Building Material Carbon Emission Prediction Models for Reinforced-Concrete Shear-Wall Urban Residential Buildings in Northern China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Research Objects
3.2. Statistical Principles and General Characteristics
3.2.1. Statistical Principles of Building Material Carbon Emissions
3.2.2. Overall Characteristics of Building Material Consumption and Carbon Emissions
3.3. Analysis of the Correlation between Design Parameters and Building Material Carbon Emissions
3.4. Construction of Carbon Emission Prediction Models
3.4.1. Construction of Direct Prediction Models
3.4.2. Construction of Indirect Prediction Models
4. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mallapaty, S. How China could be carbon neutral by mid-century. Nature 2020, 586, 482–483. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Qin, Q. Challenges for China’s carbon emissions peaking in 2030: A decomposition and decoupling analysis. J. Clean. Prod. 2019, 207, 857–865. [Google Scholar] [CrossRef]
- Zheng, J.; Mi, Z.; Coffman, D.M.; Milcheva, S.; Shan, Y.; Guan, D.; Wang, S. Regional development and carbon emissions in China. Energy Econ. 2019, 81, 25–36. [Google Scholar] [CrossRef]
- Chen, J.; Gao, M.; Mangla, S.K.; Song, M.; Wen, J. Effects of technological changes on China’s carbon emissions. Technol. Forecast. Soc. Chang. 2020, 153, 119938. [Google Scholar] [CrossRef]
- Wu, P.; Song, Y.; Zhu, J.; Chang, R. Analyzing the influence factors of the carbon emissions from China’s building and Construction Industry from 2000 to 2015. J. Clean. Prod. 2019, 221, 552–566. [Google Scholar] [CrossRef]
- Terlouw, T.; Bauer, C.; Rosa, L.; Mazzotti, M. Life cycle assessment of carbon dioxide removal technologies: A critical review. Energy Environ. Sci. 2021, 14, 1701–1721. [Google Scholar] [CrossRef]
- Chastas, P.; Theodosiou, T.; Kontoleon, K.J.; Bikas, D. Normalising and assessing carbon emissions in the building sector: A review on the embodied CO2 emissions of residential buildings. Build. Environ. 2018, 130, 212–226. [Google Scholar] [CrossRef]
- Koroneos, C.; Dompros, A. Environmental assessment of brick production in Greece. Build. Environ. 2007, 42, 2114–2123. [Google Scholar] [CrossRef]
- Venkatarama Reddy, B.V. Sustainable materials for low carbon buildings. Int. J. Low-Carbon Technol. 2009, 4, 175–181. [Google Scholar] [CrossRef]
- Hootman, T. Net Zero Energy Design: A Guide for Commercial Architecture; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Syngros, G.; Balaras, C.A.; Koubogiannis, D.G. Embodied CO2 emissions in building construction materials of Hellenic dwellings. Procedia Environ. Sci. 2017, 38, 500–508. [Google Scholar] [CrossRef]
- Duan, H.; Zhang, S.; Duan, S.; Zhang, W.; Duan, Z.; Wang, S.; Song, J.; Wang, X. Carbon emissions peak prediction and the reduction pathway in buildings during operation in Jilin province based on Leap. Sustainability 2019, 11, 4540. [Google Scholar] [CrossRef]
- Geng, J.; Wang, J.; Huang, J.; Zhou, D.; Bai, J.; Wang, J.; Zhang, H.; Duan, H.; Zhang, W. Quantification of the carbon emission of urban residential buildings: The case of the greater bay area cities in China. Environ. Impact Assess. Rev. 2022, 95, 106775. [Google Scholar] [CrossRef]
- Chen, C.; Bi, L. Study on spatio-temporal changes and driving factors of carbon emissions at the building operation stage—A case study of China. Build. Environ. 2022, 219, 109147. [Google Scholar] [CrossRef]
- Ali, K.A.; Ahmad, M.I.; Yusup, Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector. Sustainability 2020, 12, 7427. [Google Scholar] [CrossRef]
- Cang, Y.J. Study on Accounting Methods of Building Carbon Emission in Embodied Stage; Xi’an University of Architecture and Technology: Xi’an, China, 2018. [Google Scholar]
- Röck, M.; Saade, M.R.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H. Identification of parameters for Embodied Energy Measurement: A Literature Review. Energy Build. 2020, 42, 1238–1247. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, M.Y.; Liu, S.Y.; Chen, G.Q. Energy consumption and greenhouse gas emissions by buildings: A multi-scale perspective. Build. Environ. 2019, 151, 240–250. [Google Scholar] [CrossRef]
- Chen, W.; Yang, S.; Zhang, X.; Jordan, N.D.; Huang, J. Embodied Energy and carbon emissions of building materials in China. Build. Environ. 2022, 207, 108434. [Google Scholar] [CrossRef]
- Emmanuel, R. Estimating the environmental suitability of wall materials: Preliminary results from Sri Lanka. Build. Environ. 2004, 39, 1253–1261. [Google Scholar] [CrossRef]
- Praseeda, K.I.; Reddy, B.V.V.; Mani, M. Embodied Energy Assessment of building materials in India using process and input–output analysis. Energy Build. 2015, 86, 677–686. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, D.; Hu, S.; Guo, S. Modelling of energy consumption and carbon emission from the building construction sector in China, a process-based LCA approach. Energy Policy 2019, 134, 110949. [Google Scholar] [CrossRef]
- Mao, X.K. Study on Building Life Cycle Carbon Emissions Prediction Model—Taking Residential Buildings in Tianjin as Examples; Tianjin University: Tianjin, China, 2018. [Google Scholar]
- Luo, Z.X. Study on Calculation Method of Building Life Cycle CO2 Emission and Emission Reduction Strategies; Xi’an University of Architecture and Technology: Xi’an, China, 2016. [Google Scholar]
- Liu, Y.M.; Liu, N.X.; Xu, P.Q. Carbon emission prediction model during the material production stage for cold zone residential buildings. J. Tsinghua Univ. 2023, 63, 15–23. [Google Scholar] [CrossRef]
- Fang, Y.; Lu, X.; Li, H. A random forest-based model for the prediction of construction-stage carbon emissions at the early design stage. J. Clean. Prod. 2021, 328, 129657. [Google Scholar] [CrossRef]
- Magazzino, C.; Mele, M.; Schneider, N. A machine learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renew. Energy 2021, 167, 99–115. [Google Scholar] [CrossRef]
- Mardani, A.; Liao, H.; Nilashi, M.; Alrasheedi, M.; Cavallaro, F. A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. J. Clean. Prod. 2020, 275, 122942. [Google Scholar] [CrossRef]
- Zhu, F.W.; Zhang, C.Z.; Chen, M.; Meng, F.G. Analysis of carbon emissions and its total accounting of urban residential buildings in Wuhan. Build. Energy Effic. 2021, 49, 25–29+35. [Google Scholar] [CrossRef]
- Cheng, T.J.; Wang, M.; Wang, J.G.; Wu, F.P. Factors affecting the carbon emissions of energy consumption based on the data of Jiangsu Province. J. Nanjing Univ. Posts Telecommun. 2020, 22, 55–70. [Google Scholar] [CrossRef]
- Jing, Q.N.; Hou, H.M.; Bai, H.T.; Xu, G. A top-bottom estimation method for city-level energy-related CO2 emissions. China Environ. Sci. 2019, 39, 420–427. [Google Scholar] [CrossRef]
- Zheng, Y.; Du, S.; Zhang, X.; Bai, L.; Wang, H. Estimating carbon emissions in urban functional zones using multi-source data: A case study in Beijing. Build. Environ. 2022, 212, 108804. [Google Scholar] [CrossRef]
- Huang, C. Multi-Dimensional Evaluation and Scenario Analysis of Urban Carbon Emissions; East China Normal University: Shanghai, China, 2020. [Google Scholar]
- Huo, T.; Ma, Y.; Yu, T.; Cai, W.; Liu, B.; Ren, H. Decoupling and Decomposition Analysis of residential building carbon emissions from residential income: Evidence from the provincial level in China. Environ. Impact Assess. Rev. 2021, 86, 106487. [Google Scholar] [CrossRef]
- Huang, P.-J.; Huang, S.-L.; Marcotullio, P.J. Relationships between CO2 emissions and Embodied Energy in building construction: A historical analysis of Taipei. Build. Environ. 2019, 155, 360–375. [Google Scholar] [CrossRef]
- Fang, Y.; Ng, S.T.; Ma, Z.; Li, H. Quota-based carbon tracing model for construction processes in China. J. Clean. Prod. 2018, 200, 657–666. [Google Scholar] [CrossRef]
- Wong, J.K.W.; Li, H.; Wang, H.; Huang, T.; Luo, E.; Li, V. Toward low-carbon construction processes: The visualisation of predicted emission via Virtual Prototyping Technology. Autom. Constr. 2013, 33, 72–78. [Google Scholar] [CrossRef]
- Saad, S.; Alaloul, W.S.; Ammad, S.; Qureshi, A.H.; Altaf, M.; Rasheed, K. Design phase carbon emission prediction using a visual programming technique. In Proceedings of the 2020 Second International Sustainability and Resilience Conference: Technology and Innovation in Building Designs, Sakheer, Bahrain, 11–12 November 2020; p. 51154. [Google Scholar] [CrossRef]
- Lin, X.D. Building Industry Carbon Footprint—Carbon Management Strategies for Architecture, Landscape and Interior Decoration; Jane Bookstore: Taipei, Taiwan, 2018. [Google Scholar]
- GB/T 51366-2019; Standard for Building Carbon Emission Calculation. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2019.
- Liu, J.; Zheng, X.F.; Xie, X.L.; Li, Y.G. Theoretical and practical analysis of life cycle carbon emissions of aerated concrete blocks. Struct. Units Units Archit. 2012, 5, 43–45. [Google Scholar] [CrossRef]
- Li, L.Y.; Zhang, K.; Li, J.L. Comparative analysis of carbon emission throughout the life cycle of residential buildings and carbon reduction strategy. J. Xi’an Univ. Archit. Technol. 2021, 53, 737–745. [Google Scholar] [CrossRef]
- Gao, W.; Ariyama, T.; Ojima, T.; Meier, A. Energy impacts of recycling disassembly material in residential buildings. Energy Build. 2001, 33, 553–562. [Google Scholar] [CrossRef]
- Tam, V.W.Y.; Tam, C.M. A review on the viable technology for Construction Waste Recycling. Resour. Conserv. Recycl. 2006, 47, 209–221. [Google Scholar] [CrossRef]
- Song, Z.Q. Research on Carbon Emission Characteristics and Carbon Reduction Strategies in the Materialization Stage of Architecture; Zhejiang University: Hangzhou, China, 2023. [Google Scholar] [CrossRef]
Building Number | Location | No. of Building Stories | No. of Basement Levels | Building Height/m | Building Floor Area /m2 | Standard Floor Area/m2 | Shape Coefficient of Building | No. of Bedrooms on a Standard Floor | No. of Toilets on a Standard Floor | No. of Rooms on a Standard Floor | Average Window-to-Wall Area Ratio | Building Surface Area /m2 | Building Width /m | Building Depth /m |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Shandong | 32 | 1 | 93.95 | 13,499.50 | 423.30 | 0.36 | 10 | 6 | 31 | 0.17 | 12,882.36 | 35.00 | 16.90 |
2 | Shandong | 32 | 2 | 93.85 | 15,585.47 | 451.98 | 0.35 | 12 | 6 | 33 | 0.19 | 13,667.60 | 37.70 | 15.90 |
3 | Shandong | 34 | 2 | 99.65 | 16,564.25 | 451.98 | 0.35 | 12 | 6 | 33 | 0.19 | 14,365.02 | 37.70 | 15.90 |
4 | Beijing | 34 | 2 | 99.65 | 16,674.01 | 456.54 | 0.31 | 12 | 6 | 41 | 0.19 | 13,920.36 | 37.70 | 15.90 |
5 | Beijing | 33 | 2 | 99.90 | 19,357.51 | 548.90 | 0.32 | 14 | 8 | 45 | 0.23 | 15,543.90 | 42.80 | 18.20 |
6 | Beijing | 11 | 2 | 32.45 | 3814.94 | 291.80 | 0.35 | 8 | 4 | 20 | 0.17 | 3191.94 | 26.60 | 10.80 |
7 | Tianjin | 10 | 1 | 24.10 | 1981.66 | 204.58 | 0.40 | 6 | 2 | 14 | 0.14 | 2060.24 | 17.20 | 14.10 |
8 | Tianjin | 11 | 2 | 32.45 | 4139.65 | 316.02 | 0.35 | 8 | 4 | 20 | 0.17 | 3420.75 | 29.80 | 12.60 |
9 | Tianjin | 11 | 2 | 32.45 | 4139.65 | 316.02 | 0.34 | 8 | 4 | 22 | 0.25 | 3641.68 | 29.80 | 12.60 |
10 | Shandong | 11 | 2 | 32.45 | 3786.50 | 291.80 | 0.35 | 6 | 4 | 24 | 0.17 | 3191.94 | 26.60 | 10.80 |
11 | Shandong | 11 | 2 | 34.05 | 10,624.90 | 846.97 | 0.29 | 18 | 12 | 63 | 0.26 | 8602.44 | 68.31 | 17.10 |
12 | Shandong | 12 | 2 | 39.30 | 8159.60 | 533.54 | 0.29 | 16 | 8 | 40 | 0.19 | 5737.96 | 45.80 | 13.90 |
13 | Beijing | 17 | 2 | 52.80 | 10,972.32 | 548.25 | 0.31 | 12 | 8 | 42 | 0.20 | 8967.44 | 49.40 | 15.55 |
14 | Beijing | 17 | 2 | 52.80 | 11,548.63 | 610.19 | 0.31 | 16 | 8 | 46 | 0.20 | 9007.44 | 55.40 | 13.75 |
15 | Beijing | 7 | 1 | 23.30 | 4603.70 | 727.50 | 0.35 | 18 | 12 | 48 | 0.21 | 4112.53 | 64.10 | 14.10 |
16 | Tianjin | 8 | 2 | 32.45 | 7263.93 | 730.39 | 0.36 | 18 | 12 | 48 | 0.16 | 6210.27 | 64.10 | 14.10 |
17 | Tianjin | 8 | 2 | 25.05 | 7768.88 | 811.29 | 0.32 | 18 | 12 | 48 | 0.20 | 6191.22 | 69.90 | 15.90 |
18 | Tianjin | 8 | 2 | 25.05 | 8483.89 | 827.98 | 0.28 | 24 | 12 | 60 | 0.20 | 6160.28 | 68.90 | 13.05 |
19 | Shandong | 8 | 2 | 26.00 | 5421.01 | 558.02 | 0.36 | 12 | 8 | 40 | 0.24 | 4232.93 | 46.00 | 13.30 |
20 | Shandong | 8 | 2 | 26.00 | 3008.90 | 317.31 | 0.38 | 8 | 4 | 24 | 0.23 | 2310.30 | 28.70 | 18.50 |
Model | Component | Construction Method | Fitting R2 |
---|---|---|---|
M1 | Na, Nb, w, d | linear regression | 0.962 |
M2 | S | linear regression | 0.969 |
M3 | Na, Nb, w, d | linear regression | 0.978 |
M4 | Na, Nb, w, d, Nstb | linear regression | 0.983 |
M5 | Na, Nb, w, d, Nstm | linear regression | 0.984 |
M6 | Na, Nb, w, d, Nsti | linear regression | 0.984 |
Model | Component | Construction Method | Fitting R2 |
---|---|---|---|
Mc1 | Na, Nb, w, d | linear regression | 0.989 |
Mc2 | Na, Nb, w, d, Nsti | linear regression | 0.990 |
Ms1 | Na, Nb, w, d | linear regression | 0.970 |
Ms2 | Na, Nb, w, d, Nstm | ridge regression, K = 0.006 | 0.975 |
Mce | Na, Nb, w, d | linear regression | 0.825 |
Mwin | Na, w, d, φ | linear regression | 0.761 |
M7 | Mc1, Ms1, Mce, Mwin | combination | 0.980 |
M8 | Mc1, Ms2, Mce, Mwin | combination | 0.982 |
M9 | Mc2, Ms1, Mce, Mwin | combination | 0.982 |
M10 | Mc2, Ms2, Mce, Mwin | combination | 0.983 |
Building Number | S/m2 | Na | Nb | w/m | d/m | φ | Nsti | Nstm | Nstb |
---|---|---|---|---|---|---|---|---|---|
21 | 7768.88 | 8 | 2 | 69.90 | 15.90 | 0.22 | 54 | 24 | 18 |
22 | 8005.56 | 9 | 2 | 64.10 | 14.10 | 0.25 | 54 | 24 | 18 |
23 | 8736.01 | 10 | 2 | 64.10 | 14.10 | 0.26 | 54 | 24 | 18 |
24 | 6087.86 | 9 | 2 | 46.00 | 13.30 | 0.24 | 36 | 16 | 12 |
25 | 4668.93 | 6 | 2 | 51.50 | 15.30 | 0.23 | 40 | 18 | 14 |
26 | 5376.14 | 7 | 2 | 57.00 | 15.30 | 0.25 | 44 | 20 | 16 |
Building Number | Actual Value /t | Predicted Value/t | Mean Discrepancy Value /t | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | |||
21 | 3549.10 | 3563.09 | 3255.95 | 3075.10 | 3246.24 | 3274.46 | 3420.43 | 3195.89 | 3162.82 | 3230.08 | 3197.00 | 289.79 |
22 | 3556.11 | 3230.18 | 3350.15 | 3083.05 | 3254.08 | 3282.28 | 3428.27 | 3193.79 | 3196.70 | 3261.06 | 3263.97 | 301.76 |
23 | 3671.82 | 3486.87 | 3640.87 | 3365.43 | 3532.70 | 3560.04 | 3707.05 | 3493.30 | 3497.27 | 3560.65 | 3564.62 | 137.99 |
24 | 2412.27 | 2317.94 | 2586.91 | 2332.32 | 2325.34 | 2336.05 | 2420.22 | 2334.97 | 2322.43 | 2363.84 | 2351.30 | 79.66 |
25 | 1935.05 | 2196.90 | 2022.17 | 1906.58 | 1967.93 | 1969.21 | 2059.22 | 1924.73 | 1910.87 | 1947.59 | 1933.73 | 61.70 |
26 | 2087.93 | 2635.77 | 2303.64 | 2326.54 | 2444.97 | 2434.25 | 2533.13 | 2388.41 | 2370.43 | 2414.22 | 2396.24 | 336.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Xu, P.; Liu, N. Building Material Carbon Emission Prediction Models for Reinforced-Concrete Shear-Wall Urban Residential Buildings in Northern China. Buildings 2024, 14, 1812. https://doi.org/10.3390/buildings14061812
Liu Y, Xu P, Liu N. Building Material Carbon Emission Prediction Models for Reinforced-Concrete Shear-Wall Urban Residential Buildings in Northern China. Buildings. 2024; 14(6):1812. https://doi.org/10.3390/buildings14061812
Chicago/Turabian StyleLiu, Yiming, Peiqi Xu, and Nianxiong Liu. 2024. "Building Material Carbon Emission Prediction Models for Reinforced-Concrete Shear-Wall Urban Residential Buildings in Northern China" Buildings 14, no. 6: 1812. https://doi.org/10.3390/buildings14061812
APA StyleLiu, Y., Xu, P., & Liu, N. (2024). Building Material Carbon Emission Prediction Models for Reinforced-Concrete Shear-Wall Urban Residential Buildings in Northern China. Buildings, 14(6), 1812. https://doi.org/10.3390/buildings14061812