S.S.; Wen, L.; Xu, Z.; Li, H.H.; Ding, L.; Cheng, Y.H. Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@ metal–organic framework for photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 2023, 629, 409–421. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Liu, M.; Wen, L.; Xu, Z.; Cheng, Y.H.; Chen, M.L. Exploration of long afterglow luminescent materials composited with graphitized carbon nitride for photocatalytic degradation of basic fuchsin. Environ. Sci. Pollut. Res. 2023, 30, 322–336. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Waterhouse GI, N.; Lu, S.; Yu, J. Recent advances in the design of afterglow materials: Mechanisms, structural regulation strategies and applications. Chem. Soc. Rev. 2023, 52, 8005–8058. [Google Scholar] [CrossRef] [PubMed]
- Papamichail, P.; Nannou, C.; Giannakoudakis, D.A.; Bikiaris, N.D.; Papoulia, C.; Pavlidou, E.; Lambropoulou, D.; Samanidou, V.; Deliyanni, E. Maximization of the photocatalytic degradation of diclofenac using polymeric g-C3N4 by tuning the precursor and the synthetic protocol. Catal. Today 2023, 418, 114075. [Google Scholar] [CrossRef]
- Zhou, B.; Cui, A.; Wu, H.; Han, W.; Wang, C. Composition design and performance evaluation of g-C3N4/TiO2 composite photocatalyst for automobile exhaust. Munic. Technol. 2024, 42, 186–192 + 236. [Google Scholar]
- JTG 3450-2019; Field Test Methods of Highway Subgrade and Pavement. Ministry of Transport of the People’s Republic of China: Beijing, China, 2019.
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transport of the People’s Republic of China: Beijing, China, 2011.
- GB/T 9286-2021; Paintsand Varnishes—Cros-Cuttest. State Administration for Market Regulation, China National Standardization Administration: Beijing, China, 2021.
- JT/T 280-2022; Pavement Marking Paint. Ministry of Transport of the People’s Republic of China: Beijing, China, 2022.
- GB/T 1733-1993; Determination of Resistance to Water of Films. China National Bureau of Technical Supervision: Beijing, China, 1993.
- GB/T 1768-1979; Method of Test for Abrasion Resistance of Paint Films. China National Standardization Administration: Beijing, China, 1979.
- Cai, P.; Xu, M.; Wei, M.; Zhang, T.; Yao, F. Preparation and characterization of SiO2–TiO2 superhydrophilic coatings with photocatalytic activity induced by low temperature. Colloids Surf. A Physicochem. Eng. Asp. 2024, 686, 133264. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, X. Photocatalytic oxidation for indoor air purification: A literature review. Build. Environ. 2003, 38, 645–654. [Google Scholar] [CrossRef]
- Firoozabadi, S.R.; Khosravi-Nikou, M.R.; Shariati, A. Kinetic study and optimization of hierarchical TiO2 flower-like/exfoliated g-C3N4 composite for improved carbon dioxide photoconversion to methane and methanol under visible light. J. Clean. Prod. 2024, 451, 142019. [Google Scholar] [CrossRef]
- Ding, P.; Ji, H.; Li, P.; Liu, Q.; Wu, Y.; Guo, M.; Zhou, Z.; Gao, S.; Xu, W.; Liu, W.; et al. Visible-light degradation of antibiotics catalyzed by titania/zirconia/graphitic carbon nitride ternary nanocomposites: A combined experimental and theoretical study. Appl. Catal. B Environ. 2022, 300, 120633. [Google Scholar] [CrossRef]
- Zhang, H.; Bian, H.; Wang, F.; Zhu, L.; Zhang, S.; Xia, D. Enhanced photocatalytic reduction of CO2 over pg-C3N4-supported TiO2 nanoparticles with Ag modification. Colloids Surf. A Physicochem. Eng. Asp. 2023, 674, 131989. [Google Scholar] [CrossRef]
- Wang, J.; Wang, G.; Cheng, B.; Yu, J.; Fan, J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68. [Google Scholar] [CrossRef]
- Chi, X.; Liu, F.; Gao, Y.; Song, J.; Guan, R.; Yuan, H. An efficient B/Na co-doped porous g-C3N4 nanosheets photocatalyst with enhanced photocatalytic hydrogen evolution and degradation of tetracycline under visible light. Appl. Surf. Sci. 2022, 576, 151837. [Google Scholar] [CrossRef]
- Qu, J.; Wang, P.; Wang, Y.; Li, Z.; Yang, F.; Han, C.; Wang, L.; Yu, D. Determination of phospholipids in soybean oil using a phospholipase-choline oxidase biosensor based on g-C3N4-TiO2 nanocomposite material. J. Food Compos. Anal. 2023, 124, 105717. [Google Scholar] [CrossRef]
- Nasir, M.S.; Yang, G.; Ayub, I.; Wang, S.; Yan, W. In situ decoration of g-C3N4 quantum dots on 1D branched TiO2 loaded with plasmonic Au nanoparticles and improved the photocatalytic hydrogen evolution activity. Appl. Surf. Sci. 2020, 519, 146208. [Google Scholar] [CrossRef]
- Gültekin, S.; Yıldırım, S.; Yılmaz, O.; Keskin, İ.Ç.; Katı, M.İ.; Çelik, E. Structural and optical properties of SrAl2O4: Eu2+/Dy3+ phosphors synthesized by flame spray pyrolysis technique. J. Lumin. 2019, 206, 59–69. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, X.; Wu, Y.; Li, Z.; Han, Y.; Shen, X. A study of spherical TiO2/g-C3N4 photocatalyst: Morphology, chemical composition and photocatalytic performance in visible light. Mol. Catal. 2017, 432, 232–241. [Google Scholar] [CrossRef]
- Moradi, S.; Isari, A.A.; Hayati, F.; Kalantary, R.R.; Kakavandi, B. Co-implanting of TiO2 and liquid-phase-delaminated g-C3N4 on multi-functional graphene nanobridges for enhancing photocatalytic degradation of acetaminophen. Chem. Eng. J. 2021, 414, 128618. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Xiong, Y.; Wang, D.; Yin, Q. SrAl2O4: Eu2+, Dy3+ phosphors derived from a new sol–gel route. Microelectron. J. 2004, 35, 379–382. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, B.; Li, H.; Cui, A.; Wang, D.; Guo, F.; Wang, C. Implementing All-Weather Photocatalysis of Exhaust Fumes Based on the g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ Ternary Composite Coating. Buildings 2024, 14, 1743. https://doi.org/10.3390/buildings14061743
Zhou B, Li H, Cui A, Wang D, Guo F, Wang C. Implementing All-Weather Photocatalysis of Exhaust Fumes Based on the g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ Ternary Composite Coating. Buildings. 2024; 14(6):1743. https://doi.org/10.3390/buildings14061743
Chicago/Turabian StyleZhou, Bochao, Hailong Li, Ao Cui, Di Wang, Fucheng Guo, and Chao Wang. 2024. "Implementing All-Weather Photocatalysis of Exhaust Fumes Based on the g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ Ternary Composite Coating" Buildings 14, no. 6: 1743. https://doi.org/10.3390/buildings14061743
APA StyleZhou, B., Li, H., Cui, A., Wang, D., Guo, F., & Wang, C. (2024). Implementing All-Weather Photocatalysis of Exhaust Fumes Based on the g-C3N4/TiO2/SrAl2O4: Eu2+, Dy3+ Ternary Composite Coating. Buildings, 14(6), 1743. https://doi.org/10.3390/buildings14061743